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Abstract

Transport systems constitute a fundamental structure deeply hardwired
into today’s increasingly denser cities. The proper, voluntary, and efficient
movement of people, goods, and services is quintessential to healthy and
sustainable social and economic advancements.

Urban environments, and their inseparable transport infrastructures,
are inherently intricate and highly dynamic. These deeply integrated sys-
tems frequently prove to be challenging to model and study due to the
multitude of involved variables, external factors, unknown stochastic phe-
nomena, and inevitably human behavior. This overwhelming complexity
is not, in most cases, easily encapsulated into closed-form and tractable
mathematical formulae, if not indeed infeasible in the first place. As a re-
sult, simulation approaches are traditionally employed as modeling tools to
explore virtual representations of actual or planned systems to assess their
performances ultimately.

Nevertheless, despite encompassing simplified representations of real-
world systems, simulation models can too become rather complex and there-
fore computationally expensive to implement and run, especially if designed
with sufficient detail. Even in situations where the simulation runtimes do
not represent a significant hindrance to the computer experimentation, in-
put variable spaces with reasonable dimensions can render the exploration
of the simulator’s output behavior tiresome to attain systematically. In
this sense, simulation metamodels often emerge as easy-to-implement solu-
tions to address the just mentioned shortcomings of simulation modeling.
Simulation metamodels are essentially functions that aim at approximating
the input-output mappings inherently defined by simulation models. These
models, which are generally recognized by their computing speed and sim-
ple functional structure, are fitted to previously simulated data and then
used for output prediction purposes.

In an effort to further minimize the computational burden of exhausting
computer experimentation, active learning can be employed in strategic
conjunction with simulation metamodels, as it proposes a more efficient
modeling approach by aiming at high predictive performance with as few
data points as possible. This is achieved by providing the metamodel, or
associated algorithm, with the ability to choose the most informative data
points in an iterative manner to be run by the simulation model, thereby
reducing data redundancy and runtimes while increasing learning efficiency
at the same time.

In this thesis, we develop and explore an integrated active learning meta-
modeling methodology in the context of transport systems simulation. This
methodology seeks to improve the exploration process of the simulation in-
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put space in order to allow a more efficient description and understanding
of the corresponding output behavior. To this end, the Gaussian Process
modeling framework is employed as a simulation metamodel due to its non-
linear and Bayesian properties, which in turn provide a natural platform
for developing native active learning strategies. Several transport-related
simulation models and active learning settings are analyzed and discussed.

Despite the clear advantages that both simulation metamodeling and
active learning, in the context of expensive or systematic computer exper-
iments, can provide to the transport simulation field, to the best of our
knowledge, such techniques remain seldom applied in an integrated manner
or even known to transport simulation modelers, practitioners, and related
professionals. Many simulation-based studies still rely on somewhat manual
processes, primarily focusing on the design of static what-if approaches. We
are confident that the adoption of active learning metamodeling schemes
can serve as a reliable and enhancing complement to the traditional sim-
ulation analysis both in research and industry. Furthermore, we believe
that this work will stimulate further discussion, developments, and more
applications within the field of transportation.

Keywords: Machine Learning, Active Learning, Transport Simulation Models, Sim-

ulation Metamodels, Gaussian Processes
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Resumo

Os sistemas de transporte constituem uma estrutura fundamental ao
funcionamento das cidades actuais cada vez mais densas e complexas. O
movimento adequado, voluntário e eficiente de pessoas, bens e serviços é
um elemento essencial para um desenvolvimento económico-social saudável
e sustentável.

De uma forma geral, os ambientes urbanos e as suas respectivas infra-
estruturas de transportes, são inerentemente intricados, muito dinâmicos e
profundamente integrados. Estes sistemas são frequentemente complexos
de modelar e de estudar devido às inúmeras variáveis envolvidas, factores
externos, fenómenos estocásticos desconhecidos e, inevitavelmente, ao com-
portamento humano. Na maior parte dos casos, esta enorme complexidade
é difícil, se não mesmo impossível, de transpor para fórmulas matemáticas
fechadas ou expressões analíticas. Em alternativa, métodos numéricos de
simulação são tradicionalmente usados como ferramentas de modelação que
permitem, acima de tudo, a exploração virtual de representações conceptu-
ais destes sistemas, actuais ou planeados para o futuro, a fim de avaliar os
seus respectivos desempenhos. Todavia, apesar de constituírem represen-
tações simplificadas de sistemas do mundo real, os modelos de simulação
podem tornar-se igualmente complexos e, por consequência, computacional-
mente difíceis de implementar e de executar, especialmente se forem de-
senhados com detalhe e realismo suficientes. Adicionalmente, mesmo em
situações onde os tempos de simulação não são propriamente elevados, os
espaços de entrada de simulação, quando caracterizados por um número
razoável de dimensões, o que é frequentemente o caso, podem, por si, só
tornar as análises do comportamento de saída dos simuladores subjacentes
em processos exaustivos quando conduzidos de forma sistemática.

Neste sentido, os metamodelos de simulação apresentam-se como soluções
simples de implementar a fim de resolver os problemas computacionais
usualmente impostos pelos métodos de simulação descritos anteriormente.
Estes tipos de modelos constituem essencialmente funções cujo objectivo é
aproximar os mapeamentos de entrada-saída inerentemente definidos pelos
respectivos modelos de simulação. Por sua vez, estas funções são geralmente
caracterizadas pela sua rapidez de computação e simplicidade, sendo ajus-
tadas a dados simulados e posteriormente usadas para fins de previsão de
valores de saída. Num esforço complementar de minimizar ainda mais o po-
tencial entrave computacional associado a processos de análise de simulação
exaustiva, estratégias de aprendizagem activa podem ser empregadas numa
abordagem integrada com metamodelos de simulação, proporcionando, as-
sim, uma modelação mais eficiente que visa atingir elevado desempenho
de previsão com tão poucos dados de treino quanto possível. Isto é con-
cretizável dando ao metamodelo, ou algoritmo associado, a capacidade de
escolher, de uma forma iterativa, os pontos mais informativos a serem exe-
cutados pelo modelo de simulação, reduzindo, deste modo, a redundância de
dados e tempos de execução, e consequentemente, aumentando a eficiência
da aprendizagem.

Nesta tese, desenvolvemos e exploramos uma metodologia integrada de
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aprendizagem activa e metamodelos no contexto geral da simulação de sis-
temas de transporte. Esta metodologia pretende melhorar o processo de
exploração dos espaços de entrada de simuladores, no sentido de permitir
uma descrição e conhecimento dos respectivos comportamentos de saída de
uma forma mais eficiente. Para este fim, a modelação através de Processos
Gaussianos foi usada enquanto metamodelo de simulação, devido às suas
propriedades não-lineares e Bayesianas que, por sua vez, constituem uma
plataforma natural para o desenvolvimento nativo de estratégias de apren-
dizagem activa. Vários modelos de simulação de transportes e configurações
de aprendizagem activa são analisados e discutidos.

Apesar das vantagens que a modelação por metamodelos de simulação
e aprendizagem activa apresentam para o ramo da simulação de sistema
de transportes, estes tipos de técnicas não são frequentemente aplicados de
uma forma integrada ou até conhecidas por parte de modeladores, prati-
cantes e demais profissionais associados à simulação de sistemas de trans-
portes. Muitos dos estudos baseados em técnicas de simulação ainda de-
pendem de processos manuais, focando-se sobretudo no desenho estático de
abordagens hipotéticas. Estamos confiantes que a adopção conjunta de es-
quemas de aprendizagem activa e de metamodelos de simulação pode servir
como complemento confiável de modelação às análises de simulação mais
tradicionais, tanto na investigação como na indústria. Além disso, acred-
itamos que este trabalho irá estimular mais discussão, desenvolvimentos e
aplicações no ramo de estudo de sistemas de transportes.

Palavras Chave: Aprendizagem Máquina, Aprendizagem Activa, Modelos de Simu-

lação de Transportes, Metamodelos de Simulação, Processos Gaussianos
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Chapter 1

Introduction

“He who has begun is half done. Dare to know, begin!”

Quintus Horatius Flaccus, 65 - 8 BC

According to the World Cities Report 2020, recently released by the United Nations

(2020), more than half of the world’s population live, as of today, in urbanized areas.

This proportion is projected to reach 60.4% by 2030. Generally, it is expected that ev-

ery region will become increasingly more urban, especially in the developing countries,

as today’s already highly urbanized areas are expected to experience a slowdown in

their urban growths. This steady migration from the countryside-like areas to urban

centers, as well as the creation of new ones, will place unprecedented pressure on the

existing infrastructures, consequently leading to further and, in many cases, unpre-

dictable urban transformations. For this reason, it is essential to understand the main

driving forces underlying urbanization so that we make our increasingly denser cities

into safe and sustainable human settlements (Martine et al., 2007; United Nations,

2018).

Human migration alone does not explain this worldwide urban growth. Many other

factors, such as global economic forces and technological impacts, have conjointly con-

tributed to the generation of remarkable dynamic transformations within urban en-

vironments. In order to maximally exploit these transformations for our own benefit

and, at the same time, to minimize or even avoid their potential negative impacts on

society, we should somehow be capable of planning for this inevitable urban growth

by taking into proper account the subjacent spatiotemporal transformations through

a multidimensional prespective (Marengo, 2014).

Urbanization progress typically follows the evolution of transportation (Rodrigue

et al., 2016), meaning that, as the urban populaces increase in size, so does too the

need for mobility, either within or outside the urban areas. Therefore, transporta-
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tion systems play a particularly vital role since they constitute the backbone that

supports sophisticated social and economic advancements. A healthy economic ac-

tivity inevitably requires and allows the voluntary movement of people, goods, and

services (Moore and Pulidindi, 2013).

Urban environments, and their associated transport infrastructures, are inherently

characterized by an overwhelming complexity. In addition to involving numerous inter-

related variables and entities, these integrated systems often exhibit stochastic behavior

and unknown random phenomena that are not easily encapsulated into closed-form and

tractable mathematical formulae. As a result, simulation approaches are traditionally

employed as modeling tools, allowing the exploration of virtual representations of ac-

tual or planned systems so that their performances can be ultimately assessed.

Simulation modeling is a well-known and established tool to study real-world trans-

port systems or to plan new ones (Fishburn et al., 1995), especially those that prove

to be particularly complex to be described as a whole by conventional and pure ana-

lytic approaches (Law, 2015). In fact, with the recent and continuous transformations

of today’s increasingly complex and multidimensional cities, the use of simulation ap-

proaches is, in many cases, the only feasible and reliable modeling option to study such

systems. Due to their intrinsically exploratory nature, simulation tools prove to be

highly advantageous for planning and policy analysis (Bankes, 1992, 1993).

Even though simulation models are simplified representations of reality, they can

still and most of the time do become quite complex and computationally expensive to

run, especially when embedded with enough detail and realism and when systematic

and exhausting experimentation is required. Obviously, this computational hindrance

will additionally depend upon the simulation’s objectives and the properties of the

real-world problem it aims to describe and study.

Within the transportation field, many simulation-based studies primarily focused

on forecasting objectives still rely on somewhat manual what-if approaches in an effort

to characterize and ultimately discretize uncertainty into a finite and intelligible set of

possible futures. Since planning for the future inevitably involves risk and uncertainty,

the use of scenarios as descriptive narratives of potential future states of the system

under study is widely used in planning and robust decision-making processes (Mietzner

and Reger, 2004).
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In the context of simulation modeling, an arbitrary combination of input values

can be regarded as a specific scenario, as pointed out by Kleijnen (2009). Therefore,

a particular scenario can be assigned to a well-defined initial state of a simulated

system. From this set of initial values, the system evolves according to the simulation

model, and the output values are eventually computed, usually in the form of Key

Performance Indicators (KPIs). Moreover, multiple simulation experiments might be

required for stochastic simulators, naturally depending on the stochasticity degree, so

that a complete description of the entire simulation output distribution is obtained.

Consequently, the obtained distribution is then used to explicitly characterize the final

simulation state and corresponds to a possible future state of the underlying system

under study.

Unsurprisingly, scenario design supported by computer experiments can turn out

to be a challenging task, especially when combined with highly dimensional simulation

models exhibiting reasonable execution times. Furthermore, although these kinds of

what-if approaches are typically guided by expert and domain knowledge, they still

risk failing to properly and entirely explore the simulation model as a whole and to

identify relevant input values that were not even considered in the first place. By

narrowing down the simulation possibilities to a pre-defined and finite set of input

value combinations specified according to the hypothesized situations, the simulation

analysis becomes restricted to particular small regions of the input space, thereby

curbing the reach of its insights and conclusions.

Therefore, the core motivation of this research is to investigate methodological solu-

tions that are capable of overcoming, to a certain extent, the computational hindrances

resulting from exhausting computer experiments in the context of transport simulation

settings. Additionally, closely in line with the previous, it is also a matter of interest

within this work to investigate ways of automatizing the traditional manual workflows

usually employed to study the output behavior of simulation models via exploration of

its corresponding input spaces.

1.1. Research Approach

Our approach to tackling the computational challenges usually posed by simulation

analysis procedures is twofold. On the one hand, we can address the computational
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burden by providing a framework for approximating the simulation results and enabling

prediction over unlabeled regions of the simulation input space. Here, unlabeled regions

refer to those parts of the input space that have not been simulated yet or, in other

words, not explored through the simulation model. By predicting simulation output

values for unlabeled input data points, a reasonable amount of simulation runs and time

can, up to a certain extent, be avoided, provided that high prediction performances

are guaranteed.

On the other hand, modeling approaches that specifically aim at carefully selecting

the data to be simulated for posterior fitting ends can also be adopted. As simulation

results are always required for the fitting procedure, simulation models assume an

indispensable role in providing ground truth data. Notice that our observations are not

part of the real world but instead contained within the digital abstraction generated

by the simulation model. Thus, the experimental setting for obtaining new data is

obviously not entirely avoidable. However, it can be simplified if the number of required

simulation runs are minimized, thereby restricting the simulation execution process to

only an essential set of input values while maintaining, at the same time, acceptable

levels of fitting performance and generalization capabilities.

Simulation metamodels (Friedman, 2012) constitute a common approach to deal

with the computational challenges associated with a systematic exploration of simula-

tion input spaces, being generally employed with the goal of approximating the behavior

of simulators. Known for their simple and intelligible formal structure, as well as com-

putational speed, these models are fitted to the input-output data previously sampled

from simulation models and are then used for explanatory and prediction purposes,

among others (Kleijnen and Sargent, 2000; Kleijnen, 2009). As a result, metamodels

provide a modeling framework that allows the exploration of the simulation models’

behavior while minimizing the computational burden associated with the computer

experiments they aim to mimic.

Nevertheless, as these metamodels explicitly rely on data generated by simulators,

they are still dependent, to a great degree, on the complexities exhibited by the under-

lying simulation models they are designed to approximate. In this sense, feeding a sim-

ulation metamodel with previously generated data is as expensive and time-consuming

as running the associated simulation model itself. Thus a proper data sampling strategy
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is necessary to further reduce the impact of this direct dependency. In these specific

experimental settings where data is particularly difficult to obtain, Active Learning

emerges to play a fundamental role by proposing a more efficient modeling paradigm.

As a sub-field of Machine Learning (Carbonell et al., 1983; Alpaydin, 2020), Active

Learning (Settles, 2010), aims at providing high predictive performance with as few

data points as possible. The main idea is essentially to increase learning efficiency

by reducing redundancy in data. This is attained by designing into the underlying

model, or algorithm, the ability to choose the most informative data points from which

it learns. Within a simulation setting, such as that described above, one data point

corresponds to an input-output n-tuple resulting from a single simulation run.

Active learning approaches are designed as iterative sampling strategies that seek

to maximize information gain while maintaining careful and conservative management

toward the number of sampled points. Most of these approaches are essentially based

on data informativeness concepts, which in turn are typically defined as functions of

uncertainty and entropy (Wang and Zhai, 2016). From a modeling perspective, the

degree of informativeness of an arbitrary data point can be measured to what extent it

constitutes an incremental contribution to prediction performance. In this sense, low

informativeness can be broadly categorized as data redundancy, as the contributions

to the models’ performance improvement are potentially minimal. On the contrary,

high informativeness points are potentially associated with higher performance gains.

Furthermore, uncertainty can also be regarded as unexplored and unexploited infor-

mation potential. Consequently, these types of information-driven sampling strategies

can be directly employed in simulation settings, thereby driving the simulation exper-

iments towards the most informative points to minimize the associated computational

drawbacks as much as possible.

In the context of transport-related simulation problems, we adopt an approach

that integrates simulation metamodeling and active learning, effectively combining the

best of both worlds. Whereas metamodels serve as computationally fast auxiliary ap-

proximations of simulation models themselves, active learning provides a parsimonious

way of selecting the simulation data to which they are posteriorly fitted. A pictorial

description of the integrated research approach conducted in this thesis is shown in

Figure 1.1, where we can identify the core elements on which our approach is built
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Figure 1.1: Core elements of the research approach and their corresponding relationships.

upon, fundamentally split into two phases, namely, metamodeling and active learning.

The first step of this approach falls on the precise definition of the problem to

be addressed through simulation analysis, and along with it, the specification of the

relevant input variables to consider, and the corresponding output variables, typically

in the form of performance indicators (or KPIs). This step additionally establishes

the particular goals of the active learning metamodeling strategy to be employed.

Following the specification of the input and output spaces of interest, an initial data

set comprising of prior simulation results is constructed so that the metamodel can

be trained. Then, the prediction step follows, where the fitted metamodel is used to

predict over a given input region of interest, corresponding to the applicability domain

in which we aim to explore the simulator’s behavior and for which we do not have

the associated simulation results. Prediction performance assessment is additionally

carried out, effectively ending the metamodeling phase.

Subsequently, the active learning procedure is initiated by requesting the simulation

model for new data according to a pre-defined sampling strategy, essentially enclosing

some information-based criterion. Note that the simulation model must be constantly

accessible for on-demand requests to allow this phase to work correctly. After the latter

selectively generates the new data, the training set is expanded, and the metamodel is

retrained accordingly. The entire process is then repeated sequentially until a specific

stopping criterion (or set of criteria) is satisfied. This criterion should consider the

metamodel’s relative performance and recognize when no further improvements are

attainable solely via the expansion of the training set. Naturally, the user is always
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capable of fine-tuning the performance criteria, as well as the stopping rule, if these

prove to be unsatisfactory for the modeling goals previously set. Finally, the process

ends with a trained metamodel specially tailored for the experimental input domain

specified at the beginning.

As a side note, notice that we use the terms simulation model and simulator in-

terchangeably for the sake of language simplicity. Whereas the simulation model is

the formal abstract representation of the real-world system or problem, the simula-

tor corresponds to its material implementation via a specific simulation platform or

programming language. In the context of this work, for all intents and purposes, the

differences between both entities are not particularly relevant for our approach. In

most cases, however, we mean the latter rather than the former.

It is also worthwhile to mention that it is not our intent to entirely replace the

underlying simulation model with the obtained metamodel, and certainly not its cru-

cial role in providing ground truth data. The latter should always be regarded as an

approximation for the former, so much so that the critical trade-off balance between

computational speed and accuracy loss should be constantly tracked and adjusted ac-

cording to the metamodeling’s ultimate objectives. The metamodel is mainly employed

to discover insights from the simulation model’s behavior limited to the input region

of interest, which is defined, as mentioned earlier, as a function of a particular task or

problem to be addressed. It is also essential to constantly keep in mind its approx-

imate nature throughout the entire modeling process so that the correct conclusions

are drawn, and improvements are undertaken if required.

In a sense, this approach aims to employ the metamodel side-by-side with the

simulation model, never actually discarding the latter. Whereas the metamodel helps

to reduce the redundancy of the exploration process, the simulation model guarantees

that this exploration is heading in the right direction. This is attained by providing

ground truth data whenever the metamodel’s prediction uncertainty is high enough.

Note that the generalization capabilities of the metamodel are somewhat restrained to

the data points which it has already “seen” in previous iterations and their similarities

with the uncharted regions of the simulation input space.

We can easily observe the automatic nature of this approach. This feature does

not waive, however, proper supervision from an expert in the field along the entire
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process, especially concerning the final obtained metamodel, whose predictions and

general behavior are expected to broadly follow the domain knowledge main premises.

Fine-tuning and minor adjustments of the methodology might be required in more

complex settings, essentially consisting of the revisiting of the sampling strategies,

stopping criteria, and even functional structure of the metamodel itself.

Given a particular transport simulation problem to be addressed, both the type of

metamodel employed and the active learning scheme can be regarded as parameters

of this integrated approach. Changing such parameters will inevitability change the

approach’s outcome. On the other hand, the option for the metamodel is closely

intertwined with the designed active learning strategy.

Among a wide range of possible machine learning tools, Gaussian Processes (Ras-

mussen and Williams, 2006) proves to be a complete and versatile modeling approach

successfully linking active learning and simulation metamodeling. In fact, it has been

traditionally and vastly applied in both fields, making it an obvious choice for this

work. As we discuss in Section 2.1.2, the Gaussian Process framework proves to be a

flexible modeling platform to develop active learning metamodeling strategies due to

its nonlinear and nonparametric properties. In addition, and as a Bayesian tool, its

predictions are generated in the form of probability distributions rather than pointwise

ones, thereby successfully enclosing a notion of uncertainty and entropy within its own

prediction system, which can be ultimately exploited to design native active learning

strategies.

At this point, the multidisciplinary nature of this integrated approach should be

evident. In Figure 1.2, this thesis is depicted as an intersection of several major research

fields of interest. We briefly expand on some of these topics later in Chapter 2, where

we provide a succinct background review by visiting each topic individually and in a

sequential manner that fits the logic of this thesis.

In summary, and following the motivation of this work, as well as the research ap-

proach itself, our research hypothesis is that the combination of both active learning

and simulation metamodeling in a single integrated methodology has a great potential

to aid and complement the more manual-driven simulation analyses. Furthermore, it

also should provide a framework where the simulation input space exploration process

can be, according to certain criteria and specific goals, fully automated while easily
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Figure 1.2: Multidisciplinary view of the research approach.

taking into account the proper expert domain knowledge and supervision. As a result,

this integrated methodology should reduce the computational workload often associ-

ated with exhausting and systematic simulation runs.

These hypotheses should help us to answer the following research questions.

• To what degree is it possible to reduce the computational hassles associated with

systematic simulation runs in a significant manner? What are these limits?

• How to use active learning to automatize the metamodel learning process? How

to stop it? Which criteria can be used?

• How to sample the simulation model in an efficient fashion, which particularly
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focuses on avoiding redundancy between simulation runs?

• Which trade-off thresholds should be set to specifically balance the metamodel’s

accuracy loss and computing speed? How to define a “good” metamodel approxi-

mation as a function of the metamodeling goals? When should we stop expanding

the training set?

• How to decrease the number of required simulation runs while maintaining a

reasonable understanding of the underlying model to draw correct and meaningful

conclusions?

1.2. Research Goals and Contributions

Despite the potential advantages that both simulation metamodeling and active

learning, in the context of expensive and systematic computer experiments, can provide

to the transport simulation field, it is our understanding that such techniques remain

seldom applied by or even known to transport simulation modelers and practitioners,

as well as to other related professionals. As mentioned earlier, many simulation-based

studies still rely on rather manual processes that end up reducing the entire simulation

input space into intelligible and finite sets of input values combinations in order to

understand particular regions of the simulators’ output behavior. This often poses a

real practical hindrance to the exploration of the simulation model’s behavior.

Accordingly, the main goal of this work is to develop and explore the feasibility

of active learning metamodeling methodologies focused on transportation-related sim-

ulation settings. Consequently, another explicit objective is to contribute to closing

the gap between the transport simulation and the machine learning communities. The

strong multidisciplinary nature of this thesis is a testimony of these aims, hoping that

it stimulates further discussion and applications in the field.

Summarily, the goals of this research are as follows.

• Explore the feasibility of active learning metamodeling strategies in transport-

related simulation problems.

• Automatize, to a certain extent, the metamodeling process through active learn-

ing strategies in order to complement or reduce the need for traditionally manual
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processes, decreasing the associated computational hindrances.

• Show the potential of the methodology to aid traditional exploratory analyses

of simulated transport systems, thereby enhancing what-if planning approaches

and policy analysis processes.

• Serve as a discussion platform and foster the collaboration between machine

learning, transport research, and the specialized industry of transport simulation.

• Promote and further develop integrated approaches combining simulation meta-

modeling and active learning within the field of transportation.

Essentially, the contributions of this thesis are of methodological nature. The ex-

plored integrated methodology to deal with the potential shortcoming of simulation-

driven exploratory analysis has not been properly addressed within the transport re-

search field. On the one hand, metamodels aim to approximate the function defined by

the simulation models themselves. On the other hand, active learning tries to attain

higher fitting performance in a rather economical manner. Our approach is to combine

these techniques in order to offer a fully integrated methodology where i) metamodels

are used as parsimonious approximations of simulation models and ii) trained via active

learning schemes to boost fitting efficiency, the latter being tantamount to executing

the simulation model to the least possible extent. This methodology also provides a

framework to automatize the exploration processes often manually employed in simu-

lation analysis.

In the following, we briefly present the core contributions of this work organized

into four independent chapters.

• Chapter 3: a batch-mode active learning metamodeling scheme is proposed, along

with two user-defined stopping criteria. A toy data set, a Demand Responsive

Transportation simulator and a traffic simulator were used as case studies. The

results show that accounting for diversity within each batch can make the ex-

ploration process more efficient. Furthermore, a user-defined parameter is in-

troduced, forcing each batch to comprise points originating from different high

variance regions. Batch-mode active learning strategies also allow, up to some

extent, the parallelization of the simulation requests across different machines or
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multi-threat processes, thereby allowing to further speed up the metamodeling

process.

• Chapter 4: in the context of a simulated emergency medical system, an active

learning metamodeling approach was explored to assess its performance outcome.

The recommended guideline of eight minutes for the maximum emergency re-

sponse time, and its relation with the survival rate, was studied. The results

show a great utility potential for decision-making processes and policy analysis

applications, as the methodology provides a parsimonious approach for fast policy

testing and design. It can be easily expanded to allow multiple policy analyses

to be carried out at once if required.

• Chapter 5: a heuristic based on simulation metamodeling was designed in order

to specifically address the problem of exhausting simulation exploration within

a simulation-optimization setting. The metamodeling framework, which imple-

ments a local search heuristic approach, provides a fast track for evaluating al-

ternative solutions with a minor but controlled accuracy loss. Therefore, a meta-

model was used to replace the more computationally expensive simulation model,

allowing empirical evidence from the simulated system to be inferred instead of

computed, saving a reasonable amount of computational hassle in the process.

• Chapter 6: an algorithm based on a sequence of training grids, iteratively sug-

gested by the metamodel, steers the simulation exploration process towards input

regions that trigger a specific pre-defined output value of interest, resembling a

reserve engineering scheme. Here, for a given simulation output value, or set

of values, this active learning metamodeling approach aims at identifying, in an

efficient way, the set of input values that trigger the latter. This approach is of

great applicational value, as it provides an auxiliary tool to discover input regions

in which the degree of success or failure of a given policy is defined according to

a pre-defined simulation output value, or sets of values, of interest.

1.3. Research Dissemination

Within the framework of no. 2 of article 31º of the Decree-Law no. 74/2006 from

March 24th of the Portuguese Law, parts of this thesis have been previously submitted
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to international peer-reviewed journals of recognized merit across the fields of trans-

portation, simulation, and machine learning, namely, IEEE Transactions in Intelligent

Transportation Systems, T-ITS (published), Simulation Modeling Practice and The-

ory, SIMPAT (published), Computers & Industrial Engineering, CAIE (published),

and Transportmetrica A: Transportation Science (under review). These four papers

are presented in this manuscript as Chapters 3, 4, 5, and 6, respectively. Therefore,

the present manuscript is partly a compilation of published or submitted work.

Moreover, during the course of this doctoral project, albeit not directly related to

it, work has been developed and further published in an international peer-reviewed

journal, essentially encompassing Gaussian Processes within nonparametric machine

learning approaches as those used herein.

In the following, we present the details of the aforementioned works published and

submitted during the course of this thesis, essentially encompassing the period from

2017 to 2020.

• Antunes, F., Ribeiro, B., Pereira, F. and Gomes, R. (2018) Efficient Transport

Simulation with Restricted Batch-Mode Active Learning, IEEE Transactions on

Intelligent Transportation Systems (T-ITS), Vol. 19, pp. 3642 - 3651, ISSN

1558-0016.

• Antunes, F., Amorim, M., Pereira, F. and Ribeiro, B. (2019) Active Learning

Metamodeling for Policy Analysis: Application to an Emergency Medical Service

simulator, Simulation Modelling Practice, and Theory (SIMPAT), Vol. 97, pp.

101947, ISSN 1569-190X.

• Amorim, M., Antunes, F., Ferreira, S. and Couto, A. (2019) An Integrated Ap-

proach for Strategic and Tactical Decisions for The Emergency Medical Service:

Exploring Optimization and Metamodel-Based Simulation for Vehicle Location,

Computers and Industrial Engineering (CAIE), Vol. 137, pp. 106057, ISSN

0360-8352.

• Antunes, F., Amorim, M., Pereira, F. and Ribeiro, B. (2020) Active Learning

Metamodeling for Survival Analysis of a Simulated Emergency Medical System,

Transportmetrica A: Transportation Science, under review.
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• Antunes, F., Ribeiro, B. and Pereira, F., (2017) Probabilistic Modeling and Vi-

sualization for Bankruptcy Data Analytics, Applied Soft Computing, Elsevier,

Vol. 60, pp. 831-843, ISSN 1568-4946.

Most of the contents developed in this work have also been totally or partially

presented and discussed in several conferences and meetings, both national and inter-

national, as chronologically listed below. Some of these works have additionally been

published as part of conference proceedings, when available. One technical report was

also produced.

• Antunes, F., Ribeiro, B. and Pereira, F., (2017) Active Learning for Scenario Ex-

ploration in Transport & Land-Use Simulation Models, 14th Annual Transports

Study Group Conference (GET), February 20-21, Fátima, Portugal.

• Antunes, F., Ribeiro, B., Pereira, F. and Zegras, C., (2017) Active Learning

Metamodeling for Scenario Discovery in Transportation Simulators, Poster Ses-

sion, Transport Summer Summit at Technical University of Denmark (DTU),

May 31st, Copenhagen, Denmark.

• Antunes, F., Ribeiro, B. and Pereira, F., (2017) Active Learning GP-based Meta-

models for Input Exploration in Transportation Simulation Models, in the Proc.

of the 23rd Portuguese Conference on Pattern Recognition (RECPAD), October

27th, Lisbon, Portugal.

• Antunes, F., Ribeiro, B., Pereira, F. and Gomes, R., (2017) Active Learning

Metamodels for Transportation Simulators, Tech. Report no. 2017-005, CISUC,

University of Coimbra.

• Antunes, F., Ribeiro, B. and Pereira, F., (2018) Restricted Batch-Mode Active

Learning Metamodels for Transport Simulators, 15th Annual Transports Study

Group Conference (GET), February 19-20, Fátima, Portugal.

• Antunes, F., Ribeiro, B. and Pereira, F., (2018) Active Learning for Input Space

Exploration in Traffic Simulators, in the Proc. of the International Joint Confer-

ence on Neural Networks (IJCNN) in IEEE World Congress on Computational

Intelligence (WCCI), July 8-13, Rio de Janeiro, Brazil, ISSN 2161-4407.
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• Coimbra, L., Antunes, F., Seco, A. and Ribeiro, R. (2018) Exploratory Sce-

nario Design in Transportation Planning, in the Proc. of the 8th Luso-Brazilian

Congress for Urban, Regional, Integrated and Sustainable Planning (PLURIS

2018), October 24-26, Coimbra, Portugal, ISSN 2525-7390.

• Antunes, F., Ribeiro, B. and Pereira, F., (2018) Exploring the Output Behavior

of Traffic Simulators using Batch-mode Active Learning, Poster Session, National

Science Summit’18 (Ciência 2018), July 2-4, Lisbon, Portugal.

• Antunes, F., Ribeiro, B. and Pereira, F., (2018) Application of Active Learning

Metamodels and Clustering Techniques to Emergency Medical Service Policy

Analysis, in the Proc. of the 24th Portuguese Conference on Pattern Recognition

(RECPAD), October 26th, Coimbra, Portugal.

• Antunes F., Amorim, M., Ribeiro, B. and Pereira, F., (2019) An Active Learning

Metamodeling Approach for Policy Analysis: Application to an Emergency Med-

ical Service Simulator, paper no. 19-05677, Transport Research Board (TRB)

98th Annual Meeting, January 13-17, Washington D.C., USA.

• Antunes, F., Amorim, M., Pereira, F., and Ribeiro, B. (2019) Policy Analysis

for Emergency Medical Systems using Simulation Metamodels, Poster Session,

National Science Summit’18 (Ciência 2019), July 2-4, Lisbon, Portugal.

• Antunes, F., Amorim, M., Pereira, F. and Ribeiro, B. (2019) Metamodeling based

on active learning: application to an emergency medical service simulator, 12th

CITTA International Conference on Planning Research, September 19-20, Porto,

Portugal.

• Antunes, F., Pereira, F. and Ribeiro, B. (2019) Studying the behavior of a simu-

lated Emergency Medical System using Active Learning, in the Proc. of the 25th

Portuguese Conference on Pattern Recognition (RECPAD), October 31st, Porto,

Portugal.

• Antunes, F., Pereira, F. and Ribeiro, B. (2019) Directional Grid-based Search for

Simulation Metamodeling using Active Learning, in Proc. of the 3rd EAI Inter-

national Conference on Intelligent Transport Systems (INTSYS 2019), December
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4-6, Braga, Portugal, Intelligent Transport Systems from Research and Develop-

ment to the Market Uptake, Chapter 3, pp. 32-46, ISBN 978-3-030-38822-5.

Furthermore, some of the ideas explored in this thesis are being further devel-

oped and implemented within the ongoing EU-funded research project NOSTROMO

- Next-generation Open-Source Tools for ATM performance Modeling and Optimiza-

tion, under grant agreement no. 892517 of the Single European Sky ATM Research

(SESAR) Joint Undertaking under the European Union’s Horizon 2020 research and

innovation programme. Among other objectives, NOSTROMO aims to develop novel

approaches to the field of Air Traffic Management (ATM) modeling, mostly relying on

simulation metamodels and active learning to aid the study of ATM performance at the

European Civil Aviation Conference (ECAC) level. The active learning metamodeling

methodology being adopted within NOSTROMO heavily builds upon the contents of

this thesis which constitute a starting point for the exploratory nature of the project.

This initiative, which officially kicked off in June 2020, is led by Centro de Referencia

de Investigación Desarrollo e Innovación ATM - CRIDA (Spain), involving several other

research partners and industry key players in the field, namely, Nommon Solutions

and Technologies - NOMMON (Spain), Universitat Politècnica de Catalunya - UPC

(Spain), ISA Software Limited - ISA (United Kingdom), University of Westminster

(UoW, United Kingdom), and Technical University of Denmark - DTU (Denmark).

1.4. Thesis Structure

The present manuscript is organized into eight chapters. Except for Chapters 1

(Introduction), 2 (Research Background), and 7 (Conclusion), all the remaining chap-

ters are written in the format of self-contained scientific papers and can thus be read

independently. Due to this type of organization, a partial overlap between some chap-

ter’s contents is present, especially at the introduction and background revision levels.

The order of each of these chapters reflects a chronological and iterative sequence that

synchronizes with the work developed throughout the entire doctoral project. In the

following, we summarize the contents of this thesis.

Chapter 1 introduces the motivation, aims, and scope of the thesis. It also frames

the current manuscript as a compilation of previously presented, published, and sub-
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mitted works during the doctoral project’s period from 2017 to 2020.

Chapter 2 provides the essential background check on active learning and simulation

metamodels. Although brief, the adequate presentation of these concepts is fundamen-

tal for the understanding of the subsequent chapters and especially the presented and

explored methodologies. Some of these contents are also presented to some extent in

the introductory sections of the following chapters.

Chapter 3 presents a batch-mode active learning strategy based on simulation meta-

modeling using three different experimental settings. In order to take advantage of par-

allelization processing technologies increasingly available nowadays, an active learning

metamodeling strategy that queries the simulator in batches of simulation requests,

which can then be executed independently in different machines. We also introduce a

parameter that forces the batches to be formed by points from different spatially dis-

tanced high variance neighborhoods, thus speeding up the overall variance reduction.

Chapter 4 explores the application of active learning metamodeling to policy anal-

ysis. Building upon the work presented in the previous chapter, a metamodel was em-

ployed to study the performance outcome of a simulated medical emergency system. In

particular, we analyze in what conditions such a system fulfills a specific policy regard-

ing a recommended maximum response time threshold. The methodology shows that

active learning metamodels constitute a promising auxiliary tool that can complement

simulation analysis concerning the designing and testing of transport-related policies.

Chapter 5 integrates simulation metamodeling with optimization through the de-

velopment of a metamodel-based heuristic. A metamodel was designed to explore and

validate alternative solutions as a parsimonious substitute for the original and more

computationally expensive simulation model. Although with a minor accuracy loss,

resulting from the metamodeling itself, an increased amount of solutions can be tested

more efficiently.

Chapter 6 proposes a directional active learning scheme that explores the simula-

tion input space for regions that trigger specific pre-defined output values, resembling

a reverse engineering approach. Here, our aim is to narrow down the input space ex-

ploration effort to the region, which, via simulation, produces output values close to

that defined a priori by the user. Policy analysis can be effectively carried out in a

less computational-intense manner if such output value of interest is specified as a con-
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sequence of a particular decision boundary from which, for example, certain strategy

beings to fail or succeed.

Finally, Chapter 7 concludes this thesis. Here, we discuss several limitations of

the proposed methodology. Furthermore, and motivated by the latter, we point out

some challenges yet to be addressed, as well as other alternative directions for future

research.
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Chapter 2

Research Background

“Remember that all models are wrong; the practical question is how wrong

do they have to be to not be useful.”

George E. P. Box, 1919 - 2013

This chapter provides a succinct overview of the concepts, models, and techniques

to properly frame this work’s intrinsically multidisciplinary nature, complementing the

dedicated background review already present within Chapters 3 to 6.

In Section 2.1 we review the background modeling paradigms and tools that are

part of the methodology we explore, namely Machine Learning, Bayesian Inference,

Active Learning, and Gaussian Processes. Closing this chapter, Section 2.2 presents

a primer on the Simulation Modeling and the corresponding Metamodels. We do not

intend to conduct a thorough coverage since most of these topics can quickly become

quite vast and fall out of scope. Instead, we focus on the details that fit this thesis’s

purpose, framing it in the context of a broader and multidisciplinary field.

2.1. Machine Learning

In 1950, the mathematician Alan Turing introduced a test, originally called the

Imitation Game but later named after him, in an effort to answer the question “Can

machines think?” (Turing, 1950). This test constituted the first formal and operational

way to assess intelligent behavior exhibited by computers. It was primarily devised to

determine if a computer program could learn from experience and communicate with

the outside world in such a way that it would pass for a human being. In other words,

Turing’s goals were to somehow measure the intelligence of a computer and to what

extent it could indistinguishably imitate human behavior. This and many other con-

temporary works, which tried to systematically define and tackle human consciousness
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and intelligence from a computational perspective, marked the intellectual foundations

for the posterior emergence of the Artificial Intelligence (AI) field (French, 2000).

It is unanimous that a computer performs exceptionally well in logic-based pro-

cesses, such as arithmetic and other intrinsically mechanical operations. However, the

same does not hold true with respect to their ability to reproduce human thinking.

AI can be broadly defined as the intelligence exhibited by computers, and it is

used to describe those situations where a computer program seeks to mimic the human

mind and its associated cognitive functions. Here, the crucial assumption is that if

we are able to understand how the human mind works, we can somehow embed its

functional architecture into computer programs, thereby enabling them to perceive the

world from a human perspective and model it accordingly. Therefore, AI research is

a generic approach aiming to develop intelligent machines that try to replicate human

cognitive tasks, such as reasoning, natural language processing, visual perception, and

prediction, among others. A popular approach to achieving such goals is Machine

Learning (ML).

ML is a subfield of AI that focuses on the study and development of models and

algorithms that can learn from data and consequently solve specific tasks. The main

principle behind ML is that of enhancing the machines, or computer programs, with

the ability of continuous learning from the exposure to new data and through the

experience without being explicitly programmed. In fact, Samuel (2000), one of the

pioneers in ML studies, pointed out that designing computers to learn from experience

should lead to the reduction of detailed programming work.

Inspired by Mitchell et al. (1997), we can generally describe a given machine learning

task as the following quadruple

(M, T ,P , E)

where M is any model, computer program or algorithm designed to perform task T ,

whose performance is assessed by the metric P and improved via experience E . Notice

that the performance metric P tracks the learning success of the model, ultimately

driving the entire learning process.

In terms of terminology, the data to which the ML model is fitted is commonly called

the training set. Conversely, the test set, which should be disjoint from the latter, is

used to assess their prediction and generalization performances. These learning and
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test phases do not waive proper data treatment and pre-processing, usually tailored for

both the model input structure and the problem of interest. Depending on the type of

tasks and their associated goals, ML can be divided into three major categories, namely,

supervised, unsupervised, and reinforcement learning. Whereas the first learns from

explicitly labeled data by extracting shared properties (or features) associated with

each label or target, the second aims to discover groups of similarity within unlabeled

observations automatically. Finally, reinforcement learning is concerned with taking

actions that maximize a reward function given specific conditions. In contrast to su-

pervised learning, the algorithm searches for the optimal outputs based on a trial and

error interaction with a particular environment (Bishop, 2006; Goodfellow et al., 2016).

ML is an actively growing and promising field with many applications spanning

across the majority of engineering and technological fields. Since the beginning of

the 21st century, the proliferation of ubiquitous intelligent technologies (Kindberg and

Fox, 2002) and the development of the Internet of Things (IoT) paradigm (Li et al.,

2015), supported upon the Information Technology revolution, has culminated in an

exponential data growth never experienced before. In the most different contexts, data

is being generated at unprecedented speeds and volumes every day. The intense use of

network-enabled devices and interfaces is just one of the many causes of this explosion

and data availability. On the other hand, however, these significant volumes of data

are oftentimes characterized by a high degree of heterogeneity, incompleteness, and

unstructured noise, ultimately calling for an urgent increase in the employment of data-

driven approaches and methodologies, especially those embedded with uncertainty-

handling properties (Antunes et al., 2017).

The transportation industry is currently one of the most popular and visible ar-

eas of ML applications and research. Together with the mentioned advent of IoT and

Ubiquitous Sensing, ML has been playing a fundamental role in the development of

Intelligent Transportation Systems (Zantalis et al., 2019). Smart transport and com-

munication infrastructures, self-driving vehicles, smart ticketing, and real-time demand

prediction encompass a few examples of the technological impacts that will definitively

change our everyday lives and as well as our relationship towards transportation itself.

From an epistemological perspective, ML can be divided into several major lines of

thought, depending on the view of the world, assumptions, problems of interest, and
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how these are ultimately addressed. Domingos (2015) brilliantly proposes five tribes,

namely, symbolists, connectionists, evolutionaries, analogizers, and the Bayesians.

The symbolists believe that intelligence manifests itself through symbols and, con-

sequently, that the logical manipulation of such symbols leads to further insights into

the problems. Their main approach is inverse deduction, meaning that it comprises

the filling of gaps in the current knowledge in order to make deductions and even-

tually generalize it as much as possible. For the connectionists, the main goal is to

reverse engineer the brain as they believe that, in order to make sense out of the data,

we have to emulate the human mind by understanding how neural networks work.

Backpropagation is their main learning framework, essentially consisting of applying

continuous changes at the level of the neuron connections until the model’s output

compares favorably with the desired one.

As for the evolutionaries, they assert that natural selection is the supreme learn-

ing scheme. Thus, understanding and simulating evolution is their main goal. Their

primary approach is genetic programming, which incorporates many evolutionary bi-

ology concepts making computer programs able to evolve and improve themselves in

similar ways to that of Nature. The analogizers’ primary aim is to find similarities,

or analogies, between entities and situations so that other similarities can be inferred.

Their preferred learning approach is supported by kernel-based techniques, namely the

support vector machine. Kernels are functions that essentially evaluate the similarity

between two arbitrary data points, constituting the base for many of the generalization

capabilities of such methods.

Finally, for the Bayesians, understanding the world cannot be conducted if uncer-

tainty is not taken into proper account and carefully handled, as they believe that all

knowledge and the learning process itself are inevitably uncertain. Hence, the ultimate

approach is mostly based on probabilistic inference through the lens of Bayes’ theorem,

thereby providing an optimal learning framework to face uncertainty and incorporate

new upcoming evidence into their prior belief system.

It is worthwhile noting that some problems might not be uniquely approachable via

one of these views alone. Instead, integrated solutions comprising two or more different

perspectives might be required to properly address them, each of them contributing

with their own set of unique beliefs and distinctive tools.
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In this thesis, we mostly follow a Bayesian perspective combined with that of the

analogizers’ as our primary approach for obtaining new insights from data within an

integrated modeling framework. In the next section, we briefly expand on the Bayesian

inference formalism as a starting point to introduce several intertwined key components

that compose the methodology explored in this work.

2.1.1. Bayesian Inference

A fundamental concept residing at the core of most machine learning approaches is

that of uncertainty. The ability to deal with uncertainty is often built over probability

and statistical theories, which provide consistent modeling systems able to quantify

and manipulate various forms of the unknown. These frameworks facilitate the devel-

opment of powerful inference tools, even when the available information is incomplete

or ambiguous (Bishop, 2006; Murphy, 2012; McElreath, 2020).

Within the field of statistical inference, there are two major perspectives on prob-

ability, namely, frequentist (or classical) and Bayesian inference. The divergences be-

tween both approaches are historical and of philosophical nature with respect to statis-

tical reasoning (Vallverdú, 2015). In the frequentist view, the notion of probability is

defined as the limit of the relative frequency of a particular event over a large number

of well-defined and systematic random experiments. This theoretical limit is fixed and

unknown beforehand, and it can be inferred by statistical analysis of random obser-

vations. On the other hand, in Bayesian inference, probabilities are used to measure

the degree of belief (or certainty) that one has with respect to a given statement or

evidence of interest, whether it is random or not. Consequently, it essentially assigns

probabilities to possible states of the unknown truth while providing, at the same time,

an explicit formula to revise them in a simple iterative manner as new data is available

for analysis, as well as keeping track of the prior knowledge (Box and Tiao, 2011).

The Bayesian inference framework derives primarily from the Bayes’ theorem, also

called Bayes’ law or rule, which provides a structured way to update probability state-

ments given new pieces of evidence. Let us consider two random events, A and B,

exhibiting some form of mutual dependency. In its simplest form, the Bayes’ theorem

states that

P (A|B) =
P (B|A)⇥ P (A)

P (B)
,
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deriving directly from the definition of conditional probability applied twice, i.e.,

P (A|B) =
P (A \B)

P (B)
=

P (B \ A)

P (B)
=

P (B|A)⇥ P (A)

P (B)
.

This rule expresses the conditional probability of the event A given the observation,

or realization, of the event B. This probability is usually called posterior probability,

or posterior distribution, of A with respect to the observation of B. It is defined in

terms of the prior probabilities of A and B, and also of the conditional probability of

B given A. The prior probability of A, P (A), refers to what is known of A regardless

of B, whereas the probability of B given A, P (B|A), is the likelihood of the observed

B for all possible values of A. Finally, the probability of B, P (B), can be viewed as

a scaling factor, and often called the marginal likelihood, or evidence, that guarantees

that P (A|B) remains a probability distribution in [0, 1]. For this reason, Bayes’ rule is

often simplified to

P (A|B) / P (A)⇥ P (B|A),

where ‘/’ stands for “proportional to”.

Now following Box and Tiao (2011), consider a vector of observations y sampled

from an arbitrary probability distribution, p(y|⇥), depending on a set of parameters ⇥.

After replacing A, B and P (.) respectively by ⇥, y and p(.), we obtain the refurbished

Bayes’ formula

p(⇥|y) =
p(y|⇥)⇥ p(⇥)

p(y)
.

Here, p(⇥) represents the prior distribution over the parameter set, which reflects our

beliefs regarding the parameters before y is observed. On the other hand, p(y|⇥) is

the likelihood of the parameters given the observed data when viewed as a function

of ⇥ and not of y, and for this reason oftentimes rewritten to l(⇥|y). We can do

this because the data is fixed. Lastly, the posterior distribution, which combines the

likelihood and the prior, is given by p(⇥|y). This distribution essentially encloses the

uncertainty about the parameters in ⇥, given the observed data and the prior. Again,

the marginal likelihood, p(y), is a normalizing constant defined by the following integral

p(y) =
Z

p(y|⇥)⇥ p(⇥) d⇥.

Notice that, since the integration is over the set of parameters, p(y) is independent

from ⇥, thus it can be set to an unknown constant of proportionality. Eventually, the
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Bayes’ formula can again be simplified to

p(⇥|y)| {z }
posterior

/ l(⇥|y)| {z }
likelihood

⇥ p(⇥)|{z}
prior

.

From this expression, we observe that the likelihood function plays a rather crucial

role, as it is through it that the observed data, or evidence, revises the prior knowledge

of ⇥. Accordingly, it can be regarded as the information about ⇥ contained within the

observations.

As mentioned earlier, the iterative nature of the Bayesian formalism allows for

an elegant and recurrent formulation for incorporating new information into the old

knowledge as more observations are taken into consideration. For illustration, consider

a initial set of observations y1. Hence, via Bayes’ rule we obtain

p(⇥|y1) / l(⇥|y1)⇥ p(⇥).

We can combine a new set of observations, independent from the first, via

p(⇥|y2,y1) / l(⇥|y2,y1)⇥ p(⇥)

/ l(⇥|y2)⇥ l(⇥|y1)⇥ p(⇥)

/ l(⇥|y2)⇥ p(⇥|y1).

Note that the prior for y2 is exactly the posterior for y1, p(⇥|y1). As expected, this

step can be repeated sequentially as more observations are available. Consider n inde-

pendent samples. Thus, the posterior distribution for ⇥ given m previous observations

comes in the sequential form of

p(⇥|y1, . . . ,ym) / p(⇥|y1, . . . ,ym�1)⇥ l(⇥|ym),

with m = 2, . . . , n.

In sum, we see that Bayesian analysis is based on a framework that strives to

make use of all the available information present within the data, thereby embedding

prior knowledge in its inference system. Such a system allows for evidence originating

from newly observed data to be elegantly integrated into our assumptions, modifying

them whenever required. Additionally, it provides a consistent iterative model building

procedure which is a fundamental characteristic of the scientific method, explicitly

miming the process of learning from observation and experience (Box and Tiao, 2011).
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Bayesian methods have recently emerged from a quite specialized field of statistics,

becoming more mainstream and accessible to the data science and machine learning

communities and related research fields. Furthermore, its practical applicability has

also been enhanced by the dissemination of kernel-based models that provide flexi-

ble ways to conduct high-dimensional data analysis, offering new data-oriented ap-

proaches to today’s ever-increasing complex problems (Bishop, 2006). In the following,

we present one of these kernel-based modeling approaches, which represents a state-

of-the-art and sophisticated nonlinear prediction tool within the Bayesian reasoning

niche.

2.1.2. Gaussian Processes

Despite being an old topic and widely applied tool among the statistics literature,

the Gaussian Process (GP) modeling framework (Rasmussen and Williams, 2006) has

been gaining much attention over the past decade or so, particularly within the machine

learning community. Their simplicity, ease of implementation, as well as their nonlinear

and nonparametric abilities, make the GPs a powerful modeling tool in a wide range

of regression and classification problems across numerous specialized fields. Unlike

other well-known related techniques such as Support Vector Machines (SVM) (Vapnik,

1963) or Neural Networks (NN) (McCulloch and Pitts, 1943), the GP equally consti-

tutes a supervised learning technique but provides a fully Bayesian approach, meaning

that probabilities are used to quantify the uncertainty present within its predictions,

essentially through Bayes’ theorem (Bishop, 2006).

Within regression modeling settings, the first step is to identify the variables of

interest for which we aim to establish some kind of functional relationship. Hence, an

generic D-dimensional data set by S = {(xi, yi)|i = 1, . . . , n}, where x 2 RD is an input

vector, y the output (or target) variable, n is the number of observations, and D the size

of the input feature space, must be firstly defined. Here, for the sake of simplification,

we only consider a continuous input space. On the other hand, as we focus on regression

problems, y must be continuous by definition. Aggregating the n input vectors yields

the (D ⇥ n) design matrix X. Similarly for the n targets, we obtain y. After these

rearrangements, the data set can now be rewritten as S = (X,y) ✓ RD⇥(n+1). Finally,

assuming a certain functional dependency between the input and output variables, we
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want to infer the conditional distribution of y given the inputs X, p(y|X).

As Rasmussen and Williams (2006) puts it, a GP is a collection, possibly infinite,

of stochastic variables f = (ft, t 2 T ), where any finite set of which jointly follows a

multivariate Gaussian distribution. Here, T is a set of indexes. A strong point on the

GP’s favor lies on its simplicity when it comes to full characterization. Actually, a GP

is completely defined by a single pair of functions, namely, the mean and covariance (or

kernel), respectively denoted by mf (x) and kf (x,x0), where x0 is another input vector.

Hence, a GP can be simply denoted as

GP(mf (x), kf (x,x0)),

where

mf (x) = E[f(x)]

kf (x,x0) = Cov(f(x), f(x0))

= E[(f(x)�mf (x))(f(x0)�mf (x0))].

In this modeling context, the regression approach assumes a GP prior over functions,

i.e., y = f(x) + ✏, where ✏ ⇠ N (0, �2) and f(x) ⇠ GP(mf (x), kf (x,x0)). We view f(x)

as a random sample from a GP process.

Commonly for most applications, and also for simplicity reasons, we set (x) = 0,

since the mean of the posterior process is not thereby limited to zero. From this point,

the prior over the latent function is then given by

p(f|x1,x2, . . . ,xn) = N (0, Kf ),

where f = [f1, f2, . . . , fn]>, fi , f(xi) and Kf is the covariance matrix, with entries

[Kf ]ij = kf (xi,xj).

The covariance function, kf , has a crucial role in the GP modeling, as it encapsulates

the similarity between two any given data points and, consequently, its generalization

capabilities. Besides these two input points, an arbitrary covariance function typically

has a certain number of free parameters, ✓, also called hyperparameter of the process,

which can be estimated by optimizing, subjected to the training data, the marginal

likelihood generically given by

p(y|X) =

Z
p(y|f, X)| {z }
likelihood

p(f|X)| {z }
prior

df.
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After some calculations, it comes in the form of

log p(y|X, ✓) = �
1

2
y>

K
�1
y y �

1

2
log |Ky|�

n

2
log(2⇡), (2.1)

where Ky = Kf + �
2
I and Kf are the covariance matrices for the noisy targets y and

noise-free latent variable f , respectively.

The Squared Exponential or Radial Basis Function is a common default choice for

the GPs’ kernel. It is generically defined as

k(x,x0) = �
2
f exp

✓
�
1

2
(x � x0)>M(x � x0)

◆
,

where �2
f corresponds to the variance of the underlying signal function f , M = diag(�)�2,

and � = [�1, �2, . . . , �D]> is a positive real-valued vector. The elements of � are the

characteristic length-scales associated with each of the D dimensions of the input fea-

ture space. The presence of these scales allow the hyperparameters optimization proce-

dure to select the right weights for each input dimension according to their individual

magnitude, additionally explaining why sometimes this function is called Squared-

Exponential with Automatic Relevance Determination (SE-ARD). If the data is nor-

malized, that is to say, if all the dimensions share a similar scale l
2, then the standard

SE can be used directly. This version is obtained by setting �1 = �2 = . . . = �D = l
2

thus yielding

kf (x,x0) = �
2
fexp

✓
�
||x � x0

||
2

2l2

◆
,

where ||.|| is the Euclidean norm.

After the hyperparameters are set, the posterior distribution for a single test point

x⇤ is given by

f⇤|X,y,x⇤ ⇠ N (̄f⇤, Cov(f⇤)),

with

f̄⇤ ,E[f⇤|X,y,x⇤] = k
>
f⇤[Ky]

�1y,

Cov(f⇤) =V[f⇤] = kf⇤⇤ � k
>
f⇤[Ky]

�1
kf⇤,

where kf⇤ = kf (X,x⇤) and kf⇤⇤ = kf (x⇤,x⇤).

We can now see that each single GP prediction is described by a Gaussian distri-

bution with certain mean and variance values. Thus, each prediction corresponds to
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a whole range of values weighted by a well-defined probability density function. A

(1� ↵)% Confidence Interval for y⇤ is therefore given by

f̄⇤ ± z↵
2

p
Cov(f⇤),

where z↵
2

is the ↵
2 th order quantile of N (0, 1) and ↵ 2 (0, 1). Within this setting, f̄⇤

and Cov(f⇤) are usually called the predictive mean and variance of the GP.

Through Bayesian formalism, the GP framework is able to characterize the variance

within its own predictions. In fact, the predictive variance is a critical component in

GP modeling, and it can be used to maximize information acquisition if regarded as

a measure of uncertainty. Observe that any given GP prediction is deemed uncertain

if its associated predictive variance is high. In other words, the higher the variance is,

the more scattered the predictive distribution becomes around the mean value, conse-

quently increasing the range of the most likely values to be predicted. Conversely, low

variances imply narrower distributions concentrating most of the probability density

in the vicinity of the expected value.

Notwithstanding, the cause for high predictive variance is two-fold, namely, inherent

data variance and model uncertainty. Whereas the first relates to data variation caused

by measurement errors, stochastic nature of the underlying process to be modeled or

sampling scheme, among others, the second refers to the uncertainty of the prediction

model in and of itself. Both types of variances can coincide, and, as a matter of fact,

they should. In this particular situation, the predictive variance expressed by the model

would approximately match the real variation inherently characterizing the observed

data. Particularly in scenarios where a limited number of training samples are readily

available for modeling and costly to generate, this can become quite a challenging

task to fulfill. Efficient strategies must be adopted in order to reduce the involved

computational burden while trying to aim at a model improvement at the same time.

In the following, we review a machine learning paradigm specially designed to jointly

tackle the intertwined problems of model uncertainty reduction and performance im-

provement by actively acquiring the most informative data points within experimental

settings where labeled data is challenging to obtain.
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2.1.3. Active Learning

Active learning, also called query learning, consists of an iterative learning approach

that aims to attain high prediction performance with as few training samples as pos-

sible. This is achieved by designing into the underlying learning process the ability

to, according to certain criteria, actively select the data points from which it learns,

proving to be particularly useful for modeling tasks where labeled data is difficult to

obtain (Settles, 2010).

The general idea of active learning is to sequentially select the most informative

data points that simultaneously boost the model training efficiency and improve its

predictive performance. Hence, it is essentially focused on improving the overall model

prediction performance, as well as on controlling the costs associated with acquiring

new labeled instances. The entire learning process is guided by a label provider, also

called the oracle, whose task is to provide labeled data instances which are then suc-

cessively incorporated into the expanding training data set. Hence, a core assumption

of active learning is that a label provider must be permanently accessible to be queried

on-demand by the learning algorithm or model. The oracle is traditionally represented

by a human annotator. Likewise, and depending on the experimental setting and ap-

plication domain, its role can be played by a sensor, a simulator, a function, another

algorithm, among others. The most important aspect of the oracle is that it successfully

and consistently generates labeled instances from the ground truth function, inherently

defining the process of interest.

As elegantly presented by Li and Sethi (2006) and Wang and Zhai (2016), although

sightly modified to fit the purpose of the present work, an arbitrary active learning

system encompasses five fundamental entities and can be summarized in the following

quintuple

(L,U ,M,O,Q).

First, L = {(xi, yi)|xi 2 Rd
, yi 2 L, 1  i  l} is the labeled training set, where d and

l are positive constants, and L is the set containing the labels. On the other hand, the

set of unlabeled data points is denoted by U = {xi|xi 2 Rd
, l+1  i  l+n}. Generally

we have that n >> l, i.e., the number of unlabeled points is significantly higher than

the labeled ones, formally enclosing the earlier mentioned scenarios characterized by

shortage of labeled data, as well as limited resources.
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By its turn, M is the machine learning model, which, depending on the nature of the

problem in question, can be a classification or a regression model. Within classification

problems, L becomes discrete and finite (number of classes), whereas for regression

approaches yi 2 L ✓ Rp, where p is the number of continuous target variables, and

typically p = 1. Then, the oracle is represented by O. Finally, Q is the query function

that encodes the strategies and criteria for finding and selecting the most informative

instances from U to be added to L.

Different querying strategies can be encoded into function Q, essentially repre-

senting different approaches to the underlying modeling problem. Settles (2010) lists

several query frameworks, such as uncertainty sampling (Lewis and Gale, 1994), query-

by-committee (Seung et al., 1992), expected model change (Settles et al., 2008) and

error reduction (Roy and McCallum, 2001), variance reduction (Cohn et al., 1996) or

density-weighted methods (Settles and Craven, 2008). In sum, most of these frame-

works rely either on measures of informativeness or on the identification of uncertainty

regions. Whereas the former addresses the querying problem by measuring the poten-

tial degree of information contained within an unobserved instance, the latter explicitly

defines regions of uncertainty where the model is less confident with respect to its own

predictions.

Closely related to the concept of the query function is the definition of stopping

rules. Due to its inner iterative nature, active learning schemes must be stopped at a

certain point in time. Although there is extensive research under the active learning

paradigm, not much research has been dedicated to the study of stopping criteria (Vla-

chos, 2008; Wang et al., 2014), mainly focusing instead on the learning algorithm itself.

A few suggestions can be found in the literature (Ghayoomi, 2010; Laws and Schätze,

2008; Vlachos, 2008; Wang et al., 2014; Zhu et al., 2010). Nevertheless, all the avail-

able criteria are fairly identical and generally based on an intrinsic measure of stability

or confidence of the learning model (Settles, 2010) and, according to Wang and Zhai

(2016), there is no stopping rule that is simultaneously suitable in all applications.

Regardless of the details of its definition, it is generally expected that the stated

stopping criteria should take into account the constant trade-off between model per-

formance and the cost of acquiring new labeled points. It is imperative to be able

to identify those situations in which the model is reaching its theoretical performance
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threshold, that is to say when the addition of new training points will potentially have

a negligible effect on its performance improvement. Here, the cost of requesting new

labels, which can be assumed to be constant through the entire learning process, might

prove to be highly disproportional in relation to its associated benefits.

Moreover, active learning systems can be further specialized depending on the avail-

ability of the unlabeled instances and on how they are presented to the model before

they are sent out for query thereafter. According to (Settles, 2010; Wang and Zhai,

2016; Kumar and Gupta, 2020), three major working settings can occur, namely, i)

membership query synthesis (Angluin, 1988), ii) stream-based (Zhu et al., 2007) and

iii) pool-based (Lewis and Catlett, 1994).

In the first experimental setting, the model generates synthetic queries according to

some membership hypotheses, especially near the decision boundary. On the stream-

based case, the unlabeled instances are available in sequential order, one by one or

in blocks. Here, the model does not directly request the oracle for new labels at

will. Instead, it analyses a continuous stream of unlabeled instances and then decides

whether or not to query them. Thus, the stream itself is independent of the model.

Finally, the pool-based version corresponds to the most popular setting as it matches

the requirements of most active learning applications. In this type of learning scheme,

the entire space of unlabeled instances is available for on-demand queries at any given

time and multiple times if required. Thus, the set of unlabeled data forms a pool from

which the model chooses the points to be queried from the oracle, obviously following

specific selection criteria. Conversely, the training set is renamed as the labeled pool,

featuring a much lower cardinality than the latter, as previously seen.

Most of the existing active learning literature revolves around classification prob-

lems. Within the machine learning niche, developments and applications in regression

problems are comparatively less abundant, as pointed out by Kumar and Gupta (2020).

On the other hand, it has a long tradition in statistics, where it is commonly known

as optimal experimental design (Settles, 2010; Fedorov, 1972).

In this thesis, we direct our focus to active learning applied within a regression

setting where a simulation model plays the role of the oracle. Furthermore, a pool-based

scheme is adopted since the whole range of possible instances are available for query,

i.e., the simulator can be executed for any value combination within its input space.
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Figure 2.1: Illustration of the pool-based active learning approach adopted in this thesis.

Albeit not explicitly depicted, any active learning system starts with an initial training set

with which the machine learning model is firstly trained. Then, prediction is performed over

the unlabeled pool, and model assessment is conducted. Afterward, according to certain

criteria, the most informative points are selected to be labeled by the oracle. The resulting

labeled data is finally added to the training set, thereby expanding it. The cyclic process is

repeated until a given stopping rule is satisfied. In the particular context of this thesis, the

unlabeled pool can be regarded as a population from which we can sample indefinitely.

This scheme can also be regarded as a population-based one since the entire range of

possible input data values, that is to say, our population of input space points is always

available for on-demand querying by default. In this context, a label encompasses any

output value produced by a computer experiment, while the cost of this label acquisition

corresponds to the computational burden of running the simulation model. Figure 2.1

illustrates this approach.

The core concept underlying active learning is that seeking out the most informa-

tive points and exploiting uncertainty regions of the input domain space reduces data

redundancy and boosts model training efficiency, besides saving significant computa-

tional resources in the process. In this regard, the previously discussed GP framework

proves to be an appropriate modeling tool that, due to its nonparametric and Bayesian

properties, allows it to handle both informativeness and uncertainty in a relatively

natural and intuitive way. In fact, active learning methodologies involving GPs are of-

tentimes associated with exploration-exploitation problems within Bayesian optimiza-

tion contexts (Ling et al., 2016; Jones et al., 1998). Under these approaches, Bayesian

optimization employs a reward function to more efficiently select the next unlabeled
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data point, according to a dynamic trade-off between high uncertainty (exploration)

and high informative (exploitation) input domain regions (Schulz et al., 2017).

Information and uncertainty measurement is inherently related to the key concept of

entropy (Cover and Thomas, 2006). Given a discrete random variable X with support

S and probability mass function p(x), its entropy is given by

H(X) = �

X

x2S

p(x)log
�
p(x)

�
.

Similarly, if S was continuous, the differential entropy, which is essentially the same

concept of entropy but for continuous random variables, would be reformulated as

h(X) = �

Z

S

f(x)log
�
f(x)

�
dx.

Now, remember that the GP predictions come in the form of Gaussian distributions,

and, as a consequence, we can compute the entropy associated with each of these

predictions. Thus, the differential entropy of a variable Y ⇠ N (µ, �2) is given by

h(Y ) =
1

2
log

�
2⇡e�2

�
,

where we can immediately observe that it is a function of the variance only, further

supporting the idea that high predictive variance can serve as a proxy for a high degree

of uncertainty in the context of the GP framework. This shows why the predictive

variance has such a central role when designing active learning strategies that seek to

maximize information gain by exploiting the model’s prediction uncertainties with as

few training examples as possible.

It is worthwhile to mention, however, that not all high variance regions are neces-

sarily linked to potential information gains and uncertainty reductions when queried.

Instead, such regions, which the model itself clearly describes, might be a consequence

of the observed data’s inherent variability. If the system under study is characterized

by relatively high variability, the GP itself will try to reproduce that same behavior

assigning high variance to its predictions. In these cases, where the predictive variance

matches the data variability, less or no new information is potentially retrievable, as

the GP is already closely describing the variance of the underlying process. Hence,

active learning should also be able to recognize lower thresholds of uncertainty from

which no further reduction is allowed, i.e., from which more information gains are no

longer possible.
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In the next section, we discuss how GPs and active learning can be jointly employed

in the context of simulation analysis and their close relation to simulation metamodeling

methodologies.

2.2. Simulation Models

Simulation models are conceptual mimic representations of a real-world phenomenon,

as well as its associated processes and intertwined entities. The set of these processes

of interest is often called a system, upon which several assumptions are made. These

assumptions usually take the form of mathematical or logical relationships, which are

then encoded into a conceptual framework, i.e., a formal model, in order to study the

behavior of the corresponding system. When the relationships constituting this model

are sufficiently simple and straightforward, it is often possible to apply mathematical

methods, such as algebra or calculus, to obtain analytic solutions for the problems

being studied. However, since most of the real-world systems are overwhelmingly com-

plex to be approached by pure analytic methods, simulation models are used instead.

In a simulation approach, a computer program is used to implement and numerically

evaluate a model and to generate data from which the true model characteristics are

estimated, typically via statistical inference (Law, 2015).

Within a simulation model’s design, there are essentially two kinds of variables

that control and describe its behavior, namely input variables, also called factors, and

output or response variables. For the sake of parsimony, the terms ‘inputs’ and ‘out-

puts’ are often used instead. Moreover, some authors distinguish between inputs and

parameters. Whereas the former is directly observable, the latter must be obtained

through statistical inference (Kleijnen and Sargent, 2000). In this work, however, and

without loss of generalization, we may use both terms interchangeably. Depending on

the random nature of these variables, the simulation model can be either deterministic

or stochastic. In deterministic models, there is no probabilistic component, meaning

that the output is univocally determined once the input values are specified. Contrari-

wise, in the stochastic models, the same input values combination originates multiples

output values. These combinations are also called scenarios or simply points (Kleijnen,

2009).

Following Friedman (2012), the primary goal of a simulation model and its sub-
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sequent experimentation trials is to achieve a deep understanding of the relationship

between the input and output variables of the real-world system. This system can be

actually functioning or a planned one. The mentioned relationship can be summarily

formalized as

µ = �(x1,x1, . . . ,xq),

where µ is the output variable and xi, 8i 2 {1, . . . , q}, are the input variables. Note

that, for the sake of simplicity, we only considered one output of interest. Here, µ is

a proxy measure or indicator that characterizes the evolution of the real-world system

over time, whereas the inputs xi, which can be controllable or environmental, determine

the value of the system’s behavior.

The relationship, �, which is unknown as it is intrinsically defined by underlying

processes governing the system, describes how the input variables affect the output.

Thus, the aim of simulation is to approximate this function through the simulation

model, denoted by f and formally defined as

yi = f(xi1, . . . ,xik, r�i), i = 1, . . . , n.

Here, yi represents the simulation output from the ith run, n is the total number of

computer runs, k is the number of input variables actually considered, and xij is the jth

input variable from the ith simulation run. Finally, r�i encompasses the joint effect of

the q� k inputs from the real-world system that were not considered in the modeling.

Alternatively, r�i can be equivalently regarded as the simulation experimental error

from the ith run, ✏i, that measures the discrepancy between yi and the true value µ,

✏i = µ� yi. The revisited expression comes as follows

yi = f(xi1, xi2, . . . , xik, ✏i), i = 1, . . . , n.

The minimization of ✏ actually corresponds to the calibration of the simulation model’s

parameters with respect to the reality. It should be sufficiently low so that f ⇡ �,

according to the simulation’s objectives. The error degree will depend upon the ability

of (xi1, . . . ,xik, r�i) to alone explain µ.

The process of a simulation study essentially involves four major sequential steps

along with verification and validation feedback loops (Sanchez, 2007), as illustrated

in Figure 2.2. The first step of this modeling process consists of the definition of
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Figure 2.2: Simulation modeling process overview, including the verification and validation

feedback loops. Adapted from Sanchez (2007).

the problem and the identification of the system of interest, as well as the scope and

objectives of the simulation study. It also includes the selection of one or more system

performance measures and the identification of the input variables. Eventually, we

should end step 1 with a descriptive model of the real-world system of interest. Next,

step 2 regards the conceptual description of the interactions between all the entities

encompassed in the system and their interrelated behaviors. This is essentially attained

via mathematical or logical relationships, such as, for example, causal relationships,

differential equations systems, probability distributions, or optimization formulas. This

step should culminate in the precise definition of the formal model, corresponding

to an abstraction of the real-world system. Then, in step 3, the implementation of

the simulation model itself is conducted, essentially comprising the conversion of the

formal model into an executable computer program using an appropriate programming

language. Finally, step 4 involves the development of a statistical model of the computer

model for posterior inference.

We expect our simulation model to have a high degree of accordance with respect

to the real-world system so that we can obtain appropriate insights and conclusions

about the real problem under study. In the case of deterministic simulation models,

their level of accordance with reality is essentially dependent on how well the formal

model was defined. However, if the simulation uses stochastic schemes as part of its

modeling process, the corresponding outputs are also stochastic and must therefore be

treated only as an estimate of the real system output values.
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As pointed out by Sanchez (2007), it is naive to think that running a stochastic

model a single time is sufficient to achieve the solution to the problem, which is too

often not true. Hence, the proper way to study the behavior of a stochastic system

is through statistical inference over the data generated by the computer model across

multiple trials. It is here that the verification and validation feedback loops play an

essential role in the overall simulation process.

The verification feedback loop is meant to assess how reliable the computer model is

with respect to the formal model. Whereas the formal model expresses the conceptual

representation of the real-world system, the computer model represents its implemen-

tation in practice. Thus, the verification loop corresponds to the task of debugging the

computer model in order to ensure that it computes precisely according to the rules

of the formal model. On the other hand, the validation feedback loop guarantees that

the computer model is a valid representation of the real-world system. Moreover, it

is worthwhile to mention that the verification must be a part of the validation loop

for obvious reasons. If the computer model does not correctly replicate our concep-

tual framework for the real problem, then it does not make sense to proceed to its

subsequent validation.

One way to systematically and efficiently verify and validate a simulation model,

and its associated output behavior, is by means of an experimental design. The sta-

tistical principles underlying the field of Design of Experiments (DOE) were initially

developed during the 20’s by Fisher (1937). The first experimental design methods

were applied in the agriculture context and later expanded to the military and indus-

try. These applications consisted of real-world experiments rather than simulated ones.

Although the former can prove to be very different from virtual environments, clas-

sic experimental designs can be easily transposed to cover current simulation models.

In this context, DOE generally aims to specify efficient sampling strategies, mainly

through the identification of suitable combinations of input variables, with which sim-

ulation data should be systemically obtained in order to maximize information gain

with minimal computational effort (Telford, 2007).

According to Sanchez (2005), there are three fundamental concepts in DOE, namely,

control, replication, and randomization. The control highlights the systematic nature of

the experiment, clearly distinguishing itself from ad hoc and trial-and-error approaches.
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Replication provides a way to increase the sample size in order to achieve high statistical

significance. Finally, randomization essentially protects against hidden bias sources

that can compromise the quality of the attained results.

The research on DOEs is vast, and it has been around for quite some time now.

However, a few types of designs are particularly recurrent in the simulation literature.

Perhaps the most popular is the Latin Hypercube (LH) design (Iman and Conover,

1980; McKay et al., 2000). An arbitrarily experimental design can be represented

in matrix notation and for that let us now consider the p ⇥ d matrix denoted by

X = [x1 x2 . . . xp]>, where each column represents one of the d input variables.

Conversely, each row xi = [x1
i x

2
i . . . x

d
i ] corresponds to one of the p samples. The

matrix of an LH design is then constructed by assuring that each dimension d is divided

into p equal levels containing a unique sample each. Note that here the sample refers to

a particular point within the space of input variables, consequently corresponding to an

input value combination that has not been simulated yet. Most importantly is that LH

designs can be optimized without taking into account the statistical assumptions of the

simulation model. Nevertheless, this type of optimization has already proven to be quite

challenging as it is essentially a combinatorial optimization problem with order p!d. As

experimental designs are, at their core, developed to guide and optimize the simulation

input space exploration and posterior analysis, general properties like uniformity, space-

filling (coverage), and orthogonality are often expected from reasonably good one-shot

experimental designs (Viana, 2016).

As mentioned earlier, the goal of any experimental design is to increase the efficiency

of the simulation analysis process, that is to say, to search for the most informative input

variables and their associated value combinations that have the most significant impact

on the output system responses with the least possible number of simulations runs.

Thus, at this point, the similarities between the DOE and the active learning paradigm,

previously discussed in Section 2.1.3, should emerge quite obviously, explaining why

the latter is also frequently called optimal experimental design.

There is no question that simulation is a powerful and reliable modeling tool to ap-

proach overwhelming problems and intricate systems. In fact, this is particularly true

for studying transportation systems within urban environments (Fishburn et al., 1995;

Kitamura and Kuwahara, 2006; Chung and Dumont, 2009), as these typically exhibit
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massive stochastic behavior involving a multitude of variables not always easy to iden-

tify and model, as well as human behavior. Such systems are usually not analytically

tractable. Hence, insofar as simulated systems are concerned, numerical methods are

by and large the only reliable approaches available in most of these cases.

As pointed out by Law (2015), among other advantages, simulation models allow

the performance assessment of over different time frames and horizons, not only of

currently existing systems but also of alternative system designs under a set of future

operational and environmental conditions or interventions. Most of these evaluations

would not be feasible to conduct in actual and functioning real-world environments. On

the contrary, an obvious disadvantage is that the development of detailed simulation

models, and their corresponding computer implementation, are traditionally dispro-

portionately time-consuming tasks. Moreover, the possibility of developing simulation

models that are too simplistic or poorly detailed to faithfully represent the real system

may lead to misleading conclusions when the results are confronted with the initial

intended simulation goals. Finally, given the stochastic nature of most approaches, a

single simulation run merely produces a pointwise estimate for the actual underlying

formal model. Therefore, several independent runs, which, as a whole, can end up be-

ing expensive in terms of computational time and resources, must be conducted across

input variables and corresponding value ranges.

In the following section, we briefly discuss a methodology and a family of mod-

els that aim to address the main drawbacks of simulation modeling, especially when

exhausting and systematic input space exploration is required.

2.3. Simulation Metamodels

The development and use of simulation metamodels (Friedman, 2012) can be traced

back, at least, to the beginning of the 70s. Also known as emulators (McClarren, 2018),

surrogates (Gramacy, 2020), response surfaces (Box et al., 1987), or sometimes more

broadly as auxiliary models, these kinds of models aim, by definition, to approximate

the function inherently defined by the simulation model, previously denoted as f in

Section 2.2. Whereas a simulation model corresponds to an abstraction of reality, the

simulation metamodel consists of an abstraction of the simulation model itself. In

simple terms, a metamodel is a model of a model. The research on this topic is quite
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abundant and relatively sparse, in the sense that different application fields tend to use

specific nomenclature and notations. Henceforth, for the sake of simplicity, we adopt

the term ‘metamodel,’ as it better fits the scope of this thesis from a conceptual point

of view.

Contrary to the simulation models, metamodels are explicitly defined by known

and clear mathematical functions, which can be evaluated at any given point of their

input space in a rather effortless manner. Mathematical simplicity, speed, and inter-

pretability are characteristics typically attributed to metamodels. Consequently, the

use of metamodels within simulation analysis provides an additional level of under-

standing of the underlying system, as well as of the relationships between the system’s

input and output variables, while maintaining a computationally straightforward and

economical approach to the problem (Friedman and Pressman, 1988). The failure to

meet these simplicity requirements can render the metamodeling approach unfeasible

and even counter-productive.

In Figure 2.3, the general simulation metamodeling framework is presented, relating

the problem entity under study, the simulation model, and the simulation metamodel

itself. Placed on the second level of abstraction, the metamodel should be a valid

representation of both the problem entity (e.g., some real-world system) and the simu-

lation model itself. Nevertheless, the validity degree is closely related to the accuracy

requirements, which eventually depend on the metamodeling goals.

Kleijnen and Sargent (2000) discusses four primary goals, namely, problem entity

understanding, simulation output prediction, optimization, and verification/validation.

The scope of this thesis concerns mostly with understanding the underlying real-world

system and with the assessment of metamodel’s prediction performance. In this work,

our assumption is that the simulation model of interest is entirely validated, verified,

optimized, and calibrated with respect to the problem under study. Thus, we are

mostly concerned with the prediction of the simulation output.

As already mentioned, simulation metamodels are essentially input/output func-

tions that are employed in such a way as to approximate the true, and usually much

more complicated, function inherently defined by the simulation model itself. Whereas

the function of the problem entity is intrinsically defined by “nature” (Kleijnen and

Van Beers, 2004), the unknown function of the simulation model can be viewed as the
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Figure 2.3: Relationship between problem entity, simulation model and simulation metamodel.

Both the metamodel and the simulation model should be validated against the problem en-

tity, which encompasses any real-world system being modeled. Then the metamodel, which,

depending on its modeling goals, should be a sufficiently valid approximation of the simula-

tion model, is used to effortlessly explore its inner structure, gaining insights and providing

an auxiliary analysis tool for the problem under study. Adapted from Kleijnen and Sargent

(2000).

emergent behavior resulting from the interactions of its variables and induced causality

logic. Contrariwise, the metamodel’s functional form is explicitly specified a priori by

the user, with many of its inputs being commonly shared with those of the simulation

model, although it is not entirely necessary. The metamodel’s input variables can be

regarded as independent but defined as functions of the original simulation inputs. If

the relationship between these two sets of variables follows the identity function, then

the inputs are shared between both frameworks. Otherwise, they are different by means

of functional transformation.

Despite the apparent usefulness of metamodeling, it is unwise to consider that the

simulation model can be modeled, as a whole, by the corresponding metamodel. This

would be rather impractical, if not virtually impossible, for most simulation approaches

with numerous input variables, as the number of required simulation runs would be too

high, inevitably rendering the metamodeling itself unattractive and computationally

unable to meet its goals. Instead, as suggested in Kleijnen and Sargent (2000), the

domain of applicability, or experimental region, should be clearly specified. This en-

compasses the definition of the input domain or region for which the metamodel should

be a valid approximation. It can be regarded as restricting the metamodel fitting to
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a particular and bounded sub-set contained within the much larger simulation input

space and may not even consider all the input variables at once, which is too often the

case. Wang and Shan (2006) actually discusses this problem by alerting for the fact

that metamodels do too suffer from the well-known “curse of dimensionality”, especially

in the context of large-scale modeling settings.

It should not be left unnoticed that the applicability domain is strongly related

to the specifics of the underlying problem being addressed. In turn, the latter should

be as clear as possible and be a constant presence during the entire metamodeling

process, under penalty of failing to meet the initially planned metamodel’s goals. The

modeling performance of the auxiliary model is inevitably defined by such goals on an

everlasting effort to balance the trade-off between computational speed and simplicity,

and accuracy with regards to the simulation model. Therefore, it proves to be equally

important to specify the maximum or acceptable accuracy loss levels within the exper-

imental region. The metamodel performance can be continually assessed via standard

metrics such as absolute error, mean absolute error, or root mean square error.

Song et al. (2017) summarize the metamodeling methodology in three major steps,

namely, 1) definition of the experimental design, 2) metamodel specification, and 3)

metamodel learning/fitting. The first step consists of strategically sampling the input

space to generate a data set for the metamodel training. This step is shared with the

standard simulation procedures discussed in the previous section. Then, steps 2 and

3, which are usually regarded as a block, are conducted sequentially. While the former

involves selecting a family of functional forms for the metamodel, the latter regards

the fitting of the selected metamodel to the data set obtained from step 1. For a more

in-depth description of the metamodeling approach and unfolding in ten detailed steps

suggestions, please refer to (Kleijnen and Sargent, 2000).

When prediction is the intended goal, special attention should be given to the type

of functional approximation of the metamodel since the accuracy required for this kind

of task is often remarkably high. Given the modeling capabilities discussed earlier

in Section 2.1.2, the GPs have been widely used for metamodeling tasks in several

fields (Van Beers and Kleijnen, 2004; Kleijnen, 2009). It can also be referred to as

Kriging (Matheron, 1963; Chilès and Desassis, 2018), named after his author, Danie

Krige, who first developed this methodology in the 60s, within the field of geostatistics.
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Initially, GP-based metamodels were mostly applied in deterministic simulations but

rapidly moved to random ones Van Beers and Kleijnen (2003), showing that they had

great potential in these kinds of applications too. Since then, several similar approaches

have arisen (Kleijnen and Van Beers, 2005; Boukouvalas et al., 2009; Ankenman et al.,

2010). Jones and Johnson (2009) generally discusses the use of GP as a reliable meta-

model for the design and analysis of computer experiments.

Possibly the earliest applications of the metamodeling methodology involved simple

queuing simulation systems (Kleijnen, 1975; Friedman and Pressman, 1988) and em-

ployed multiple linear regression metamodels during a time where computing power was

evidently limited and resources were generally scarce and extraordinarily expensive. In

this context, metamodels emerged as practical tools to overcome the computational

hindrances posed by the most straightforward simulation systems.

We could be easily tempted to assume that, with the immense technology and

computing power, as well as memory capacity, at our disposal nowadays, metamodels

would somehow fall into disuse. After all, if their main purpose is to approximate

simulation models so that systematic computer experiments are avoided to a certain

extent, why would we care to use metamodels nowadays? The answer may reside

in the fact that, although the technology has evolved exponentially ever since up to

incomparable forms, it did too leverage the demand and the opportunities for modeling

increasingly complex simulation models. In a sense, the increased computing power

was canceled out by the requirements of more detailed computer models, as they both

increased in the same direction and intensity, there explaining why metamodels are still

used in current days. This can be regarded as an indication that the relative utility of

metamodeling is not a function of the available computational resources per se but on

the necessities of developing ever-increasing detailed simulation models.

It is somewhat expected that with more detailed and realistic models, the potential

for prohibitive simulation running times is highly likely, which can render the analysis

unfeasible, for example, in real-time applications or operational scenarios. In such

situations, the use of metamodels should be considered (Kleijnen and Sargent, 2000).

However, even if the computing times are not exceptionally high, but the simulation

model presents a relatively large number of input variables, simulation metamodel can

still play a significant role by providing a way of guiding the input space exploration
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process in a relatively efficient and parsimonious fashion, in lieu of more ad hoc hit-or-

miss one.

Within the transportation literature, the application of simulation metamodels is

relatively recent. According to Song et al. (2017), these applications can be essentially

divided into two groups, namely, traffic prediction and network optimization. We

briefly present some of these works in the following.

In 2013, Ciuffo et al. (2013) developed a methodology that applied a GP-based

metamodel to conduct a sensitivity analysis using the mesoscopic traffic simulator

AIMSUN as a case study. Using 512 different input combinations, the authors con-

cluded that the metamodel estimated outputs and the real simulation outputs were

significantly similar, thereby showing the potential of this type of approach in the

field. In (Zhang et al., 2014) the authors developed a Bayesian stochastic Kriging

metamodel that simultaneously optimizes travel behavior and dynamic traffic manage-

ment using, as a case study, the real-world corridors of I-270 and MD355 in the state

of Maryland, USA.

In a similar context, Chen et al. (2014) used a GP metamodel to approximate the

response surface of a transportation simulation with expensive-to-evaluate objective

functions and random noise. The goal was to minimize the network-wide average travel

time by implementing optimal toll rates predicted by the metamodel. Similarly, Chen

et al. (2015) developed a metamodel-based optimization framework to solve the bilevel

Mixed Network Design Problem (MNDP). A mesoscopic Dynamic Traffic Assignment

(DTA) simulator was used to evaluate the system response to several network design

strategies. The authors showed that the optimal investment could reduce the network

average travel time by approximately 18% during the morning period.

Finally, Song et al. (2017) presented a GP-based metamodeling framework that

approximates Dynamic Network Loading (DNL) models. The authors show that the

tested DNL metamodels attain high accuracy, providing prediction errors below 8%,

and superior computational efficiency up to 455 times faster than the traditional DNL

approaches.

It is our understanding that although metamodels per se have been used in the

transportation field, mostly within simulation-optimization approaches, seldom appli-

cations can be found adopting active learning metamodeling strategies. In this sense,
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we see this work as a means to foster further discussion and applications by recognizing

the challenges and looking for new opportunities not only in research but especially in

more industry-oriented environments. We expand on several of these points later in

Chapter 7.
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Efficient Transport Simulation with

Active Learning

“We may at once admit that any inference from the particular to the general

must be attended with some degree of uncertainty, but this is not the same

as to admit that such inference cannot be absolutely rigorous, for the nature

and degree of the uncertainty may itself be capable of rigorous expression.”

Ronald A. Fisher, 1890 - 1962

Simulation modeling is a well-known and recurrent approach to studying the per-

formance of urban systems. Taking into account the recent and continuous transfor-

mations within increasingly complex and multidimensional cities, the use of simulation

tools is, in many cases, the only feasible and reliable approach to analyze such dynamic

systems. However, simulation models can become very time-consuming when detailed

input-space exploration is needed. To tackle this problem, simulation metamodels are

often used to approximate the simulators’ results.

In this chapter, we propose an active learning algorithm based on the Gaussian

Processes (GP) framework that gathers the most informative simulation data points in

batches, according to both their predictive variances and the relative distance between

them. This allows us to explore the simulators’ input space with fewer data points and

in parallel, and thus in a more efficient way, while avoiding computationally expensive

simulation runs in the process. We take advantage of the closeness notion encoded

into the GP to select batches of points in such a way that they do not belong to

the same high variance neighborhoods. In addition, we also suggest two simple and

practical user-defined stopping criteria so that the iterative learning procedure can be

fully automated.

We illustrate this methodology using three experimental settings. The results show

that the proposed methodology is able to improve the exploration efficiency of the
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simulation input space in comparison with non-restricted batch-mode active learning

procedures.

3.1. Introduction

Urban environments are highly complex systems involving a multitude of both

internal and external variables and their respective interrelationships, which are not

often easy to identify. Additionally, these systems also exhibit an inherent stochastic

nature and other unknown random phenomena that cannot be realistically described

by a closed and tractable mathematical formula.

To successfully overcome the problem of intractability, simulation approaches are

often employed to virtually explore the behavior of such urban systems and to as-

sess their performances. Urban dynamics require theoretical approaches and planning

methodologies that are capable of modeling the subjacent spatio-temporal transforma-

tion processes from a multidimensional perspective. In fact, urban planning models

usually encompass the possibility of predicting future scenarios of urban intervention

focused on infrastructure improvement and service promotion. These models are sim-

plified representations of the urban space, embedded into a computer-generated reality,

considered as an experimental ground to understand the long-term performance of ur-

ban policy decisions and corresponding interventions (Marengo, 2014). Nevertheless,

when detailed with enough realism, urban simulation models can become computation-

ally expensive to run due to their overwhelming complexity. Moreover, if the simulator

output space proves to have a complex functional structure, we might need to system-

atically explore the input domain with further detail, which often requires multiple

and exhausting simulation experiments, turning the exploration process virtually in-

tractable.

To address the problem of expensive simulation runs, i.e., simulations that require

great computational workload and exhibit prohibitive runtimes, simulation metamod-

els are often used to approximate the simulation results and thus the simulation model

itself. Furthermore, in experimental scenarios in which simulation data is computation-

ally expensive to obtain, active learning also emerges as a powerful approach, as it aims

to provide high prediction performance with fewer data points. Among many signifi-

cant machine learning tools, the Gaussian Processes (GP) (Rasmussen and Williams,
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2006), a fully Bayesian modeling approach, allow for an intuitive way to develop active

learning algorithms by providing the posterior mean and variance, which in turn can

be eventually used to search for the most informative data points.

In this chapter, we propose an active learning approach, based on GPs, that gathers

the most informative simulation data points in batches, not only according to their

variance but also taking into account the relative distance between them. This allows

us to explore the simulation input space with fewer training points in a faster, more

efficient, and parallel manner while avoiding computationally expensive simulation runs

at the same time. Taking advantage of the closeness and similarity notions encoded into

the GPs, mainly via the kernel function, our approach selects batches of points that

do not simultaneously belong to the same high variance neighborhoods. In addition,

we also suggest two simple and practical user-defined stopping criteria so that the

iterative learning procedure can be fully automated. We illustrate our methodology

using three independent settings within a controlled experimental environment. The

first consists of a synthetic data set generated by a known function playing the role of an

arbitrary simulation model. Then, we proceed to a one-dimension study of a Demand-

Responsive Transportation (DRT) simulator. Finally, we explore the behavior of a

road intersection implemented in a micro traffic simulation software, expanding our

study to a two-dimensional input case. The obtained results show that the proposed

batch-mode approach is able to improve the exploration efficiency of the simulation

input space in comparison with non-restricted batch-mode active learning procedures.

The remainder of the chapter is organized as follows. In the next section, we

provide a brief review of the main background topics and related literature. The

proposed approach is detailed in Section 3.3, followed by the presentation of studied

simulation data, experiments, and discussion (see Section 3.4). Then we proceed to

the validation of the obtained results in Section 3.5. Finally, we end this chapter with

some conclusions and possible lines of future work.

3.2. Background

Active learning is a special case of supervised machine learning consisting of an

iterative sampling scheme that allows the algorithm to choose the data points from

which it learns and an oracle, i.e., an instance label provider. It is particularly useful
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under scenarios where labeled data is expensive to obtain. Thus, the general idea

of this learning paradigm is to actively select the most informative data points, as

few as possible, in order to simultaneously boost the model training efficiency and

its prediction performance (Settles, 2010). When the active learning paradigm was

first proposed, the oracle was typically represented by a human annotator. Nowadays,

however, due to the development of technology, the oracle’s role can be taken by an

algorithm, a sensor, a simulator, etc. Most importantly is that the oracle is able to

provide labeled instances from the ground truth underlying function describing the

process of interest.

Depending on how the unlabeled data is presented to the oracle, the active learn-

ing algorithms can be divided into two classes, namely, stream-based and pool-based.

Whereas in the latter, the entire unlabeled data set is available for querying, in the for-

mer, each data point is presented individually or in successive blocks (Wang and Zhai,

2016). In addition, because of its intrinsic iterative nature, active learning procedures

must be stopped at a certain time. Although there is vast research under the active

learning paradigm, not many approaches suggest a stopping criteria (Vlachos, 2008;

Wang et al., 2014), and, according to Wang and Zhai (2016), there is no best stopping

rule that is suitable across all applications.

In most of the proposed active learning algorithms, the queries are presented se-

quentially, i.e., one at a time. This strategy can become quite inefficient for some heavy

learning tasks. One way to address this issue is to select data points in batches in or-

der to speed up the learning process by parallelizing it. However, to avoid redundancy

within each batch, it should simultaneously account for diversity and informativeness

among the selected data points (Wang and Zhai, 2016). Several batch-mode schemes

have addressed this challenge, most of them within classification problems (Brinker,

2003; Hoi et al., 2006; Xu et al., 2007; Guo and Schuurmans, 2008).

Although active learning has been applied in many different fields, we are particu-

larly interested in those of simulation metamodels (Friedman, 2012) applications. Their

main purpose is to serve as surrogates for simulation models so that expensive simula-

tions can be avoided. These models are essentially simple functions that approximate

the true and more complex unknown function inherently defined by the simulation

model itself (Kleijnen and Van Beers, 2004). They are fitted to the input-output data

50



3.2 Background

generated by computer experiments and then can be used for prediction purposes,

among others (Kleijnen and Sargent, 2000). Hence, these simulation metamodels pro-

vide a practical framework to explore the behavior of complex and time-consuming

simulation experiments in a rather less expensive way.

In our case, we assume that the simulation model is perfectly validated and cal-

ibrated with respect to the problem of interest. The metamodel, which should be a

valid approximation of the simulation model, is then used to effortlessly explore its

inner structure and, consequently, to provide yet another analysis tool for the prob-

lem under study. The Gaussian Processes (GP) framework has been widely used for

simulation metamodeling (Boukouvalas, 2010; Chen et al., 2011; Conti and O’Hagan,

2010; Kleijnen, 2009), and other works combining GP metamodeling with active learn-

ing strategies have also been conducted (Christen and Sansó, 2011; Pfingsten, 2006).

Its Bayesian formalism provides an easy way to develop algorithms that actively learn

with uncertainty. Other machine learning techniques, such as Artificial Neural Net-

works (ANN), have also been employed (Cohn, 1996; Fonseca et al., 2003).

Within the transportation literature, the application of simulation metamodels is

relatively recent. Only a handful of works is currently available, and, with respect

to their application domain, they can be essentially divided into two groups, namely,

traffic prediction and network optimization (Song et al., 2017). In 2013, Ciuffo et al.

(2013) developed a methodology that applies a GP-based metamodel to conduct a

sensitivity analysis using the mesoscopic traffic simulator AIMSUN as a case study.

Using 512 different input combinations, the authors concluded that the metamodel

estimated outputs and the real simulation outputs were significantly similar, thereby

showing the strength and parsimony of their methodology. In (Zhang et al., 2014)

the authors developed a Bayesian stochastic Kriging metamodel that simultaneously

optimizes travel behavior and dynamic traffic management using, as a case study, the

real-world corridors of I-270 and MD355 in the state of Maryland, USA. Using a similar

case study, Chen et al. (2014) used a GP metamodel to approximate the response

surface of a transportation simulation with expensive-to-evaluate objective functions

and random noise. The goal was to minimize the network-wide average travel time by

implementing the optimal toll rates predicted by the metamodel. Similarly, in (Chen

et al., 2015) a metamodel-based optimization framework was developed to solve the
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Figure 3.1: Pool-based batch-mode active-learning scheme with a simulation model serving

as the oracle.

bilevel Mixed Network Design Problem (MNDP).

A mesoscopic Dynamic Traffic Assignment (DTA) simulator, DTALite, was used

to evaluate the system response to several network design strategies. The authors

showed that the optimal investment could reduce the network average travel time by

approximately 18% during the morning period. Finally, and very recently, Song et al.

(2017) presented a GP-based metamodeling framework that approximates Dynamic

Network Loading (DNL) models. The authors show that the tested DNL metamodels

attain high accuracy, providing prediction errors below 8%, and superior computational

efficiency, up to 455 times faster than the traditional DNL approaches. Although

these and other works constitute important applications of simulation metamodeling

in transport problems, the research in this area is still scarce.

3.3. Approach

In this work, we adopt a pool-based batch-mode active learning approach in which

a simulator plays the role of the oracle, as depicted in Figure 3.1. The machine learning

model, used as a metamodel, is a GP, and the unlabeled pool, U , is the input space

where we want to explore the simulation behavior. The pool of labeled instances, L, is

formed by the results of the simulation runs already performed. From a regression per-

spective, we want to establish a functional relationship between the simulation inputs,

x 2 RD, where D is the number of inputs, and its output, y 2 R, by assuming a GP
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prior over this relation, y = f(x). Then, taking advantage of the Bayesian formalism

from which the GP framework derives, we aim to infer the conditional distribution of

the output given a set of unlabeled inputs. By doing so, we are not only bypassing

the simulation’s computational workload but also providing a way to effortlessly ap-

proximate and therefore analyze the simulator’s behavioral structure. Notice that the

simulation model is treated as a black box from which we aim to get better insights in

terms of its functional behavior while avoiding as many simulation runs as possible.

In the following, we present the basis of Gaussian Processes, and then we detail the

proposed active learning procedure, which is built upon this modeling framework.

3.3.1. Gaussian Processes

A GP (Rasmussen and Williams, 2006) is a stochastic process completely character-

ized by a mean and a covariance function, respectively denoted as mf (x) and kf (x,x),

with x and x0 being two input data points and simply denoted by GP(mf (x), kf (x,x0))

where mf (x) = E[f(x)] and kf (x,x0) = E[(f(x) � mf (x))(f(x0) � mf (x0))]. More

formally, the GP framework assumes a prior over functions, i.e., y = f(x) + ✏, where

✏ ⇠ N (0, �2) and f(x) ⇠ GP(mf (x), kf (x,x0)). For simplicity, it is common practice to

fix mf (x) = 0. Thus, the prior over the latent function is given by p(f|x1,x2, . . . ,xn) =

N (0, Kf ) where f = [f1, f2, . . . , fn]>, fi , f(xi) and Kf is the covariance matrix, with

its elements given by [Kf ]ij = kf (xi,xj).

Most of the covariance functions, or kernels, have several free parameters which

can be optimized to fit the training data by maximizing the marginal likelihood. After

these parameters are obtained, the conditional distribution at a new test point x⇤ is

given by f⇤|X,y,x⇤ ⇠ N (k>
f⇤[Ky]�1y, kf⇤⇤ � k

>
f⇤[Ky]�1

kf⇤), where kf⇤ = kf (X,x⇤),

kf⇤⇤ = kf (x⇤,x⇤), Ky = Kf + �
2
I, and y is the vector of the target values. Thus, we

can naturally use the predicted Gaussian distribution at any given test point to guide

the active learning process and therefore learn with its associated uncertainty.

3.3.2. Active Learning Procedure

The algorithm presented in Figure 3.2 refers to the general batch-mode active learn-

ing procedure used in this work, serving as the base for other algorithms forwardly

presented and tested. Here, L represents the set of labeled training points, whereas U
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is the set of unlabeled ones. The latter is defined according to the input space region we

aim to explore. This algorithm selects batches of k test points with the highest variance

values (provided by the GP) in a way that each point does not originate from the same

high variance neighborhood. Taking into account the spatial notion of closeness and

similarity encoded into the GP via its kernel, it is expected that spatially closer input

points are more likely to have similar output values. Therefore, the hypothesis is that

sampling multiple batch points from the same region may not be efficient. To avoid

this situation, we introduce � to therefore control the minimum distance between the

selected active learning points. This parameter is a ratio with respect to the maximum

possible distance between any two points (diameter) of the input space. So, if � = 0.4,

then the minimum distance between the points is 40% of the maximum distance. We

call it space or spatial restriction induced by �. Notice that this approach is only valid

for continuous input metric spaces. The parameter k defines the size of the batch.

We also propose two simple variance-based stopping criteria controlled by ↵1 and

↵2, respectively. The first, which we call Criterion A, states that the algorithm stops

when the total current variance (TCV ) of the test points, at iteration i, is less than

(1 � ↵1)% of the initial total variance (ITV ) at iteration 0. Thus, if, for example,

↵1 = 0.3, the process stops when TCV is reduced in 70% with respect to ITV , i.e.,

when ITV (1�↵1) � TCV . Note that, instead of the total variance, which is simply the

sum of the variances of all test points, we could have considered the average variance

per iteration. However, since this criterion is defined as a ratio, the total number of

test points would cancel out. On the other hand, Criterion B is defined as a ratio

between the average variance of the training (AV Tr) points and the average variance

of the test (AV Ts) points at each iteration i. Here, contrary to Criterion A, since the

total number of training and testing points is not the same, it makes sense to consider

the average. When AV Tr/AV Ts � ↵2, the algorithm stops. The average variance

at training points is less than the average variance at testing points, so this ratio lies

in [0, 1]. Moreover, as the process advances, AV Ts is likely to decrease, while AV Tr

is expected to approximately maintain its values. However, this is a more demanding

criterion to be satisfied if ↵2 is close to 1. If the model, in our case the GP, is very certain

at the training points and the contrary at the test points, AV Tr/AV Ts ⇡ 0, which

will prevent the algorithm from converging at an acceptable speed. Its performance
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will also depend on the noise structure of the underlying function being estimated.

In each iteration, a new GP model is fitted to L. Its hyper-parameters are ob-

tained by maximizing the log-likelihood function conditional on this training set in a

Leave-One-Out Cross-Validation (LOOCV) scheme. This constitutes a simple scheme

to minimize potential overfitting problems during the training stage. Afterward, the

trained GP is used to predict the simulation output values (labels) associated with the

unlabeled points in U , therefore avoiding many simulation runs. Then, several testing

points are selected according to the approach described in Figure 3.2, their respective

true labels are obtained via the oracle, i.e., the simulator, and finally L is expanded.

This iterative process is repeated until the chosen stopping criterion is satisfied.

Given the parametric nature of the proposed algorithm, many variants can be de-

rived depending on the concrete values assigned to ↵1, ↵2, � and k, as well as on the

used stopping criteria. We test the four following combinations which are built upon

the base structure of this general approach:

• Algorithm 1: base approach + Criterion A with � = 0.

• Algorithm 2: base approach + Criterion A with � > 0.

• Algorithm 3: base approach + Criterion B with � = 0.

• Algorithm 4: base approach + Criterion B with � > 0.

The parameters used in these algorithms, ↵1, ↵2, and �, varied according to the

different simulators under study and were obtained from a series of preliminary exper-

iments using line search. The size of the batch was fixed at k = 3. Moreover, note that

in Algorithms 1 and 3, we assume that � = 0, which means that there is no spatial re-

striction during the batch selection. Thus, these two cases correspond to the standard

batch-mode schemes, serving as the baseline approaches in our comparative study. In

the following, we present and discuss the results obtained within three experimental

settings.

3.4. Experiments

In this section, we test the proposed methodology using three independent ex-

perimental settings. The first consists of a synthetic data set generated by a known
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Input: ↵1,↵2, � 2 [0, 1], k 2 N,L,U .

While ITV�CTV
ITV < ↵1 or AV T r

AV T s
< ↵2 do

1: Train a GP with L and obtain the predicted labels for each point in U , k>
f⇤[Ky]�1y,

and their corresponding variances, kf⇤⇤ � k
>
f⇤[Ky]�1

kf⇤.

2: Determine the top k highest variance test points, topk, so that the minimum dis-

tance between them is � ⇥ 100% of the diameter of U .

3: Obtain the true labels for topk, via simulator, and define L+ as the new labeled

set.

4: Set L = L [ L+.

5: Update stopping criterion.

end

Figure 3.2: General batch-mode active learning approach with spatial restriction.

function playing the role of an arbitrary simulation model. Then, we proceed to a one-

dimension study of a Demand-Responsive Transportation (DRT) simulator. Finally,

we move to a two-dimensional study of a simple road intersection implemented in a

free and open-source traffic micro-simulation software. We use the GP implementation

from (Rasmussen and Williams, 2006) and select the Squared Exponential function as

the GP kernel. Our study focuses on the analysis of the number of iterations required

for each algorithm to satisfy the stopping criteria, rather than on the observation of the

corresponding CPU times, despite its great importance from a practical point of view.

This allows us to conduct a more meaningful and hardware-independent performance

analysis, making it possible to compare the results originated from different simulation

experiments with different hardware specifications.

3.4.1. Toy data set

For the first set of experiments, we used a toy data set generated by f(x) =

cos(5x) + 1
2x + 2U(0, 1), which plays the role of oracle, where U(a, b) denotes the

Uniform distribution in the interval [a, b]. Figure 3.3 shows the initial GP learning

state and the ground truth data following f . The initial labeled pool, L, is comprised

of 10 randomly generated training points, U is formed by 10000 unlabeled test points

uniformly spaced in [�6, 6]. Figure 3.4 and 3.5 present the results.
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(a) (b)

Figure 3.3: (a) Initial learning state for the toy data set, where the first 10 training points

were randomly scattered in the input domain [�6, 6]. This corresponds to iteration 0, which

is shared by the four algorithms in study. (b) Ground-truth data.

Comparing Algorithms 1 and 2, the superiority of the latter is clear from an ef-

ficiency point-of-view (see Figure 3.4). For the same criterion threshold (↵1 = 0.6),

Algorithm 2 is over four times faster than Algorithm 1 due to the space restriction

induced by � = 0.2. This means that the testing points constituting the batches were

not selected from the same high variance neighborhoods, scattering the input explo-

ration process and thus making it more efficient. Moreover, it is important to note

the number of iterations alone does not directly measure the real involved computa-

tional workload, which is intrinsically related to the simulation model. As we adopted

a batch-mode active learning scheme, we should additionally take into account the size

of the batch, k. Therefore, whereas Algorithm 1 requested the oracle 17⇥3 = 51 times,

in Algorithm 2, this number decreased to 4⇥ 3 = 12.

For Algorithms 3 and 4, a similar scenario has occurred. Using the same stopping

rule, based on Criterion B with ↵2 = 0.4, Algorithm 4 required three fewer iterations

than Algorithm 3. This represents a total difference of 3⇥ 3 = 9 simulation requests.

However, note that, as previously mentioned in Section 3.3.2, Criterion B may be harder

to satisfy, which explains the lesser performance in comparison in both Algorithms 1

and 2.
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(a) (b)

(c)

Figure 3.4: Final results for the toy data set using (a) Algorithm 1 with user-defined param-

eters ↵1 = 0.6, � = 0 and k = 3, and (b) Algorithm 2 with ↵1 = 0.6, � = 0.2 and k = 3.

The active points are labeled with the number of the iteration in which they were selected.

Panel (c) compares the total variance reduction between both algorithms, displaying it as a

function of the iteration number.

3.4.2. DRT simulator

Demand Responsive Transportation (DRT) systems are a kind of hybrid trans-

portation approach between the taxi and bus solutions that address the problems that

emerge from the use of fixed routes and schedules, typically found in regular public road

transportation. From the transport operators’ point-of-view, this traditional approach

can prove to be quite expensive and inefficient in lower population density zones, such

as rural areas, and in certain periods of the day. Both cases are characterized by low,

variable, and unpredictable demand. Thus, DRT systems aim to provide transporta-
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(a) (b)

(c)

Figure 3.5: Final results for the toy data set using (a) Algorithm 3 with user-defined param-

eters ↵2 = 0.4, � = 0 and k = 3, and (b) Algorithm 4 with ↵2 = 0.4, � = 0.2 and k = 3. The

active points are labeled with the number of the iteration in which they were selected. Panel

(c) compares the training and test average variance between both algorithms, displaying them

as a function of the iteration number.

tion solutions that are able to adapt, in real-time, their routes and frequencies to match

the actually observed demand.

Service design is critical for the success of DRT systems, so decision-makers need to

understand well how the different ways of operating the service affect its performance.

The flexibility of DRTs may cause organizational problems such as, a) the number

and type of requests may involve an exceedingly high number of vehicles, b) very

sparse requests that are hard to combine efficiently, or c) the quality of the service in

terms of pickup/delivery time and travel duration might not be guaranteed with the

available resources or when unpredictable events occur. These effects are often studied
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through simulation, whose purpose is to obtain a better understanding of the behavior

of a system under a given set of input conditions, even with uncertain events. The

performance of these systems can be determined by observing what happens on the

network, during simulation, for different input conditions. However, when dealing with

real-world events (especially with a high degree of dynamism) and extremely complex

road networks and demand, simulation models can become very time-consuming. An

illustration of a standard DRT system is presented in Figure 3.6(a).

We now consider the problem of exploring the outcome of the DRT simulation model

developed by Gomes et al. (2014). This simulation system integrates four submodels,

covering the service area, trip requests (demand), vehicles, and real-time events. It

has 22 inputs/parameters and, among a few outputs that measure the system’s overall

performance, we focus on the DRT’s total operating cost. For a given demand structure,

different input combinations will lead to different costs and service quality levels. We

loaded the simulator with a real road network structure, within the metropolitan region

of Porto (Portugal), with symbolic parameters values. For the sake of illustration, we

then considered the Ticket Price as the input domain for which we aim to explore the

outcome, Total Cost, of the simulator, maintaining the remaining inputs unchanged.

From previous experiments, we concluded that, for our particular application, the

simulation running times do not vary significantly from each other. Therefore, it does

make sense to focus only on the number of iterations to assess the performances of the

studied algorithms.

Similar to the previous experimental setting, we decided to explore the input domain

contained in the interval [1, 10] using 10000 uniformly spaced test points. This test set

corresponds to U , whereas L is constituted by ten random simulation data points within

the same interval, as presented in Figure 3.6(b). The results for this simulation data

are generally aligned with the results obtained for the toy set experiment. Again, and

as depicted in Figure 3.7, Algorithm 2 is more than two times faster than Algorithm 1.

For the same level of variance reduction, induced by ↵1 = 0.60 (about 40% of the initial

total variance), the former requested the simulator 5⇥ 3 = 15 times, against 2⇥ 3 = 6

requests in the latter. It is obvious that the fewer runs the simulator executes, the

better. Therefore, for the same stopping criteria and threshold, Algorithm 2 proved to

be more efficient as it was able to scatter the learning points forming the batch along
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(a) (b)

Figure 3.6: (a) Pictorial representation of a typical DRT system. Source (Gomes, 2012). (b)

Initial learning state for the DRT simulation data set, where the first 10 training points were

randomly scattered in the input domain [1, 10]. This corresponds to iteration 0, which is

shared by the four algorithms in study.

with different high variance neighborhoods.

For Algorithms 3 and 4, we obtained an interesting result which highlights our

concerns presented in Section 3.3.2 regarding Criterion B. In Figure 3.6 we can observe

that for the first approximation (Iteration 0), the GP model assigned very little variance

to the training points, meaning that, in the context of Criterion B, AV Tr ⇡ 0. As

the process iteratively evolves, i.e., as more simulation data points are added to the

expanding data set, AV Tr seems to remain close to zero. On the other hand, AV Ts

clearly shows a decreasing behavior towards zero. In several preliminary experiments,

which we do not present due to space restrictions, we noticed that setting, for example,

↵2 = 0.6, as we did for ↵1, was too ambitious for both Algorithms 3 and 4 to yield

competitive performance. This means that these algorithms were taking too many

iterations to converge to be fairly comparable to Algorithms 1 and 2. Therefore, after

fixing ↵2 = 0.1, which is equivalent to say that the stopping criterion is satisfied

when AV Tr is approximately 10% of AV Ts, we concluded that both Algorithms 3

and 4 converged in reasonable and comparable running times. Despite these initial

configuration problems, these algorithms attained similar results to those of Algorithms

1 and 2. It is worthwhile to mention that, once again, the restriction applied during

the formation of the batches was a decisive factor in the reduction of the number of
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(a) (b)

(c)

Figure 3.7: Final results for the DRT simulation data using (a) Algorithm 1 with user-defined

parameters ↵1 = 0.6, � = 0 and k = 3, and (b) Algorithm 2 with ↵1 = 0.6, � = 0.2 and

k = 3. Each active point is labeled with the number of the iteration in which it was selected.

Panel (c) compares the total variance reduction between both algorithms, displaying it as a

function of the iteration number.

iterations.

3.4.3. Traffic simulator

In this section, we move to a microscopic traffic simulation example by exploring a

road intersection implemented with the Simulation of Urban Mobility (SUMO) (Kra-

jzewicz et al., 2012), in which the traffic flows in three directions only, North-South

(NS), West-East (WE) and East-West (EW). The vertical axis is dedicated to impor-

tant vehicles, whereas in the horizontal axis, we only have light passenger car traffic.

Moreover, the model is designed to prioritize the NS traffic over the remaining flows.
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(a) (b)

(c)

Figure 3.8: Final results for the DRT simulation data using (a) Algorithm 3 with user-defined

parameters ↵2 = 0.1, � = 0 and k = 3, and (b) Algorithm 4 with ↵2 = 0.1, � = 0.2 and k = 3.

Each active point is labeled with the number of the iteration in which it was selected. Panel

(c) compares the training and test average variance between both algorithms, displaying them

as a function of the iteration number.

Therefore, it is expected that if this flow increases, the horizontal traffic flows will po-

tentially form more and longer queues, consequently increasing the overall total waiting

time.

During each simulation run, the demand, or traffic flow, generated from each oper-

ational axis is randomly generated according to a Poisson distribution, approximated

by a Binomial distribution with parameter p 2 [0, 1]. This parameter sets how many

vehicles are generated, on average, within a certain period of time. For example, if

p = 1/s, then it means that one vehicle is expected every interval of s seconds. Notice

that the traffic flow actually increases when s ! 0.
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The simulated example encompasses three input parameters that have a direct

influence on the intersection performance, namely, the NS, WE, and EW demands, each

of which is associated with different Binomial parameters. Moreover, it is assumed that

the three different traffic flows are mutually independent. To assess the performance of

the simulated road networks, SUMO has a large number of different output measures.

Raw vehicle positions, trip and route information, and simulation state statistics are

just a few examples of possible outputs. For the sake of illustration of our methodology,

we decided to focus on the total waiting time spent by all the vehicles crossing the

intersection as our aggregated traffic performance measure. Our objective is to use the

proposed active learning scheme to explore the simulation input space and to evaluate

how it affects the total waiting time. Therefore, following a similar experimental design

of the one-dimensional analyses presented in Sections 3.4.1 and 3.4.2, we now extend

our study to a two-dimensional case where the traffic demands from NS and WE

operational axes are considered as inputs, and the expected vehicular waiting time is

our output performance of interest.

The new input region of interest (U) is defined by the square [0, 40]⇥ [0, 40], from

which 10 random training points were selected, corresponding to the initial set of

simulation runs (L), as depicted in Figure 3.9(a). On the other hand, Figure 3.9(b)

shows the variance across the entire test region, whereas panel (c) provides a graphical

representation of the traffic intersection in question. As expected, the variance near

the training points is lower than the variance associated with the test points. Starting

from this initial learning stage, our approach is designed to actively search for the top

k highest variance neighborhoods (yellow tones regions) that are not mutually within

a radius of � ⇥ 100% of the diameter of the input region. In any case, in this first

approximation, we can already observe that the values of the average waiting time

(z-axis) tend to increase when both the NS and WE demands increase, matching our

initial guess regarding the simulation output behavior.

Figure 3.10 and 3.11 present the final results, showing fairly identical GP approx-

imations across the four algorithms. We observe that Algorithm 1 took 11 iterations

to achieve a total variance reduction of 95%, against seven iterations from Algorithm

2 (see Figure 3.10(c)). Both are based on Criterion A and on the same stopping

threshold. However, due to the proposed space restriction (imposed by � = 0.3),

64



3.5 Validation

(a) (b)

(c)

Figure 3.9: (a) Initial learning state for the traffic simulation data, where the first 10 training

points were randomly scattered in the input space [0, 40]⇥[0, 40]. This corresponds to iteration

0, which is shared by the four algorithms in study. (b) Variance behavior across the input

region. (c) Graphical representation of the intersection under study.

the latter presents a more efficient performance than the former, with a difference of

(11 � 7) ⇥ 3 = 12 simulation runs. Finally, we can see from Figure 3.11(c) that Al-

gorithm 4 took three iterations to stop, whereas Algorithm 3, whose batch formation

is not restricted by �, required six to satisfy Criterion B with ↵2 = 0.2. Although

these differences in the iteration numbers may seem to be of little significance for the

current academic example, they can prove to be quite relevant in real-world and thus

computationally heavy simulation models, which can take up to several days to finish.
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(a) (b)

(c)

Figure 3.10: Final results for the traffic simulation data using (a) Algorithm 1 with user-

defined parameters ↵1 = 0.95, � = 0 and k = 3, and (b) Algorithm 2 with ↵1 = 0.95,

� = 0.3 and k = 3. Panel (c) compares the training and test average variance between both

algorithms, displaying them as a function of the iteration number.

3.5. Validation

We now conduct a series of computer runs to not only compare the algorithms’

results but also to assess the quality of the obtained GP approximations with respect

to the underlying simulation functions under study. These results are summarized

in Table 3.1.

To evaluate the performance of the studied algorithms, we used the Root Mean

Squared Error (RMSE), Mean Absolute Error (MAE), Root Relative Squared Error

(RRSE), and Pearson’s linear correlation coefficient (Cor.). Within each experimental

setting, these metrics were computed by comparing the predicted values provided by
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(a) (b)

(c)

Figure 3.11: Final results for the traffic simulation data using (a) Algorithm 3 with user-

defined parameters ↵2 = 0.2, � = 0 and k = 3, and (b) Algorithm 4 with ↵2 = 0.2, � = 0.2

and k = 3. Panel (c) compares the training and test average variance between both algorithms,

displaying them as a function of the iteration number.

the GP (in the last iteration of the algorithms) and the true simulation output values

over a set of 20 test points scattered along the different studied input regions. We also

obtained the average iteration difference between Algorithms 1 and 2 (Criterion A),

and Algorithms 3 and 4 (Criterion B), respectively. Additionally, in order to evaluate

the statistical significance of this difference, we conducted a paired sample t-test. Each

computer run is determined by a different set of 10 random initial training points. The

values for the parameters ↵1, ↵2, and � were maintained the same as in the previous

section.

Overall, the results show that the GP was able to provide rather good approxima-

tions for the underlying simulation functions associated with the three experimental
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Table 3.1: Average results obtained from 30 random computer runs using 20 test points for

the different experimental settings and algorithms.

Data set Algorithm RMSE MAE RAE RRSE Cor. Difference p-value

Toy set

1 01.03 00.83 00.49 00.52 00.91
07.70 05.52E-15

2 01.01 00.87 00.51 00.51 00.94

3 01.13 00.91 00.54 00.57 00.90
03.83 09.59E-12

4 01.02 00.85 00.51 00.52 00.93

DRT

1 04.13 02.85 00.55 00.65 00.84
05.93 06.34E-29

2 04.14 02.89 00.55 00.65 00.77

3 03.84 02.29 00.44 00.60 00.81
08.60 01.43E-29

4 03.70 02.73 00.52 00.58 00.81

Traffic

1 2194.60 1366.68 00.30 00.44 00.91
05.21 02.89E-09

2 2513.91 1498.23 00.33 00.51 00.89

3 1244.19 888.92 00.35 00.37 00.92
03.23 01.15E-08

4 1405.02 939.51 00.37 00.41 00.91

settings and across the four studied algorithms. However, the main difference resides in

the average number of iterations required to satisfy the stopping criteria. Additionally,

the reported p-values indicate that there is no evidence to support the acceptance of

the null hypothesis, meaning that such iteration number differences seem to be sta-

tistically different from zero (criterion-wise). This shows that the introduction of the

parameter �, which induces a space restriction during the formation of the active point

batches, can improve the exploration performance while maintaining a reasonably good

approximation to the underlying simulation function at the same time.

3.6. Conclusion and Future Work

In this chapter, we proposed a restricted batch-mode active learning approach,

along with two practical user-defined stopping criteria, in the context of transport

simulation metamodeling. The proposed algorithm seeks the most informative test

points in spatially restricted batches. The parameter �, which represents a fraction of

the maximum possible distance (diameter) within the input region of interest, controls

the minimum distance between each gathered point. This prevents each batch from

being formed with points from the same high variance regions, making the learning
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process faster and parallelizable, and thus more efficient. Our objective is to obtain

a reasonable understanding of the behavior of the simulator of interest with as few

simulation runs as possible.

The results obtained from three independent experimental settings show that the

introduction of a spatial restriction, induced by �, in the formation of the batch is

able to turn the metamodeling process more efficient while maintaining a good ap-

proximation to the underlying simulation functions at the same time. Additionally,

we concluded that different data contexts and experimental settings require different

parameter values configurations so that comparable results are attained.

There are several directions in which this work can be improved. The different

values for the algorithms’ parameters (↵1,↵2 and k) were obtained from a series of

preliminary experiments and approximations using a simple line search, essentially to

test the proposed active learning approach. Thus, we plan to develop proper strategies

to fine-tune these parameters, as well as to conduct the associated sensitivity analysis.

Moreover, we intend to not only expand the current study with more parameter config-

urations but also to explore their relationship with the size, shape, and dimensionality

of the simulation input regions of interest.

On the other hand, the problem of metamodeling bounded simulation outputs,

which is the case of the DRT simulator (costs should not be negative) used in this

work, constitutes an interesting challenge to address in the near future, as well as

the combination of both simulation and optimization metamodels using active learning

strategies. Ultimately, we aim to apply our approach using a large-scale transportation

simulation problem, whose runs can take up to days to finish, in order to assess its

feasibility in comprehensive real-world applications.
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Chapter 4

Active Learning Metamodeling for

Policy Analysis

“How can it be that mathematics, being after all a product of human thought

which is independent of experience, is so admirably appropriate to the ob-

jects of reality? Is human reason, then, without experience, merely by taking

thought, able to fathom the properties of real things?”

Albert Einstein, 1879 - 1955

Simulation approaches constitute a well-established tool to model, understand, and

predict the behavior of transportation systems and ultimately to assess the perfor-

mance of transportation policies. Due to their multidimensional nature, such systems

are not often approachable through conventional analytic methods, making simulation

modeling the only reliable tool of study. Nevertheless, simulation models can turn out

to be computationally expensive when embedded with enough detail. An immediate

answer to this shortcoming is the use of simulation metamodels that are designed to

approximate the simulators’ results.

In this chapter, we propose a metamodeling approach based on active learning

that seeks to improve the exploration process of the simulation input space and the

associated output behavior. A Gaussian Process (GP) is used as a metamodel to

approximate the function inherently defined by the simulation model itself. The GPs

can nicely handle the uncertainty associated with their predictions, which eventually

can be improved with active learning through simulation runs. This property provides

a practical and efficient way to analyze the simulator’s behavior and, therefore, to assess

the performance of policies regarding the underlying real-world systems and services.

We illustrate the proposed methodology using an Emergency Medical Service (EMS)

simulator. Two outputs are analyzed and compared, namely, the survival rate and

response time averages. The medical emergency response time recommendation of
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eight minutes is explored as well as its relation with the survival rate. The results

show that this methodology can identify regions in the simulation input space that

might affect the performance and success of medical policies with regard to emergency

vehicle dispatching services.

4.1. Introduction

Real-world transportation systems are characterized by their overwhelming com-

plexity, not only due to the multitude of variables involved but also to their correspond-

ing interrelationships. In order to model, understand, and then predict the behavior

of such systems and to assess their performances, simulation modeling is often the

only reliable tool available. Especially due to their high dynamism and dimensionality,

as well as their intrinsic stochastic nature, these systems can hardly be described or

studied analytically (Law, 2015).

Simulation models are virtual representations of the reality, often in a sufficiently

simplified form, that are considered as experimental and virtual environments to test

different system designs, and therefore to understand the impact of specific policies

and interventions (Marengo, 2014). Simulation tools, due to their exploratory nature,

prove to be highly advantageous for policy analysis (Bankes, 1992, 1993). However,

simulation models can become computationally expensive to run, exhibiting prohibitive

runtimes along with significant workloads. To address this shortcoming, simulation

metamodels are usually employed as they are designed to approximate the simulation

model itself and thus the function inherently defined by it.

Along with the consideration of simulation metamodels to decrease the burden of

conducting expensive computer experiments, a machine learning paradigm called active

learning (Settles, 2010), can also be taken into account. Active learning is particularly

useful in situations in which data is difficult to obtain, as it aims to enhance the

models’ predictive performance with fewer training data points. Therefore, both active

learning and simulation metamodeling approaches can be jointly used, on the one

hand, to minimize the need for simulation runs, and on the other hand, to achieve and

maintain a reasonably good approximation of the simulation model. The Gaussian

Process (GP) framework (Rasmussen and Williams, 2006), also known as Kriging, is a

popular modeling tool widely applied in numerous research and application fields. Due
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to its Bayesian formalism and highly non-linear properties, it constitutes an excellent

option for designing active learning strategies within simulation metamodeling settings.

This work presents an active learning metamodeling methodology to address the

problem of policy analysis within the context of computationally expensive simulation

models. A GP is considered to approximate the simulator’s behavior and then used to

explore the simulation input space. The fitness of the GP is then iteratively improved

with active learning via simulation runs by decreasing the associated variance of the

given predictions over the simulation input region under study. This strategy provides

an alternative way to perform policy analysis while avoiding, at the same time, a

potentially large number of simulation runs.

The presented methodology is tested using an Emergency Medical Service (EMS)

simulator. Two simulation outputs are studied, namely, the average survival rate and

the average response time. Then, motivated by Pons and Markovchick (2002), the

medical emergency response time recommendation of 8 minutes (480s) is analyzed, as

well as its relation with the survival rate. The results show that this methodology is

able to identify regions within the simulation input space that directly influence the

successful application of medical policies with regard to emergency vehicle dispatching

services.

4.2. Literature Review

The development and application of simulation metamodels (Kleijnen, 1975, 1979,

1987; Friedman and Pressman, 1988; Friedman, 2012) can be traced back to the

70’s (Barton, 1998). Their main purpose is to serve as parsimonious approximations for

simulation models so that expensive simulation runs can be avoided. Specific features

such as mathematical simplicity, speed, and interpretability are usually attributed to

metamodels. Consequently, the use of metamodels within simulation analysis pro-

vides an additional level of understanding of the underlying system, as well as of the

relationships between the system input and output variables, while maintaining a com-

putationally simple and economical approach to the problem (Friedman and Pressman,

1988). Simulation metamodels are often described by computationally fast and easy-

to-implement functions that approximate the true but unknown function intrinsically

defined by the simulation model itself. Commonly, many of these inputs are shared
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with those of the simulation model, although it is not entirely necessary, as Kleijnen

and Sargent (2000) points out.

The earliest applications of metamodeling involved simple queuing simulation sys-

tems (Kleijnen, 1975) and used multiple linear regression metamodels. At the time,

as the computational resources were low and scarce, when compared to the current

days, the use of metamodels emerged as a practical tool to overcome the difficulties

posed by even the most straightforward simulation systems. Although technology has

evolved ever since, essentially providing more computational power, it also leveraged

the demand and the opportunities for modeling increasingly complex systems. Both

computational power and system model complexities increased in the same direction

and with a similar intensity, therefore explaining the need for the use of metamodels

nowadays. This shows that the application of metamodeling techniques is not only

exclusively related to the available computing power but also to the demand for highly

detailed models, which are eventually conditioned by it. Notice that with more realistic

models usually come large or even prohibitive simulation running times, which cannot

be used for real-time applications or practical simulation output behavior analysis. In

these situations, the use of metamodels as an auxiliary tool is always preferred (Kleij-

nen and Sargent, 2000) and can eventually be used to explore the simulation behavior

less expensively.

The GP framework is a well-known modeling approach widely used as a simulation

metamodel (Boukouvalas, 2010; Chen et al., 2011; Conti and O’Hagan, 2010; Kleijnen,

2009), and when applied to regression problems, it is also called Kriging (Chilès and

Desassis, 2018). Initially, GP-based metamodels had only been used in determinis-

tic simulations. Nevertheless, Van Beers and Kleijnen (2003) started using GPs for

random simulations, showing that they had great potential in these kinds of appli-

cations too. Since then, several similar approaches arose (Kleijnen and Van Beers,

2005; Boukouvalas et al., 2009; Ankenman et al., 2010). Jones and Johnson (2009)

generally discusses the use of GPs as a reliable metamodel for the design and analysis

of computer experiments. Boukouvalas (2010) constructs two GP representations and

develops an experimental design to extend the metamodel framework to account for

heteroscedasticity in the simulation output. In (Kleijnen and Van Beers, 2004), the

authors developed a method based on application-driven sequential designs using a GP
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metamodel. Wang et al. (2005) shows that the GP, as a metamodeling technique, can

accurately approximate the complex functions often associated with non-linear and

non-monotonic probabilistic input/output functions. In (Bastos and O’Hagan, 2009),

several diagnosis metrics were introduced to validate the GP framework as a simulation

metamodel.

In the context where simulation data can be challenging to obtain (e.g., compu-

tationally expensive simulation experiments) in a systematic way, active learning can

prove to be a powerful learning paradigm to enhance the application of simulation meta-

models. As a subfield of supervised machine learning, active learning is essentially an

iterative sampling strategy that allows any algorithm designed upon it to select the

data points from which it learns actively. Thus, instead of selecting a large number

of random points, the algorithm searches for the most informative ones sequentially so

that both the model training efficiency and its prediction performance are improved

with a few training data points as possible (Settles, 2010).

According to Wang and Zhai (2016), an arbitrary active learning strategy encom-

passes five essential elements enclosed in the following quintuple

(L,U ,M,O,Q).

First, L is the labeled training data set. Then, the set of the unlabeled data points is

represented by U . Generally, #U >> #L, i.e., the number of unlabeled data points

is much higher than that of the labeled ones. The machine learning model is repre-

sented by M. Depending on the nature of the problem being modeled, it can be a

classification or a regression model, which in turn affects the nature of the labels in L

of being discrete or continuous, respectively. O denotes the oracle whose role is to pro-

vide labeled instances from the underlying process under study. Finally, Q is the query

function that encodes the strategies and criteria for finding and selecting the most

informative instances of U to be added to L. There have been many query strategy

formulations that essentially translate into different perspectives to approach the prob-

lem in question. As mentioned by Settles (2010), depending on both the nature of the

problem and the model being used, several query frameworks can be adopted, such as

uncertainty sampling (Lewis and Gale, 1994), query-by-committee (Seung et al., 1992),

expected model change (Settles et al., 2008) and error reduction (Roy and McCallum,
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2001), variance reduction (Geman et al., 1992) or density-weighted methods (Settles

and Craven, 2008).

Closely related to the concept of the query function is the definition of a stopping

rule. Due to its iterative nature, techniques based on active learning must be stopped

at a specific time, either manually by the user or automatically by a stopping criterion.

In both cases, the stopping rule must take into account the trade-off between the overall

prediction performance and generalization capacity of the machine learning model and

the associated costs of acquiring new labeled data. Such costs could be, for example,

the computational workload or running time associated with any simulation model.

Active learning has been used in a variety of research fields. However, this work

focuses on those applications involving simulation metamodels, particularly the GPs,

where the simulation model plays the role of the oracle. As mentioned earlier, by

providing a fully non-linear Bayesian approach, the GPs allow for an intuitive way

to develop active learning algorithms due to their ability to model the uncertainty

present in the data explicitly. As high predictive variance can be associated with a

high degree of uncertainty, both the posterior mean and variance, provided by the GPs

for any given data point, can be directly used to explore the simulation input space and

thereby guide the search for the most informative data points. Such active learning

schemes involving GPs are usually associated with exploration-exploitation problems,

often studied in Bayesian Optimization contexts (Ling et al., 2016; Jones et al., 1998).

According to Schulz et al. (2017), while a simple exploration approach aims to learn

an unknown function of interest as accurately and fast as possible, in an exploration-

exploitation setting, the goal is to find the input that maximizes the output of an un-

known function in an equally fast manner. Under an active learning strategy, Bayesian

optimization uses a reward function to more efficiently select the next unlabeled data

point, according to an automatic trade-off between the domain regions where the ob-

jective function is very uncertain (exploration) and those of where the same function

is expected to attain high value (exploitation), as seen in (Brochu et al., 2010).

Within the transportation literature, the application of simulation metamodels is

still rare and relatively recent. The available research can be broadly categorized into

traffic prediction and optimization of networks, as mentioned by Song et al. (2017).

Some such works include, for example, metamodeling for mesoscopic simulation (Ciuffo
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et al., 2013; Chen et al., 2015) and for travel behavior and dynamic traffic optimiza-

tion (Zhang et al., 2014). In (Antunes et al., 2018) the authors proposed a restricted

batch-mode active learning strategy to address the problem of efficiency of the meta-

modeling process using a simple traffic simulation and a Demand-Responsive Trans-

portation (DRT) system simulator.

4.3. Methodological Approach

In this work, a straightforward pool-based active learning strategy is adopted. The

experimental design is depicted in Figure 4.1. Here the unlabeled data set U is entirely

available for querying and represents the simulation input region in which the simula-

tor’s behavior is analyzed. The pool of labeled instances L is comprised of simulation

results, i.e., input-output (n+1)-dimensional tuples. The machine learning model M is

a GP, whereas the query function Q is based on the analysis of the predictive variance

provided by the latter at each point in U .

The general idea within this experimental setting is to assume that a GP describes

the functional relationship between the simulation input vector x and the output y.

After the GP is fitted to L, the provided conditional distribution is used to predict

the output values (or labels) for each unlabeled data comprised in U . This feature

makes it possible to bypass simulation runs and approximate the simulator’s behavioral

structure, making the exploration process more efficient. The predictive variance is

used as a measure of fitness, which should decrease as the iterative process evolves.

Eventually, the final trained GP model is used as a simulation metamodel to explore

the behavior of the simulator and then to conduct policy analysis and assessment.

Concerning the GP implementation, the Gaussian Processes for Machine Learning

(GPML) tool is used. It constitutes a free, open-source, and well-established Matlab

package provided and maintained by Rasmussen and Williams (2006). More details

regarding the GP framework, as well as the adopted methodology, are presented in the

following.

4.3.1. Gaussian Processes

Despite being quite an old topic in the field of probability and statistics, the ap-

plication of GPs within machine learning tasks has emerged in the past decade. As
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Figure 4.1: Active learning metamodeling experimental design. It is divided into three main

blocks or steps. First, the simulation metamodeling comprises the approximation of the

simulation model using a GP. Then, an active learning strategy is used to iteratively increase

the fitting quality of the GP, in this case, by decreasing its total predictive variance across

the unlabeled input simulation region. Finally, when the stopping criterion is verified, policy

analysis using the provided meta-simulator is conducted.

described in (Rasmussen and Williams, 2006), a GP is a stochastic process from which

each finite set of variables follows a multivariate Gaussian distribution. It is usually

simply denoted as

GP(mf (x), kf (x,x0))

, where mf (x) and kf (x,x0) are respectively a mean and a covariance function, with

x and x0 being two different input data points. Consequently, a GP is sufficiently

characterized by these two functions. For the sake of simplicity, the mean function can

be set to zero or any other constant value. This does not correspond to a significant

restriction, as the mean of the process is not forced to be zero. On the other hand, the
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covariance function is of utmost importance for the modeling process, as it crucially

encodes the notion of similarity between two given data points.

From a regression point-of-view, and as an intrinsic Bayesian approach, the GP

modeling assumes a prior over functions, i.e., in the functional dependency established

by y = f(x)+ ✏, where ✏ ⇠ N (0, �2), it follows that f(x) ⇠ GP(mf (x), kf (x,x0)). Most

of the common mean and covariance functions typically have several free parameters,

also called hyper-parameters of the GP, which can be optimized by marginal likelihood

maximization subjected to the training data. The conditional distribution of a new

unlabeled data point x⇤ is then given by

f⇤|X,y,x⇤ ⇠ N (k>
f⇤[Ky]

�1y, kf⇤⇤ � k
>
f⇤[Ky]

�1
kf⇤)

, with kf⇤ = kf (X,x⇤), kf⇤⇤ = kf (x⇤,x⇤), Ky the covariance matrix, X the design

matrix and y the set of training target values. Note that the prediction provided

by the GP is a fully-defined Gaussian distribution, rather than a single point-wise

estimate. This Bayesian property allows the GP to encapsulate the uncertainty not

only of its owns predictions, but also that of the underlying signal being modeled. In

turn, this uncertainty can be intuitively used to as an information criterion to design

active learning strategies.

In this work, the standard Squared Exponential (or Radial Basis) covariance func-

tion, given by

kf (x,x0) = �
2
exp

✓
�
||x � x0

||
2

2l2

◆

is used. Here, �
2 and l

2 are respectively the signal variance and the characteristic

length-scale. Note that this is a non-separable function with isotropic distance. For

the GP mean, a constant function dependent on the average of output values of the

training data set was used, mf (x) = k.

4.3.2. Metamodelling Strategy

This work follows a modeling approach similar to that presented in (Antunes et al.,

2018), and it is summarily depicted in Figure 4.2 in the form of a pseudo-algorithm.

The algorithm starts with the initialization data set, which is comprised of the first

simulation input-output results. A GP is trained in this data set (L) via likelihood

maximization, and both the predictive mean and variance are obtained for each point
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in the input simulation region of interest (U). Then, the algorithm selects the top five

data points with the highest predictive variance values, top5. This is meant to force

an active selection of points rather than to select them at random, as the hypothesis

is that the predicted values with higher predictive variance contain more information

regarding the underlying process than those with lower variance. After this selection,

the algorithm requests the simulator for the real output values (labels) corresponding

to the unlabeled points in top5. This is also called batch-mode active learning. It is

particularly useful as it allows for the query processes to be parallelized. In this case,

the points are being selected in batches of five, which are, eventually, added to L. The

process repeats until the stopping criterion is satisfied.

The stopping criterion is defined by the relation between the Initial Total Variance

(ITV ) and the Current Total Variance (CTV ). Whereas the former is computed in

the first iteration, the latter represents the current amount of variance summed over

U , and it is updated in each of the following iterations. As ↵ lies in (0, 1), the process

stops if CTV reaches a fraction of ITV . In this work, ↵ = 0.1, which means that the

stopping rule is satisfied when CTV is less than (1� ↵)%, or 90% of ITV . Note that

in the first iteration, CTV = ITV holds. However, as the process evolves, CTV tends

to decrease since the GP will inevitably acquire more training data points and thus

greater knowledge about the simulation function. It is also worth noticing that the

number of iterations required to satisfy this criterion is directly dependent on the size

of the initial training set as well as on the value of ↵ itself. If the initial set is both

sized-up and representative enough, then the GP may be able to generalize well for the

unobserved points present in U . On the other hand, if ↵ is near 1, then the criterion

will be easily satisfied in a few iterations. Therefore, the right trade-off between these

two elements must be carefully taken into account.

4.3.3. EMS simulator

In Emergency Medical Service (EMS) planning, evaluating strategic and tactical

decisions in real-world systems, either via policies or operational solutions, is quite often

physically unfeasible. Simulation and optimization approaches are thus preferable to

mimic the systems’ real conditions and to produce insightful assessments of decisions

planned to be implemented. This is a synthetic process that can provide empirical
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Inputs: ↵ 2 (0, 1),L,U .

While CTV � (1� ↵)⇥ ITV do

1: Train the GP in L and predict the output values for each point in U , k>
f⇤[Ky]�1y,

and obtain their corresponding predictive variances, kf⇤⇤ � k
>
f⇤[Ky]�1

kf⇤.

2: Determine the top 5 highest predictive variance points in U , top5
3: By simulation requests, obtain the true values for top5, L

top
+ as the new labeled set.

4: Expand the labeled pool: L = L [ L
top5
+ .

5: Update CTV.

end

Output: GP trained in L and associated predictions over U .
Figure 4.2: Active learning metamodeling pseudo-algorithm.

evidence of how a certain choice or change might impact a certain targeted performance

metric.

A simulation algorithm to numerically compute EMS solutions performance in

terms of average response time and average survival is adapted from the work of Amorim

et al. (2018), whose algorithm is summarized in Figures 4.3 and 4.4. This optimization

model is used to assess the performance of station and vehicle locations in an urban

area. It also provides a platform to measure the performance of dispatching policies

and other tactical decisions. This work focuses on strategic and tactical decisions and

their performance using two metrics: the classic average response time and a survival

metric that tries to capture victims’ outcomes.

The simulation model uses an agent-based model controlled by a city agent that

takes the role of the emergency medical service. It allocates and dispatches vehicles

using a closest dispatching rule (Haghani and Yang, 2007; Jagtenberg et al., 2017a; Yang

et al., 2005). A network agent simulates stochastic traffic conditions and EMS vehicle

movements by using nodes and arcs as an abstraction of the reality, pre-computing

travel times for different periods of the day and the week using Google’s Directions

API. Events are agents that represent EMS calls and are triggered according to a

historical database and a stochastic location change, denoted by w1.
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Figure 4.3: Pseudo-algorithm for the studied EMS simulation model.

The model runs in short fixed time steps, and every time a step is made, an update

process is triggered, as depicted in Figure 4.4. This trigger initiates the city agent

tasks. Firstly, the city agent contacts the event agent to check the status of the current

events. The event agent updates its list and reports back to the city agent. If a new

event exists, it will request the latter for assistance. If all events’ statuses are up-

to-date, then the time will advance. At the same time, the city agent communicates

with the network to keep track of the vehicles’ location and status. Likewise, the

network reports such status to the city agent and also informs the event agent not

only when a victim has been assisted (storing the vehicle arrival time in the database

for performance assessment) but also when the victim arrives at the hospital. The

assisting time is a stochastic variable that assumes a gamma distribution with a mean

of 10 minutes and a standard deviation of 5 minutes, according to the observations

made by Pons and Markovchick (2002). In case a new event is activated during the
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Figure 4.4: Flowchart describing the essential steps implemented in the studied EMS simula-

tion model.

events update, a request for assistance is sent to the city agent, which, after receiving

the network report status, decides on the response strategy by selecting the proper

vehicle to be allocated to the new event.

The stochastic location change captures a possible randomness in the demand by

re-allocating a medical emergency event ep at node p to node p
0, with a probability of

w1, according to ep0 = p(g(Es), ep, w1, w2). Here, g(Es) is a function that chooses a

location from a set of possible locations weighted by the observed demand at period s,

and p(e1, e2, w1, w2) is a function that picks either e1 or e2 with probability w1 and w2,

respectively, where w1 + w2 = 1 must hold.

On the other hand, traffic stochasticity is controlled by parameter ". It introduces

an error term in any observed travel time rs,l,p, which measures the time it takes to

travel from point l to point p during s, according to r
0
s,l,p = rs,l,p + rs,l,p ⇥N

⇣
µ,

"2

4

⌘
.

When the mean is set to zero and the standard deviation to "/2, a confidence of 95%

exists that the travel time has at most an error of " 2 [0, 1].
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Figure 4.5: Locations of the 90 emergency vehicle stations in Porto, Portugal.

4.4. Results

In this section, the presented methodology is applied to the EMS simulator devel-

oped in (Amorim et al., 2018). As previously seen, this simulator is designed in terms of

three kinds of input dimensions, namely, the location change probability, traffic error,

and vehicle station locations. In terms of value ranges, the first two lie in the interval

[0, 1], whereas the locations assume discrete positive values, [0, 1, 2, 3, ...), representing

the number of vehicles allocated to each position. Figure 4.5 shows the location of

these stations, 90 in total, scattered in the city of Porto, Portugal. Note that not all

the depicted labels follow a sequential order. The last four locations are respectively

labeled with 96, 108, 109, and 112.

In Table 4.1, a sample of the data used in this work is presented. The dimension,

or feature, denoted by x1 is the location change probability, whereas x2 is the traffic

error. The locations and the associated number of vehicles are coded in features x3

to x92. For the simulation outputs, y1 and y2 are the survival rate and response time,

respectively. Due to space limitations, only the results for x1, x2 and x3 are analyzed

in this chapter.

Each output was modeled independently, i.e., a different GP was used to approx-

imate the simulation results. Figures 4.6-4.9 present the obtained results. Similar

conclusions can be drawn for both simulation output variables. Notice that panels

(a) and (b) of Figures 4.6 and 4.8 do not depict any kind of time series per se, but

rather a straightforward way to simply represent the prediction originated from high-

dimensional data and their corresponding confidence intervals. Therefore, particularly

in these representations, there is no neighborhood notion between observations, nor
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Table 4.1: A data sample showing the dimensional structure with 92 features and two output

variables: x1 and x2 lie in the interval [0, 1], x3 to x92 assume discrete values in [0, 1, 2, ...),

and y1 and y2 are a real-valued variables.

x1 x2 x3 x4 ... x90 x91 x92 y1 y2

0.0445 0.2921 0 0 ... 0 0 0 0.3547 379.0279

0.4923 0.7756 0 0 ... 2 1 0 0.1953 521.3361

0.0708 0.3740 1 0 ... 0 0 0 0.3800 331.0639

0.2199 0.6818 2 1 ... 0 1 0 0.2252 515.0807

the sequential order of each observation is of any relevance.

In both cases, the active learning metamodeling process started with the GP train-

ing stage using 100 random simulation points. Then, the prediction was conducted

over 856 points scattered throughout the simulation input space. Take, for instance,

the case of y2, the average response time. Figure 4.8(a) shows the first GP approxi-

mation along with a confidence interval of 95%. As expected for this first iteration,

the uncertainty of the model, which is encoded into the variance of each prediction, is

relatively high. It can be observed that the GP is approximating the simulation output

by values fairly around 450 (minutes).

Moreover, these predictions are associated with large confident intervals, which is

not desirable in real-world practice, especially for emergency-related operations deci-

sions along which rapid responses ought to be undertaken. The width of these intervals

can be viewed as a proxy for the uncertainty present not only within the data but also

within the GP model itself. In the end, after 59 iterations, this variance decreased

considerably, as depicted in Figures 4.8(b) and (c).

Similar behavior can be observed for y1. However, contrary to the case of y2, this

time, the active learning procedure required 16 extra iterations to achieve the same

reduction of 90% of the total initial variance (see Figure 4.6(c)). It is worthwhile

mentioning that, in both cases, the corresponding final GP approximations present a

wider amplitude of predicted output values when compared to the results regarding

the first iterations. In Figures 4.6(a) and 4.8(a), the GP is predicting inside narrow

horizontal bands centered around 0.27 and 450, respectively, under a relatively large

margin of uncertainty. Then, when the final iterations were reached, not only the
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associated predictive variance decreased, as mentioned before, but also the amplitude of

the predicted values changed considerably. This translates into an improved prediction

performance for both output variables, as the GP is now closer to the real underlying

unknown function described by the simulation model.

In (Pons and Markovchick, 2002), an empirical study involving 3576 patients trans-

ported to a single Level I trauma center was conducted in order to assess the 8-minute

guideline for ambulance responses. The authors concluded that there was no signifi-

cant difference in the survival rate due to traumatic injuries between the patients who

were assisted within and above the established response time policy, respectively. In

the same work, it is mentioned that the mortality odds ratio is approximately 0.81 for

response times higher than 480s. Conversely, the odds for the patients’ survival are

circa 0.19. By taking these two elements into account, a meta-simulation analysis was

carried out in terms of the two outputs provided by the studied EMS simulator.

Figure 4.7(a) shows that the obtained survival rates averages were conditioned by

both the traffic error and location change probability inputs. From traffic errors in the

order of 60%, it is visible that emergency cases associated with lower rates of survival

start to emerge. On the other hand, as the probability of location change increases, the

rate of survival also decreases. Most of these low survival observations are concentrated

in the upper right corner, slightly within [0.5, 1.0]⇥ [0.6, 1.0]. Similar conclusions can

also be derived from the observation of Figures 4.7(b) and (c). Again, and this time

concerning the number of vehicles in location 1, which corresponds to variable x3,

most of the mortal occurrences are associated with higher values of location change

probability and traffic error. This is particularly more evident for the latter simulation

input.

Regarding the traffic error, and taking into account the earlier presented details

of the used EMS simulator, the obtained results meet the initial expectations. This

simulation input represents the error associated with the traffic prediction in compar-

ison with the real traffic immediately before the vehicles dispatching. Therefore, it

makes sense that higher traffic errors may lead to poor operational decisions, resulting

in higher response times and consequently in more fatal occurrences. With respect to

the location change probability, the results also confirm the intuition. Increasing this

probability will lead to higher variability in the location of the life-threatening events
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or emergency calls in comparison with historical data.

For the average response time, similar results were attained. In Figure 4.9(a), it

can be concluded that the observations associated with response times greater than or

equal to 480s are concentrated in [0.0, 1.0] ⇥ [0.6, 1.0]. Contrary to what one would

expect, not so many of these observations had led to survival rates below 0.19. This

matches with the conclusions made by (Pons and Markovchick, 2002), i.e., that average

response times greater than 8 minutes do not necessarily lead to high mortality rates.

Nevertheless, high response times, combined with a high probability of call location

change, seem to lead to higher values of this output performance measure. In the

end, it is true that when the traffic error increases, the delays in the vehicles’ arrivals

increase accordingly.

It is crucial to take into account the kind of variation encoded into these two

simulations inputs. Note that the traffic error does not have a direct implication on

the vehicles’ travel times. Instead, what is being measured by the EMS simulator is to

which extent traffic errors lead to bad choices of dispatching the correct vehicles, both

in terms of number and station locations. Given a specific emergency call, and ideally

assuming no traffic congestion, the ideal vehicle to dispatch would be the closest one.

However, when traffic congestion exists and, besides that, the real traffic information is

only available with a certain degree of error, the dispatching solution is not so obvious.

Furthermore, the distance is no longer measured in space units, but rather in time

ones, due to the existence of traffic congestion, which in turn makes the problem more

challenging. Take, for instance, the following example where station 1 is 10 minutes

from the emergency event location (E), whereas station 2 is 20 minutes away from

the same event. Given an error of ±20%, this means that the emergency service

operator may assume that stations 1 and 2 are, respectively, 12 and 16 minutes from

E. In practice, especially in these kinds of life-threatening situations, this represents

a significant error with potentially dramatic consequences. For this case, the decision

result will be the same (i.e., a vehicle will be dispatched from location 1), which turns

out to be the best decision. However, consider an alternate configuration, where both

stations 1 and 2 are, respectively, 10 and 11 minutes from E. Here, the same traffic

error could lead the operator to take a poor decision based on the assumption that

station 1 is distanced in 12 minutes and station 2 in 9 minutes, which, in reality, is not
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(a) (b) (c)

Figure 4.6: Results for the average survival rate output: (a) depicts the initial GP predictions

over 856 simulation points, along with the corresponding 95% bounds, whereas (b) the final

GP approximations. 100 random input points were used as the initial training set. Panel (c)

shows the required number of iterations to satisfy the stopping criterion with ↵ = 0.1. In each

iteration, the top five predictive variance points were selected to be added to the training set.

(a) (b) (c)

Figure 4.7: Comparison of the obtained predicted values for different input dimension with an

average survival rate threshold of 0.19: (a) Location Change Probability versus Traffic Error,

(b) Location Change Probability versus Location 1 and (c) Traffic Error versus Location 1.

valid. In such a situation, this unfortunate decision would be, for example, to send a

vehicle from location 2, which is, in fact, 1 minute further than the other. Therefore,

the same error can lead to different decisions and different outcomes.

On the other hand, the probability change location is especially important to induce

a stochastic behavior to the emergency calls’ locations so that the conclusions are not

drawn exclusively from historical data. The simulation model must take into account

the inherent dynamics of emergency events and should be able to respond accordingly.

Finally, in order to validate the generalization capacity of the obtained GP ap-

proximations for each simulation output, 30 random runs using 200 test points were

conducted in a 10-fold cross-validation scheme. These points were randomly sampled
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(a) (b) (c)

Figure 4.8: Results for the average response time output: (a) depicts the initial GP predictions

over 856 simulation points, along with the corresponding 95% bounds, whereas (b) the final

GP approximations. 100 random input points were used as the initial training set. Panel (c)

shows the required number of iterations to satisfy the stopping criterion with ↵ = 0.1. In each

iteration, the top five predictive variance points were selected to be added to the training set.

(a) (b) (c)

Figure 4.9: Comparison of the obtained predicted values for different input dimension with an

average response time threshold of 480 seconds (8 minutes): (a) Location Change Probability

versus Traffic Error, (b) Location Change Probability versus Location 1 and (c) Traffic Error

versus Location 1.

from the simulation input space. Note that, for each output variable, only the GP

obtained in the last iteration was used for validation purposes. Five well-known met-

rics were used, namely, the Root Mean Squared Error (RMSE), Mean Absolute Error

(MAE), Root Relative Squared Error (RRSE), and the Pearson’s correlation coefficient

(Corr.), in order to evaluate the predicted performance of the these GPs. The results

are summarized in Table 4.2. These metrics were computed by comparing the predicted

values given by the GP against the real known output values obtained from simulation

sampling. The GP yields slightly better performance for the survival rate output (see

RAE, RRSE, and Corr. columns), despite requiring more iterations to satisfy the ac-
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Table 4.2: Average results, and associated standard deviation values, obtained from 30 random

computer runs using 200 test points and a 10-fold cross-validation scheme, for the two studied

simulation outputs, average survival rate (y1) and average response time (y2).

Output RMSE MAE RAE RRSE Corr.

y1 0.0298 ± 0.0020 0.0237 ± 0.0017 0.4970 ± 0.0436 0.5287 ± 0.0397 0.8497 ± 0.0231

y2 40.4023 ± 2.5809 32.1174 ± 1.9981 0.5335 ± 0.0353 0.5681 ± 0.0326 0.8238 ± 0.0215

tive learning stopping criterion (see Figures 4.6(c) and 4.9(c)). The standard deviation

values provide a systematic assessment of the variability around the averaged results

across the multiple cross-validation random runs. It can be concluded that, in both

cases, the GP presents good generalization and prediction performances.

4.5. Conclusion & Future Work

This chapter presented a methodology based on active learning metamodeling to

address the problem of exploring the behavior of simulators developed in the context

of transportation simulation and policy analysis. Particularly, an Emergency Medical

Service (EMS) was used for illustration, and two important output thresholds were

considered: 0.19 for the average survival rate and 8 minutes (480s) for the average

response time.

The presented work shows that the proposed methodology can help in the identifi-

cation of important regions of the simulation input space that have a direct impact on

the performance or implementation of specific policies while avoiding several simulation

runs at the same time. Moreover, if the simulation input space proves to be sufficiently

high-dimensional or if each simulation run shows prohibitive computational workload

and runtimes, an exhaustive exploration process is virtually impossible. Therefore, the

joint use of active learning strategies and simulation metamodels designed to identify

policy-relevant regions within such space has great potential in practice, especially for

decision-making processes.

In the future, several research directions can be undertaken in order to extend and

improve the presented work. Firstly, the methodology should improve in terms of

graphical representation, although working with high-dimensional data constitutes a

significant challenge in that aspect. The graphical results (policy-relevant simulation

input regions) should be provided in such a way that they make it easier for policies
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to be analyzed. Moreover, the presented methodology can also be improved through

clustering techniques applied to the results so that such important input regions are

more easily identifiable.

This work did not take into account any specific design for computer experiments

(such as the well-known Latin hypercube scheme) to select the initial training set.

These designs provide sampling strategies that lead to a good and systematic under-

standing of the underlying properties of simulation models. This eventually improves

the statistical significance as well as the prediction performance of simulation meta-

models. Instead, simple random sampling was used. There are plans to apply such

sampling schemes in combination with new active learning strategies soon and use the

current work as a baseline benchmark.

In order to further validate its potential, this work should be replicated not only

using other kinds of transport simulation models but also considering more complex

policy analysis, possibly taking into account a combination of policies. Additionally, it

would also be interesting to provide a certain degree of interactivity with the user. For

instance, instead of letting the active learning independently decide which data points

to request the simulator to label, the user could be allowed to engage in this process

too. This could represent an interesting feature for decision-making practitioners, as

it would directly involve them and their expertise in the modeling process itself.

Further numerical experiments will be conducted in the future, especially concern-

ing the tuning of the involved parameters, namely, the GP hyperparameters and the

methodology-related parameters, i.e., ↵, size of the initial training set, and the number

of active learning data points. This should improve both the fitting and generalization

capacity of the obtained GP metamodels. Furthermore, sensitivity analysis of these

parameters will also be conducted.

Due to its close relationship with simulation metamodeling, Bayesian optimization

techniques will receive particular attention in future works. If the goal is to seek for

those set of points that maximize (or minimize) the expensive and black-box func-

tion inherently defined by the simulation model, then such derivative-free optimization

approaches should be considered.

Lastly, but not least, another important issue is the possible correlation between the

simulation outputs, which was not considered in this work, as each output was modeled
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independently. Multiple output regression, such as the multi-output GP framework,

can improve its prediction performance by considering relationships across the out-

puts. The integration of such models in the proposed methodology would also be an

interesting line for future research.
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Chapter 5

Integrating Simulation Metamodeling

with Optimization

“It is not knowledge, but the act of learning, not possession but the act of

getting there, which grants the greatest enjoyment.”

Carl Friedrich Gauss, 1777 - 1855

Choosing locations for emergency medical service stations and vehicles has been

thoroughly investigated. However, the formulations presented to solve this question

are not always done in a way that can be applied in practice, as they are based on over-

simplified mathematical functions, which makes them rather unrealistic. The problem

persists as integrated strategic and tactical approaches require an analytical complexity

that often invalidates the exact solution.

The work developed within this chapter proposes an integrated strategic and tactical

planning decision methodology that complements an optimization model with a local

search using a metamodel as a proxy of the real system. This allows empirical evidence

to be inferred for vehicle location solutions that improve performance in the real system.

The methodology is applied to the city of Porto, and two dilemmas are tested to show

proof of application. First, the debate between the integrated versus non-integrated

approach is analyzed. Second, an assessment of the advantages of adding a vehicle or

a station to the planning budget is analyzed.

The conclusions of this research support the advantages of an integrated approach

indicated by other studies. The results also show that adding a new vehicle to the

system is more advantageous than adding a new station when it comes to victims’ sur-

vival. These two application examples provide proof of the methodology’s applicability

and open doors for future research on the subject.
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5.1. Introduction

Stations, distribution centers, and other facilities that have a radius of action, and

need to meet certain demands within that radius, are often in operation for many years,

and therefore subject to physical and temporal changes in the environment in which

they operate. Classic facility and vehicle location problems are usually faced with

highly uncertain costs, variable demand, and ambiguous travel times, as well as other

measures that are hard to correlate. Consequently, these types of problems require

decision-making tools to deal with the underlying uncertainties and avoid the risk of

underestimating or overestimating their design, which in return results in lower system

performance or more expensive solutions.

Emergency Medical Service (EMS) strategic and tactical decisions are two of the

classic facilities and vehicle location problems. In general, designing an EMS response

system, from a transportation perspective, covers the location of vehicle facilities, allo-

cation of vehicles to facilities, and response policies to outline rules that help to decide

which vehicle is to be dispatched to a certain medical emergency. The design of the

EMS response plan can be divided into two planning stages: strategic and tactical

decisions.

At the strategic level, long-term decisions are usually made concerning the location

of emergency vehicle stations, and a long-lasting infrastructure is established for the

EMS response (Amorim et al., 2017; He et al., 2018; Tufuor et al., 2018). These

decisions result in building or renting warehouse structures, which should last for many

years to come and must accommodate the required resources, e.g., response vehicles.

Tactical decisions, in contrast, define mid or short-term decisions (Amorim et al., 2018;

Van Essen et al., 2013), such as the allocation of response vehicles to EMS stations.

Hence, there is no permanent commitment to the chosen solution.

These two planning stages have been studied in-depth, especially focusing on the

mathematical problem, the algorithm itself, and problem-solving techniques, mainly

heuristics. Nevertheless, mathematical models are an abstraction of reality and often

require simplifications that lead to one important question: what is being improved?

What looks optimal on paper might not correctly translate into practice. Recently,

new research directions have pointed towards practice-ready decision tools, such as

simulation or scenario-based optimization. These techniques are able to integrate the
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system characteristics successfully and can elaborate and solve more complex problems

having a practical focus.

The present study follows the aforementioned new direction and studies a methodol-

ogy for integrated strategic and tactical planning decisions. As stated before, strategic

decisions have a permanent commitment, and a wrong decision can affect the per-

formance of the forthcoming tactical decisions. We believe that separating these two

decisions can lead to sub-optimal solutions. This fact has been shown by Van Essen

et al. (2013). However, they point out that a combined approach leads to an increase

in the problem size, and extra simplifications might be necessary so that a solution can

be found.

A two-stage methodology is proposed for solution exploration with empirical ev-

idence. In the first stage, a scenario-based optimization model provides integrated

strategic and tactical planning with the necessary simplifications to deliver a solution

within a reasonable time. The second stage focuses on exploring the neighborhood of

the optimized solution for alternative solutions that might perform better using empiri-

cal evidence. A simulation model is an alternative for empirical proof inference because

experimenting in the real system is prohibitive. However, simulation models require

excessive computing resources and are time-consuming. Evaluating a unique solution

might take several minutes or even hours. For this reason, a metamodel-based simu-

lation is preferred because it allows a much quicker evaluation of alternative solutions

with a minor accuracy loss.

This work contributes to the state of the art by 1) providing a methodology to

integrate strategic and tactical EMS planning decisions with a practical focus, 2) sup-

porting the claim that separate strategic and tactical decisions lead to sub-optimal

solutions, and 3) using a metamodel-based simulation to complement mathematical

optimization derived solutions with empirical evidence and applications to a case study.

5.1.1. EMS station and vehicle location

Emergency medical service location problems are one of the classic problems in

operational research (OR) and mathematical programming. The two most important

studies in the field of EMS and station location are the works of Toregas et al. (1971)

and Church and ReVelle (1974). The former presents a solution to solve the location
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set covering problem (LSCP), making sure all demands are covered within a maxi-

mum time or distance radius, whereas the latter focuses on maximizing the coverage.

Nonetheless, full coverage is hard to reach, especially when resources are limited, which

is the case of practical applications. Li et al. (2011) reviewed covering models for EMS

and highlighted many of them that relax some of the assumptions made in (Toregas

et al., 1971).

The follow-up model formulations tried to take into consideration the problem of

facility or vehicle availability. From the hierarchical approach proposed by Daskin

and Stern (1981), which firstly integrated multiple coverage standards, Gendreau et al.

(1997) formulated the famous Double Standard Model (DSM). This model has been

widely used as a solution to account for vehicle or facility unavailability, ensuring that

an alternative facility or vehicle is available within a second standard distance. ReVelle

and Hogan (1989) tackled the problem with a different approach and formulated a

probabilistic version of the LSCP with the requirement that all the demand points

must be covered with a reliability level ↵.

Another important point to highlight is that demand and travel times are not

evenly distributed temporally and spatially, and thus the busy fraction of a vehicle

varies from facility to facility. This problem was investigated, and a maximal expected

coverage location model with time variation (TIMEXCLP), where varying demands

are incorporated over time, is proposed by Repede and Bernardo (1994).

Once more, the review carried out by Li et al. (2011) indicates several other ex-

tensions of the maximal expected coverage location model (MEXCLP). Fujiwara et al.

(1987) applied simulation modeling to make further analysis on the optimality of an

EMS location problem in Bangkok using MEXCLP, whereas more recently, Schmid and

Doerner (2010) developed a multi-period version of the DSM which takes into account

time-varying coverage to optimize coverage at various points in time simultaneously.

The latter work concluded that it is vital for EMS location problems to consider time-

dependent variations in travel times and coverage, respectively. As a follow-up, Dibene

et al. (2017) used a similar approach in the city of Tijuana and concludes that demand

coverage and response times in Tijuana can be enhanced by relocating the current

stations without needing additional resources.

However, the above-mentioned authors have focused their models on operational
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performance metrics such as response time or coverage. These are the common metrics

used both in practice and research (Bélanger et al., 2016; Ünlüyurt and Tunçer, 2016).

One of the greatest impacts of planning EMS is the medical response time and how it

can change patients’ survival. Accordingly, Erkut et al. (2008) developed the Maximum

Survival Location Problem (MSLP), which incorporates a survival function into the

covering model to maximize patients’ survival.

A second issue of the former models is the fact that using analytic formulations is

still oversimplifying the real system. Notwithstanding, using robust solutions such as

the scenario-based approach, which already captures part of the stochasticity existing in

daily emergency medical services, is still a high simplification of the reality. Simulation

models come as a response to this problem because they attempt to provide a tool that

can deliver an empirical platform that translates the real system.

Using simulation models allow researchers to formulate more realistic and complex

problems, usually to assess solutions or to support optimization models (Bélanger et al.,

2016; Iannoni et al., 2009; Maxwell et al., 2010; Restrepo et al., 2009; Su and Shih,

2003; Ünlüyurt and Tunçer, 2016; Yue et al., 2012). McCormack and Coates (2015)

investigates how simulation can enhance the level of realism in EMS models, making

it applicable to complex real-life systems if proper data exists. Yet, a more detailed

and complex model comes with the cost of higher computing power and time. For a

deeper review on simulation applied to EMS problems, the reader is forwarded to the

review made by Aboueljinane et al. (2013).

One can assess a short set of solutions by using simulations. However, when it comes

to a local search, where thousands or millions of alternative solutions might exist, using

simulations becomes unfeasible. When the search for the solution requires extensive

experimentation, simulating each instance becomes time-consuming. Thus, simpler es-

timations are preferred. These are models of the model, which have been introduced as

metamodels by Blanning (1974) and further statistically developed by Kleijnen (1975).

In the transport research field, metamodels have only recently been applied, for exam-

ple, in traffic problems (Ciuffo et al., 2013), for network optimization (Song et al., 2017)

or in demand-responsive transportation (Antunes et al., 2018). Furthermore, Barton

and Meckesheimer (2006) discuss and show the usability of metamodels in optimization

problems to explore local solutions that can better fit the real system characteristics.
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The idea of complementing optimization with a metamodel to evaluate local solutions

is shown to be valid, and, as far as the authors know, there are no relevant studies in

this regard within the scope of EMS stations and vehicle locations.

5.2. Methodology

A two-stage methodology is proposed to integrate EMS response strategic and tac-

tical decisions in a unique plan design. In the first stage, an optimization model looks

for a conceptual solution that performs optimally on paper, and in the second stage,

a metamodel-based simulation is used to explore alternative solutions for empirical

evidence and to choose the best one. The core of the methodology is a multi-period

scenario-based optimization model that mathematically finds a solution for the EMS

location problem. Afterward, a metamodel trained to use a Gaussian Process is applied

to assess alternative local solutions that are generated by a combinatorial algorithm.

This process leads to possible alternatives that will empirically perform better in the

real system.

The two fundamental stages are achieved using three tools, namely, 1) an optimiza-

tion model, 2) a local search supported by a metamodel-based simulation, and 3) a

simulation model to train the metamodel. A diagram of these stages and the necessary

modeling processes are systematized in Figure 5.1.

The optimization model locates medical emergency vehicles and stations while max-

imizing patients’ survival. This model considers the station’s “busy-fraction” to define

the number of vehicles, uses “discrete time” to define scenarios, and has a set of pa-

rameters that allow for tailored solutions pending operational constraints. The main

goal is to provide optimized station and vehicle locations.

A Gaussian Process-based metamodel is trained using data points obtained from a

simulation model to serve as empirical evidence of the solution performance within a

stochastic environment that mimics the real system. A metamodel-based simulation is

preferred because, with a minor loss in accuracy, it overcomes the existing simulation

models because they use many resources (computational and human) and time, which

would lead to a drastic reduction in the number of solutions that could be tested. The

only time-consuming tasks are the metamodel parameter calibration and generation,

via simulation, of the associated training.
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Figure 5.1: Diagram of the integrated optimization and simulation metamodeling framework.

The next sections will further detail the optimization model, the simulation model

to train the metamodel, and the metamodel formulation with the respective algorithm

for the local search.

5.2.1. Strategic and Tactical Decisions - Integrated Optimization Model

The objective of the Strategic and Tactical Integrated Model (STIM) is to provide

a tool to combine the strategic and tactical planning of emergency vehicle and station

locations and offer the first analytical solution.

The first important step in the solution search is to define the performance metric

to be optimized. As was previously discussed, there is a wide range of performance

metrics that can be integrated into the objective function. These can focus on the
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operational performance or on the victims’ outcomes. This work follows a survival

approach, firstly introduced by Erkut et al. (2008), and afterward adopted by many

other researchers (Amorim et al., 2018; Bandara et al., 2014; Knight et al., 2012;

Mayorga et al., 2013; McCormack and Coates, 2015). This approach uses a survival

function that, when combined with victims’ heterogeneity, takes the form of

Se = [1 + exp(Ce +m
e
⇥ te)]

�1
, (5.1)

and the system performance, P s, is computed via

P
s =

X

e2E

Se, (5.2)

where e is the index of a type of event from the set of events type E, e.g. cardiac

arrest or road injury, t is the response time to event e, and C
e and m

e are the survival

function parameters for medical emergency type e.

To capture traffic and demand spatial and temporal heterogeneity, a multi-period

scenario-based optimization is preferred, as seen in (Dibene et al., 2017). The proposed

formulation derives directly from the strategic planning model for emergency vehicle

station locations formulated by Amorim et al. (2016, 2019c) and is adapted to vehicle

locations using the notion of station busy fraction; firstly introduced by Daskin (1983)

and adapted in the works of Snyder and Daskin (2005) and Berg and Essen (2019).

The formulation of the model uses s 2 S = [1, 2, . . . , s] scenarios that discretize the

traffic and demand continuous changes. Moreover, and for the sake of notation sim-

plicity, allow the availability set to be defined as A = {(s, l, p) | rs,l,p  Rmax, 8s 2

S, 8l 2 L, 8p 2 P}, and the following subsets as A
s,p = {(s, p) | 8(s, l, p) 2 A},

A
s,l = {(s, l) | 8(s, l, p) 2 A}, and A

l = {l | 8(s, l, p) 2 A}. Now, adopting perfor-

mance metric P
s as the objective to maximize and B as the maximum busy fraction

of the first order of a station, the new scenario-based Strategic and Tactical decisions

Integrated optimization Model (STIM) is formulated as follows:

max
X

s2S

X

e2E

X

l2L

X

p2P

ys,l,p ⇥ ds,p ⇥ [1 + exp(Ce +m
e
⇥ ts,l,p)]

�1 (5.3)
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subjected to

X

l2L

ys,l,p = 1, 8(s, p) 2 A
s,p (5.4)

ys,l,p  xl, 8(s, l, p) 2 A (5.5)
X

l2L

xl  Lmax (5.6)

X

p2P

ys,l,p ⇥ ds,p ⇥Ns  B ⇥
zl

b
, 8(s, l) 2 A

s,l (5.7)

X

l2L

zl  Vmax (5.8)

zl  Mmax, 8l 2 A
l (5.9)

xl 2 {0, 1}, 8l 2 A
l (5.10)

ys,l,p 2 {0, 1}, 8(s, l, p) 2 A (5.11)

zl 2 N0, 8l 2 L (5.12)

where the sets are

• s 2 S is the set of scenarios for the multi-period approach;

• e 2 E is the type of emergency;

• l 2 L is the set of possible station locations;

• p 2 P is the set of demand points;

• a 2 A is the availability set which consists of a set of tuples (s, l, p) that satisfy

the maximum response time constrain, e.g. rs,l,p  Rmax. Set A can reduce the

number of decision variables and constrains, hence reducing the problem size;

and the decision variables are

• ys,l,p = 1 if a vehicle from station l serves node p during scenario period s, 0

otherwise;

• xl = 1 if a station is located at possible station locations l, 0 otherwise;

• zl is the number of vehicles deployed at station l.

Furthermore, the parameters are
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• ds,p is the estimated demand during period s at demand node p;

• rs,l,p is the travel time from station location l to demand node p during scenario

period s;

• Lmax is the maximum number of open stations;

• Ns is the demand peak factor during period s;

• B is the busy fraction control parameters;

• b is the average time a vehicle is busy when responding to an emergency (a sum

of the response and assistance time, travel time to the emergency service location

and corresponding victim drop off time, return time to station and be ready for

the next call);

• Vmax is the maximum number of vehicles per station;

• Mmax is the maximum number of emergency vehicles;

• Rmax is the maximum response time allowed.

Function (5.3) maximizes the overall survival considering the demand at each node

and at each period. (5.10)-(5.12) represent the decision variables and their correspond-

ing domains. For logistic purposes, the constraints represented by inequations 5.6, 5.8

and 5.9 limit the total number of open stations, the total number of deployed vehicles,

and the maximum number of vehicles at one station, respectively. Notice that, as a

direct consequence of (5.9), zl 2 {0, 1, 2, . . . ,Mmax}, 8l 2 A
l.

Equation 5.4 ensures that for each scenario period, only one station is allocated

to each demand point and inequation 5.5 ensures that there is a vehicle deployed at

that station. Additionally, remember that A represents the availability set, whose

use drastically reduces the size of the problem by considering only the pairs (period

scenario, station location, demand node) that respect the constraint rs,l,p  Rmax.

The parameter B varies between [0, 1], reflecting the percentage of time, within

a scenario, during which a certain station is busy and can no longer respond to any

other emergency call, i.e., it sets the working load of a station and its vehicles. There-

fore, inequation (5.7) is the contribution to the station location formulation proposed
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in (Amorim et al., 2016) and it adopts the concept of a busy fraction to control the

number of vehicles deployed at each station to limit the busy fraction B of the service

stations during a scenario period demand peak characterized by Ns. It allows the user

to control the station or vehicle busy fraction and to have solutions tailored for spe-

cific failure rates, i.e., a solution that will suffice for a certain fraction of the analyzed

period.

5.2.2. Simulation Model

A simulation model is retrieved from (Amorim et al., 2018) to generate data points

for training the metamodel that will be used for alternative solution exploration. The

adopted simulation model is an agent-based simulation that can be quickly adapted

for the objective of this work.

The model translates each EMS stakeholder into independent agents that interact

within a stochastic environment. The main agent representing the city acts as the EMS

provider by answering emergency calls and assigning a response vehicle to them. Each

medical emergency is formulated as an agent with certain characteristics that define

its type, location, and timestamp. Each vehicle is also an agent that answers to the

city agent and has the autonomy to travel to the city, assist and pick up patients and

transport them to the desired hospital.

The environment abstracts the complexity of the road network by considering a

nodal network. Nodes are represented by a coordinate system, and each pair of nodes

has a directional multi-period travel time associated. This means that traveling from

A to B is not the same as traveling from B to A, and traveling from A to B during

period s is not the same as traveling from A to B during period s
0.

The advantage of the simulation is to have a stochastic representation that resembles

the real system it tries to mimic. To meet the objective of this study, two uncertainties

are studied: 1) traffic behavior and how it affects travel times, and 2) the EMS demand

and how it fluctuates during the day. Two parameters are implemented to control these

two behaviors. The first parameter "T captures the traffic stochasticity by introducing

an “error term”, when dispatching a vehicle, in the observed travel time rs,l,p according

to

r
0
s,l,p = rs,l,p + rs,l,p ⇥ f


N

✓
⌫,

"
2
T

4

◆�
,
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where f (N (⌫, �2)) is a function that returns a random value from a Gaussian distri-

bution with mean ⌫ and standard deviation �. Here, the mean is set to zero, and the

standard deviation is set to "T
2 , meaning that there is a confidence of 95% that the

estimated travel time has at most an error of " 2 [0, 1].

The second parameter, w1, captures the possible randomness in the demand by

reallocating the medical emergency event locations, ep, through the network with a

probability of w1, described by

e
0
p = p(g(Es), ep, w1, w2),

where g(Es) is a function that randomly picks a location from a bag of possible loca-

tions, Es, weighted according to period s, and p(e1, e2, w1, w2) is a function that selects

either e1 or e2 with a probability of, respectively, w1 and w2, where w1 + w2 = 1.

These two parameters, "T and w1, allow a controlled integration of the randomness

that is observed in a real environment by manipulating the analytical data fed to

the simulation model. To control the simulation output, two hyperparameters are

also implemented: the number of runs, n
r, which controls the number of times the

same input and parameters are evaluated by the simulation model, and the number

of simulated days, nd, which controls the number of days the model will simulate to

produce each output-solution performance. The simulation output uses equation (5.2)

to calculate the average system performance during all runs nr, additionally returning

the average response time for all the calls served.

5.2.3. Metamodel-based Simulation and Local Search

The time-consuming problem of a simulation model to produce relevant outputs

invalidates the possibility to test big batches of inputs and different combinations of

parameters. A metamodel can overcome this drawback and can be used to quickly

explore alternative solutions during strategic and tactical EMS decision-making pro-

cesses.

A metamodel-based simulation using Gaussian Processes is proposed. By defini-

tion, and following Rasmussen and Williams (2006), a Gaussian Process (GP) is a

stochastic process in which any finite number of random variables forms a multivariate

Gaussian distribution. Each GP is solely defined by a mean function and a covari-

ance function (or kernel), respectively denoted as mf (x) and kf (x, x0), where x and x
0
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are two different input observations. The GP framework is a well-known and widely

applied machine learning tool in a variety of research areas, being a recurrent tool

for both regression and classification problems, especially within the machine learning

community (Christopher, 2016; Li and Chen, 2016; Lifshits, 2012; Robert, 2014).

In terms of notation, a GP is commonly denoted by GP(mf (x), kf (x, x0)). Within

the standard regression problem y = f(x), where " ⇠ N (0, �2), this framework places

a prior over f(x), i.e.

f(x) ⇠ GP(mf (x), kf (x, x
0)).

It is usual for the mean and covariance functions to have a certain number of

free parameters. These parameters, also called hyperparameter of the GP, can be

estimated by the maximization of the marginal likelihood. After this fitting procedure,

the conditional distribution for an unobserved data point x
⇤ is given by

f⇤|X,y,x⇤ ⇠ N (k>
f⇤[Ky]

�1y, kf⇤⇤ � k
>
f⇤[Ky]

�1
kf⇤),

where kf⇤ = kf (X,x⇤), kf⇤⇤ = kf (x⇤,x⇤), X and Ky are the design and covariance

matrices respectively, and y is the vector of the target values. Hence, notice that the

GP makes predictions in the form of Gaussian distributions.

The local search is then accomplished through an algorithm that generates all pos-

sible combinations Ckn where n is the possible vehicle locations (the maximum number

of vehicles per each available station), and k is the total number of vehicles. The ex-

ploration space is generated using Python itertools library and tested using the afore-

mentioned metamodel-based simulation, and the solution with the maximum survival

output is chosen.

5.3. Case Study Application

The proposed methodology and claims of this work are validated using real data

from the city of Porto, collected from the INEM (National Medical Emergency Insti-

tute) database, consisting of 35k emergency medical calls between 2012 and 2013 (see

Figure 5.2).

The data was processed using Google maps geocoding API to translate addresses

into coordinates and stored in a SQL database. The national census database sub-

section division was used to build a 90-node network. Using a clustering algorithm
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Figure 5.2: City of Porto, Portugal, and possible station locations with corresponding label.

Darker areas represent a higher number of emergency calls.

along with a Euclidean distance metric, the medical emergency calls were allocated to

the network nodes. From the 90 network nodes, 15 were chosen as possible station

locations.

Five scenarios are set corresponding to different periods of the day and days of the

week. The working days were separated from weekend days. For the working days, the

day was divided into three periods: from 6:00 am to 2:00 pm, from 2:00 pm to 10:00 pm,

and from 10:00 pm to 6:00 am. The weekend days were divided into two periods: from

6:00 am to 10:00 pm and from 10:00 pm to 6:00 am. These periods were defined after

carefully studying the traffic and demand temporal and spatial fluctuations. Figure 5.3

shows an overview of the traffic and demand study where it is possible to observe the

different behaviors of traffic and demand during the morning, afternoon, and night

periods. During the weekend, the morning and afternoon period differences were less

visible. Thus, these two periods were merged together.

Part of the optimization model, the parameters were calculated according to the

resulting database, which are the demand parameters ds,p, the travel time matrix with

entries rs,l,p, and the demand peak factors Ns.

The maximum number of stations, maximum number of emergency vehicles and

maximum number of vehicles per station values were set to Lmax = 7, Mmax = 14,

Smax = 3, respectively. From the authors’ experience (Amorim et al., 2019c), these

are the values that allow for a service with no significant delays, i.e., there is always

an available vehicle to respond to a call. To reduce the problem size, the maximum

response time was set to Rmax = 12 min.
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Figure 5.3: Dynamism in travel time and demand during the day.

Finally, the average time a vehicle is busy was estimated as b = 120 min, and

the busy fraction parameter was set to B = 1. This is the limit of feasibility since

it tolerates a 100% rate of vehicle usage during the peak period characterized by Ns.

With the optimization model solution, the local search algorithm is applied to find an

empirically better solution.

5.4. Metamodel-based Simulation Training

To train the metamodel, a batch of 800 simulation runs is used as observations.

These observations consist of an input vector with the position of emergency medical

vehicles and the stochastic parameters " and w1, and the corresponding average survival

output.

The set of input vectors was generated by constraining the number of stations

between 7 and 10, the total number of vehicles between 11 and 15, and the maximum

number of vehicles per station to 3. After several optimization models tested in previous

studies, 15 possible station locations were considered to generate the simulation input.

An algorithm randomizes a feasible solution according to the above restrictions,

then randomly picks a value for the parameters " and w1, and inputs it in the simulation

model with hyperparameters n
r = 20 and n

d = 15. The input vector and the outputs

are stored in a database to be used to train the Gaussian Process metamodel.

As mentioned earlier, any GP is fully characterized by its mean and covariance

functions. For this study, the constant mean function defined over the average of the

simulation output variables values was set. Consider the training set, (X, y), where X

is the design matrix composed of the independent variables (regressors), and y is the
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Figure 5.4: Predicted values using the metamodel versus real values for the average response

time (left) and the survival (right) outputs.

vector containing the values of the dependent variable. Thus, the mean function comes

as mf (x) = average(y). On the other hand, the well-known Squared Exponential,

defined by kf (x, x0) = �
2
exp

⇣
�

||x�x0||2
2l2

⌘
was chosen to serve as the GP’s kernel. Here,

�
2 and l

2 are the signal variance and length-scale, respectively.

The GP was trained using a data set comprised of 1,098 random simulation results.

Each observation has 17 dimensions in total, namely, the location change probabil-

ity w1, traffic error "T , and 15 locations. The training process was applied for both

simulation outputs, average response time, and average survival rate independently.

The hyperparameters were obtained using marginal likelihood optimization over this

training data set. The predictive performance of the metamodel is depicted in Fig-

ure 5.4, where a strong linear correlation between the predicted and real values can

be graphically observed. The validation of the metamodel generalization capacity was

conducted using a 10-fold cross-validation scheme across 30 randomized runs for sta-

tistical significance purposes. The obtained results were averaged and summarized in

Table 5.1. Several well-known performance metrics were used, namely, Pearson’s linear

correlation coefficient (Cor), Root-Mean-Square Error (RMSE), Mean Absolute Er-

ror (MAE), Relative Absolute Error (RAE), and finally Root Relative Squared Error

(RRSE).

The metamodel achieved a linear correlation (Cor) of 0.912 for the average response

time and 0.898 for the survival rate. This complements the information already pro-

vided in Figure 5.4. In terms of RMSE, the GP achieved values of 16.05 and 0.018,
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Table 5.1: Average performance results of the metamodel resulting from a 10-fold cross-

validation across 30 randomized experiments.

Output Cor RMSE MAE RAE RRSE

response time 0.912 16.050 12.398 0.397 0.409

survival rate 0.898 0.018 0.014 0.426 0.441

whereas the MAE slightly decreased to 12.398 and 0.014 for the same output variables,

respectively. In line with the correlation values, the metamodel attained too slightly

better results with respect to RAE and RRSE for the response time output. Note

that only Cor, RAE, and RRSE are directly comparable as they constitute normalized

measures. On the other hand, RMSE and MAE reflect the magnitude of the involved

values. All in all, these results show a high predictive and generalization performance

of the trained model.

5.5. Results and Discussion

5.5.1. Strategic and Tactical Planning: Integrated vs. Non-Integrated

A discussion on planning strategic and tactical decisions as a combined problem is

led in (Van Essen et al., 2013). To contribute to this question, the methodology of this

study is applied to define an integrated solution and afterward to compare it with a

non-integrated solution.

First, the solution achieved solely through analytical optimization is analyzed. Us-

ing the model proposed in (Amorim et al., 2016), a station location solution was ob-

tained. Then, this solution was used to restrict the station location in the current

optimization model, and another solution for the vehicle location was calculated. This

two-phased optimization process results in a non-integrated solution. For the inte-

grated solution, the STIM optimization model was applied to produce a solution that

selects station and vehicle locations simultaneously.

Afterward, the local search algorithm was applied to each of the initial solutions

resulting in two new solutions (with local search). The metamodel was used for as-

sessing the various solution performance in terms of survival. For reference, and as a

collateral consequence of station and vehicle locations, the average response time of
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Figure 5.5: Visualization of the non-integrated and integrated solutions with and without

local search.

each solution is calculated.

The solutions are represented in Figure 5.5 and the performance result for different

values of the stochastic coefficient (with "t = w1) are plotted in Figure 5.6.

It is obvious that the integrated solution outperforms the non-integrated solution.

Nevertheless, higher survival comes at the cost of higher average response times. It is

expected that in order to better respond to life-threatening events, emergency vehicles

must be allocated closer to the nodes where these types of events dominate. Therefore,

on the one hand, minimizing the average response time forces vehicle locations to be

closer to nodes with high demand. On the other hand, maximizing survival pulls
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Figure 5.6: Performance of the integrated and non-integrated solutions with and without local

search. Lines represent the average response time and the bars represent the survival metric.

vehicle location towards nodes where a higher likelihood of life-threatening emergency

calls is present. The results show that increasing survival (which consists of reducing

the response to life-threatening events) has a negative impact on the average response

time (the response time for non-life-threatening events increases) because the number

of non-life-threatening events dominates over life-threatening events. This shows that

demand is not homogeneous (different types of medical emergencies have different

temporal and spatial patterns) and that the use of survival functions as a performance

metric allows decision-makers to optimize the outcome of a medical emergency rather

than optimize the system operation.

The local search allows for solutions with better empirical performance as expected.

When the stochastic coefficients increase, an obvious decrease in performance is visible,

although this is not always true when it comes to the response time. It is worth noting

that the integrated solution has a lower performance variation when the stochastic co-

efficients increase. This might indicate that this solution is more robust, thus adapting

better in uncertain environments.

5.5.2. Improving Solution And Scenario Analysis

This section briefly explores the capabilities of the methodology. The dilemma of

adding more vehicles at the cost of reducing the number of stations, and the inverse,

is analyzed.

A set of five solutions are considered:
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Figure 5.7: Performance of the different tested solutions. The darker bars represent the most

expensive solutions. Lines represent the average response time and the bars represent the

survival metric.

• IS-7s-14v, Integrated solution with 7 stations and 14 vehicles

• IS-6s-14v, Integrated solution with 6 stations and 14 vehicles

• IS-6s-15v, Integrated solution with 6 stations and 15 vehicles

• IS-8s-14v, Integrated solution with 8 stations and 14 vehicles

• IS-8s-13v, Integrated solution with 8 stations and 13 vehicles

The same previous parameters are used, and the full methodology is applied, i.e.,

optimization solution followed by a local search followed by a performance assessment.

However, for the solution IS-8s-13v the busy fraction parameter B had to be raised

to 1.1 so that the optimization model could find a feasible solution. The results are

compiled in Figure 5.7.

From the tested solutions, it can be concluded that having seven stations is more

advantageous than one less or one more station. When there is an additional vehicle

available in the solution with six stations, the solution with seven stations is preferable.

Curiously, adding a new station does not lead to higher performances.

In terms of the average response time performance, most of the solutions seem

to have smaller variances as the stochastic coefficients increase. Nevertheless, it is

interesting to note that the solutions with eight stations are less stable. Having more
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stations, it is most likely that when dispatching a vehicle, an error in travel time

measures leads to the selection of a non-optimal vehicle. The dispersion of stations

makes the solution more susceptible to traffic error. If vehicle cost<station cost, then

in terms of economical preference IS-6s-14v>IS-6s-15v>IS-7s-14v>IS-8s-13v> IS-8s-

14v, it can be concluded that the solutions with six and seven stations are preferable.

5.6. Conclusions

The study of strategic and tactical planning for station and vehicle locations in EMS

has attracted much attention in recent years. With the availability of big data sets and

high computer resources, the classical approach for EMS planning becomes obsolete

as analytical formulations fail to capture important components of such systems, e.g.,

traffic changes, demand variability.

This study proposed a framework to tackle strategic and tactical decisions in a way

that allows the use of stochastic variables and incorporates the complexity of an EMS

system and the urban area it serves.

An optimization model was proposed that can be solved within a reasonable time

and produces solutions adapted to the continuous demand and traffic changes during

the day. To complement the optimization model, a metamodel-based simulation was

also proposed. It allows the evaluation of solutions based on a simulation model that

mimics a real system and the environment it is implemented in. These two tools

allow for a chained methodology to plan EMS decisions with robustness and flexibility,

ensuring decision-makers of the expected performance.

The methodology applied in the city of Porto contributed to the discussion between

integrated and non-integrated strategic and tactical decision planning. It was shown,

through the metamodel, that the solution performance of a non-integrated approach

leads to lower system performance when compared to an integrated solution produced

by the proposed methodology.

Furthermore, the methodology was also applied to a station versus vehicle dilemma

and was shown to be a practical tool to support decisions or to explore alternatives in

uncertain scenarios. The analytical formulation of the metamodel presents a simple yet

robust performance function that can be easily used by decision-makers or by designers

to quickly prototype system improvements. The results show that, in practice, an
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increase in vehicles is preferable to an increase in stations.

As both studies illustrate, better average response times do not always lead to

higher survival rates. This is an important finding supporting survival metrics over

classical operational ones.

For future research, the study of metaheuristics or mathematical formulation is

suggested to allow direct use of the metamodel function as the objective function of an

optimization model for EMS. Implementing robustness measures, such as the variance

obtained during the simulation runs, is also worth investigating as this will provide

more robust metrics when exploring or evaluating solutions.

Moreover, there are important points to highlight when measuring and addressing

real systems or when supporting decision-makers. In a real system, the available re-

sources might not always be enough to respond to every active call. In these cases, a

triage takes place in order to select which calls will be answered first. Queuing rules

should be developed and implemented in the simulation model. Furthermore, balanc-

ing the mix of patients’ acuity and ensuring that all patients have acceptable levels

of service is a key challenge in EMS. It is important to develop robust rules, which

will consider survival and will balance service level. Some initial work regarding this

challenge is present in (Amorim et al., 2019c; Jagtenberg et al., 2017b; Knoops and

Lundgren, 2016).

Two EMS-specific events should be considered during solution assessment. These

are the EMS hospital department overcrowding which will divert EMS vehicles to

different hospitals, thus increasing the vehicle mission time, and no-service calls which

corresponded to responded emergency calls but that at the end, the emergency vehicle

is unable to find a patient on arrival at the incident location (no-service).

As a final remark, it is important that multidisciplinary teams (e.g., researchers

in the area of emergency medicine and operational research) work together to develop

more robust performance metrics that can provide decision-makers with a clear picture

of the improvements in new computational models (e.g., like the one presented in this

work) can bring when implemented in practice.
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Chapter 6

Directional Active Learning

Metamodeling

“Whenever a theory appears to you as the only possible one, take this as a

sign that you have neither understood the theory nor the problem which it

was intended to solve.”

Karl Popper, 1902 - 1994

Emergency Medical Services (EMS) constitute a crucial pillar of today’s cities by

providing urgent medical responses to their citizens. Their study is often conducted via

simulation modeling, as the assessment of planning and policy solutions are generally

not feasible in the real world. However, these models can become computationally ex-

pensive to run. Thus simulation metamodels can be used to approximate the simulation

results.

This chapter presents a metamodeling strategy supported by a directional active

learning scheme to explore an EMS simulator’s survival outcome. Using a series of

training grids, the algorithm guides the exploration process towards simulation input

regions whose output results match a specific search value defined a priori, providing

a computationally efficient way of exploring the associated input space. The results

show that this approach can identify such relevant simulation input regions and that

it can be easily expanded to multiple search value approaches.

6.1. Introduction

In 2018, more than 55% of the world’s population was estimated to live in cities or

urban areas. The following decade’s projection is that this number reaches 60% and

that one-third of the people are likely to live in cities with around five thousand citizens

or more (United Nations, 2018). The exponential growth of the urbanized areas world-
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wide will generate increased pressure on the urban and transportation infrastructure

and the need for new ones. When not planned, it can lead to undesirable transfor-

mations. The potentially negative consequences of these changes can be minimized

and handled if proper technical and policy decisions are taken, in the present, with a

strategic planning view for the inevitable steady urban growth (Martine et al., 2007;

Weber and Puissant, 2003; Levy, 2016).

As the population density increases within urban settlements, so does too the

demand for mobility. Transportation systems play a particularly vital role: they

are the backbone that supports sophisticated social and economic advancements. A

healthy economic activity inevitably requires the movement of people, goods, and ser-

vices (Moore and Pulidindi, 2013). Urbanization generally follows the evolution of

transportation (Rodrigue et al., 2016). Moreover, with this intense urbanization and

agglomeration of people, the concerns for health and safety conditions increase ac-

cordingly (Vlahov and Galea, 2002). To this end, Emergency Medical Services (EMS)

constitute a crucial pillar of today’s cities by providing urgent medical responses to

their citizens, particularly those in serious life-threatening situations. In (Bélanger

et al., 2019), a review of the last ten years of EMS research is provided, focusing on the

current state-of-the-art modeling tools and projecting future trends whereas Andersson

et al. (2020) presents three concrete managerial cases of EMS in the scope of strate-

gic decision support systems. On the other hand, Poulton et al. (2019) addresses the

problem of optimizing ambulance routing to decrease response times to life-threatening

events under blue light conditions.

EMS performance is highly dependent on the characteristics and idiosyncrasies of

the urban environment in which they are integrated, as well as on the information

available to the service operator. Especially in highly populated areas, such systems’

emergency response is inevitably constrained by multidimensional urban dynamics.

Heavy traffic and population movements have a particularly relevant and direct impact

on the EMS’s outcome (Amorim et al., 2019b). To address the potential hindrances

in the implementation and deployment of emergency services, strategic, tactical, and

operational planning must be undertaken to ensure the proper emergency response of

people in need of medical assistance.

The study of EMSs is often conducted via simulation-based modeling, as the as-
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sessment of planning decisions, as well as policy solutions, is generally not feasible in

the actual real-world systems. However, despite their obvious advantages, simulation

models can become computationally expensive to run whenever a high degree of realism

and detail is required (Law, 2015). To address this shortcoming, simulation metamod-

els (Friedman, 2012) can be employed to approximate and explore simulation results,

thereby mimicking the simulator itself (Kleijnen, 1979, 1987). To adequately serve

their purpose, simulation metamodels should be defined as fast and straightforward

functions whose input/output domains match that of the original simulation. Kleijnen

and Sargent (2000) mentions four main goals within simulation metamodeling, namely,

real-world problem understanding, simulation output prediction, optimization, and ver-

ification/validation. In this work, we mostly focus on the first two objectives.

Consequently, it is assumed that the simulation model is perfectly calibrated con-

cerning the entity problem under study. Within this context of expensive simulation

models, in which labeled data is difficult to obtain, active learning emerges as a particu-

larly relevant modeling approach that aims to increase a model’s predictive performance

with as few training points as possible. This is essentially accomplished by designing

algorithms with the ability to choose the training points from which they learn in an

iterative manner (Settles, 2010; Wang and Zhai, 2016).

Closely related to both concepts of simulation metamodeling and active learning

is the Gaussian Process (GP) framework. Due to its Bayesian properties, it provides

predictions in the form of Gaussian probability distributions, with specified mean and

variance. This predictive variance, as an information criterion, can be easily used to

develop active learning strategies to seek the most informative points within a simu-

lation input space. On the other hand, GPs have a long tradition of being used as

metamodels (Kleijnen, 2009; Chilès and Desassis, 2018), due to their relatively simple

formulation, high non-linear modeling capabilities, and general modeling versatility.

The GP-based metamodeling framework is oftentimes called Kriging.

In this work, by combining elements of both simulation metamodeling and active

learning, a strategy is proposed to study the survival outcome of an EMS simulator by

exploring its input space. Employing a Gaussian Process (GP) as a metamodel, the

methodology guides the exploration process in the direction of simulation input regions

whose output results match a specific search value defined by the user in advance.
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This is achieved by a series of training grids and sub-grids that get iteratively closer

to the input regions of interest. The results show that this approach can identify such

relevant simulation input regions while minimizing the computational workload at the

same time, making the exploration process more efficient. From the discussion of these

results, we draw several practical implications for the field of EMS and possible lines

of improvements in a near-future work.

6.2. Methodological Approach

6.2.1. Gaussian Processes

A GP is a stochastic process in which any finite number of random variables forms

a multivariate Gaussian distribution (Rasmussen and Williams, 2006). Any GP is

completely defined by a pair of functions, namely, the mean, mf (x), and the covariance,

kf (x,x0), where x and x0 are two different input observations, and is commonly denoted

by GP(mf (x), kf (x,x0)). Within a standard regression problem y = f(x) + ✏, where

✏ ⇠ N (0, �2), the GP places a prior over f(x), i.e., f(x) ⇠ GP(mf (x), kf (x,x0)).

Is it usual for the mean and covariance functions to have a certain number of

free parameters which can be optimized via marginal likelihood maximization. The

conditional distribution for an unobserved data point x⇤ is given by f⇤|X,y,x⇤ ⇠

N (kf (X,x⇤)>[Ky]�1y, kf (x⇤,x⇤) � kf (X,x⇤)>[Ky]�1
kf (X,x⇤)), where Ky is the co-

variance matrix, X is the design matrix composed by the independent variables and y

is the vector containing the values of the dependent variable. Each GP prediction is

associated with a well-defined Gaussian distribution. Hence, instead of a single point-

wise estimate, the GP provides an entire range of possible values, weighed by a density

function. This is an intrinsic Bayesian property which allows the GP to encode the un-

certainty associated not only to its estimates but also to the underlying process being

studied. The predictive variance kf (x⇤,x⇤)�kf (X,x⇤)>[Ky]�1
kf (X,x⇤) can be viewed

as a proxy for both data and prediction uncertainties. Higher variance translates into

more dispersion, which in turn implies more variability around the mean. This prop-

erty allows straightforward implementations of active learning schemes, by setting, for

example, the predictive variance as an information criterion.
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6.2.2. Active Learning Strategy

The strategy followed in this work combines crucial elements of both active learning

and simulation metamodeling, similar to that of seen in (Antunes et al., 2018) and (An-

tunes et al., 2019). Figure 6.1 briefly depicts the proposed methodology, whose general

objective is to approximate the behavior of the simulation model under study around

pre-defined output values of interest and corresponding triggering input region. This

is achieved by using a GP that, while modeling the functional relationship between

the simulation input and output spaces, ultimately guides the training process itself

towards such simulation output value.

Three essential ingredients must be defined a priori to starting the algorithm. These

are the pre-defined simulation output search value (sV ) of interest, the initial training

grid (trGrid), and the search grid (sGrid). The algorithm is designed to provide the

user with a directional search towards the sets of input values or input regions that

trigger, via simulation, output values that lie close to sV , by successive predictions

over sGrid. It is worthwhile to mention that, contrary to sV and sGrid, which are

both fixed structures, trGrid evolves as part of the active learning scheme.

For the sake of simplicity, this work focuses on the two-dimensional case, although

the proposed methodology also applies to high-dimensional spaces. The method is

deemed as directional since the GP effectively directs the iterative metamodeling pro-

cess towards the input regions that are more likely to assume output values closer to

sV . This directionality is accomplished by considering a series of iterative training

grids and corresponding sub-grids that approximate the simulation results in the vicin-

ity of sV . These grids are sequentially added to the increasing training grid. The GP,

used as a metamodel, guides the expansion process of trGrid towards the identification

of simulation input regions whose simulation results are close to the pre-defined out-

put value of interest. This allows the user to concentrate the computational workload

(associated with each simulation run) specifically in these input regions, turning the

exploration process not only faster but more efficient.

Figure 6.1(a) depicts an example of a training unit grid and its associated sub-grids.

The unit grid is composed of four contiguous sub-grids, defined by a set of nine points

arranged in a square shape. The same principles apply to any rectangular shape. Each

vertex represents a Cartesian pair of values within the simulation input space whose

119



Chapter 6 Directional Active Learning Metamodeling

corresponding simulation results (output values), simR, were previously computed.

The training set denoted by (trGrid, simR) is then a labeled data set. Furthermore,

observe that the unit grid and sub-grid have several points in common, which could

imply repeated simulation runs. Although this might prove to be useful for simulation

models that exhibit a high degree of stochasticity, such scenarios were not considered

in this particular work. As the iterative process advances, the sub-division of the

successive grids continues recursively.

On the other hand, the search grid sGrid, besides being characterized by a static

structure, has a different nature and purpose. It is only comprised of input data points

for which the associated simulation results are not known. Thus, it is comprised of what

is often called unlabeled simulation instances or observations, and it is exclusively used

for prediction purposes. It should be highly dense so that the GP can predict over

sGrid with increased great detail. Contrary to the training stage, predicting does not

require much computational effort, and it is often a relatively fast procedure. This is

valid not only for the GP framework but also for the vast majority of the machine

learning tools.

In practice, sGrid is the simulation input region in which the user aims to explore

the simulation output behavior, in particular, to eventually locate the set of input values

that trigger sV . Although not completely required, some prior knowledge regarding

the simulation model is desirable when defining this grid. There is no point in defining

a search grid in which the search value is never triggered. Hence, expert opinion and

experience are of utmost importance in this stage so that sGrid encompasses some

prior knowledge as to where sV is most likely to be triggered within the simulation

input space.

Following Figure 6.1(b), the algorithm starts with the labeling process of the points

contained in the initial training set. For each input point in this grid, a simulation

experiment is run so that the corresponding simulation output result is obtained. The

vector of all these output values is denoted by simR, and the associated data set by

(trGrid, simR). Notice that in this first iteration, trGrid matches the training unit

depicted in blue previously seen in Figure 6.1(a).

Afterward, a GP is fitted to (trGrid, simR), and predictions are made over the

unlabeled set sGrid, effectively serving as a simulation metamodel. These predictions
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(a) (b)

Figure 6.1: (a) Grid-based training unit (blue) with corresponding sub-grids (red), and (b)

proposed active learning methodology with 1-10 representing the iterative flows in chronolog-

ical order. Notice that steps 2-9 are cyclic while the stopping criterion is not satisfied.

are estimates for the simulation output results associated with the points within the

search grid. As mentioned in Section 6.2.1, the GP predicts in the form of a proba-

bility distribution, particularly providing the predictive variance associated with each

prediction. This variance is then used to compute the Average Predictive Variance

(APV ) over sGrid, and its stability is accessed. For obvious reasons, this step is not

applicable during the first iteration, as there are no previous iterations whose APV

values can be compared to. Finally, sub-grids are defined, and some are selected to

incorporate trGrid, naturally expanding it. This selection is conducted according to

the predictions provided by the GP by computing the point-wise Euclidean distance

between the GP surface and the nearest point comprising the horizontal plane defined

by z = sV . Hence, only those sub-grids whose predicted values are closer to sV are

added to the training grid.

Hereupon, the entire active learning process is iteratively repeated until APV shows

no signs of significant variation between iterations. Observe that APV is viewed as a

measure of the GP’s overall prediction performance. As the training set is expanded

by successive finer grids whose simulation results lie closer to sV , APV is expected

to decrease from iteration to iteration. This decrease should reach a lower bound,

representing the point from which the GP is not capable of further improving its

predictions. At this point, the simple addition of new points to the training set is a

waste of time and computational resources. In the end, this methodology is designed to
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INPUTS: sV , trGrid, sGrid

WHILE APV not stable do

1: Train a GP using trGrid and obtain predictions over sGrid.

2: Select unlabeled sub-grid whose prediction points are closest to sV .

3: Run the simulator to obtain the output results for the selected sub-grid.

4: Expand trGrid with the newly obtained simulation results.

5: Update APV .

END

OUTPUTS: Trained GP, trGrid.

Figure 6.2: Active learning strategy pseudo-algorithm.

provide a final and fine mesh grid that encloses the region contained in the simulation

input space that specifically triggers the search value of interest. This approach is

summarized in the form of a pseudo-algorithm in Figure 6.2.

6.3. Experimental Setting

6.3.1. EMS simulator

In this work, the EMS simulator developed by Amorim et al. (2018) was used as

a case study. This simulation model implements the allocation and dispatching of

emergency vehicles according to the closest idle vehicle rule (Haghani and Yang, 2007;

Jagtenberg et al., 2017a; Yang et al., 2005). The underlying model relies on an agent-

based simulation design where a city agent serves as the operator of the emergency

medical service. After answering emergency calls, it allocates and dispatches idle vehi-

cles to emergency locations. Each event is represented by an agent that encloses several

characteristics that describe the type of medical emergency, location, and timestamp.

Within the simulation, these events are set off according to a historical emergency call

database and, as well as to the probability of location change, forwardly discussed in

more detail. The vehicles are also formulated as agents that immediately react to the

city agent requests.

Most EMS are still developed and managed by rudimentary and outdated vehicle

dispatching and reallocation rules. Essential factors such as traffic conditions, road-
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blocks, vehicles’ exact positions, and emergency demand predictions are not entirely

taken into account during EMS planning. These and other time-dependent elements

do have a fundamental impact on the emergency system’s response (Schmid, 2012).

However, since the beginning of the 21st century, the proliferation of ubiquitous intel-

ligent technologies (Kindberg and Fox, 2002) and the development of the Internet of

Things (IoT) (Li et al., 2015), has culminated in unprecedented data growth. With

this information technology revolution, EMS staff, practitioners, and researchers, in

addition to the traditional historical data, are now able to access, collect and pro-

cess large amounts of heterogeneous real-time information, such as traffic congestion,

satellite-based navigation, and emergency alerts.

Inputs

The mentioned EMS simulation model features three kinds of inputs, particularly

the location change probability, traffic error, and station locations. Whereas the former

two assume real values in the interval [0, 1], the latter assumes discrete positive values,

[0, 1, 2, ...), additionally breaking down into 90 independent, although related, inputs

dimensions. These inputs correspond to a 90-node emergency response network for

possible station locations. For this work, 15 of these 90 possible locations were assigned

to hold emergency stations. Figure 6.3 depicts the spatial distribution of the selected

locations within the city of Porto. Here, darker areas correspond to higher values

of emergency demand. This historical data consists of 35k emergency call records

collected from the Portuguese Institute of Medical Emergencies (INEM) (Gomes et al.,

2004) between 2012 and 2013. Table 6.1 summarizes the locations and the number of

vehicles per station.

On the other hand, the location change probability and the traffic error inputs are

designed to reflect the operating conditions of the EMS somehow, as well as to induce

a degree of variability often present in real-world systems. The former is particularly

useful to emulate the expected stochasticity of the emergency events’ spatial distribu-

tion. High values of probability change mean that the emergency locations present in

the historical data are more likely to change. This introduces unforeseen dynamics in

the spatio-temporal distribution of the emergency events, forcing the simulated EMS

to respond accordingly.
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Figure 6.3: Locations of the 15 emergency vehicle stations in Porto, Portugal. Darker regions

represent higher emergency risk.

With no surprise, the traffic error input relates to the road network conditions,

although it does not directly affect the vehicle’s travel times. Instead, it represents how

traffic errors lead to bad operational decisions when dispatching vehicles. Consider the

scenario where there is no traffic congestion, roadblocks, or any other factor that can

increase travel times. For a given emergency event, the optimal dispatching decision

would be to assign the closest idle vehicle. However, when heavy traffic is present (e.g.,

peak hours), the best dispatching decision is not trivial. Moreover, even with real traffic

information, errors might occur, such as communication delays or data transmission

problems.

The consideration of traffic errors instead of the traffic information itself allows

measuring distances by travel times rather than in length units. In practice, the time

it takes for a vehicle V to arrive at an emergency location E is far more crucial than the

distance between its dispatching station location and E. Especially under severe traffic

conditions, smaller distances do not imply reduced travel times. Therefore, traffic errors

are considered in terms of time units and are taken into account to reflect the intrinsic

dynamics of traffic congestion and other road network conditions, ultimately leading

to more robust dispatching decisions.

Outputs

To evaluate the performance of the underlying EMS, two output metrics are con-

sidered in this simulation model, particularly the response time and survival rate. The

vehicle response time measures how much time it takes for the medical staff to start
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Table 6.1: Stations used and number of emergency vehicles per station.

location 14 17 21 23 29 30 35 7 46 47 48 63 67 86 108

vehicles 2 2 3 2 5 4 2 2 3 4 4 1 4 1 3

assisting the victim. As a single-point quality measure for the entire dispatching opera-

tion, the sum of all emergency events or their corresponding average can be considered.

As for the survival rate, it represents the victims’ likelihood of survival, which will

depend simultaneously on the response times and severity of the emergencies. Again,

the sum or average over all the medical occurrences can be considered to assess the

overall performance of the EMS. In this work, only the survival output is taken into

consideration for modeling purposes.

6.3.2. Results

From a regression point-of-view, a GP is used to model the underlying functional

relationship between the inputs, location change probability and traffic error, and the

output survival rate. Two sets of experiments were considered. Whereas the first

considers only one search value, the second illustrates the methodology for two search

values. In both experiments, we considered the mean of the GP to be a function of

the average of the training set, whereas the covariance was set to the widely known

general-purpose Squared-Exponential with Automatic Relevance Determination (SE-

ARD). We also used the GP implementation available from (Rasmussen and Williams,

2006). All the experiences were conducted in Matlab R2019b on a 2.7 GHz Quad-core

Intel i7 processor with 16GB of RAM.

The goal of our methodology is to efficiently search for regions in the input simula-

tion space that trigger a particular output value, or values, of interest. In the particular

case of the mentioned EMS simulator, the proposed approach tries to identify sets of

values defined within the space defined by the ranges of the probability change and traf-

fic error inputs, [0, 1]⇥ [0, 1], that trigger, via simulation, a user-specified output value

lying in survival rate’s range, [0, 1]. An active learning and metamodeling approach is

adopted, so that exhausting and systematic computer experiments are avoided, thereby

turning the exploration process of the EMS simulator’s input space not only faster but

more efficient.
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As highlighted in Section 6.2.2, the proposed algorithm requires three components

to be defined in advance, namely, sV , trGrid and sGrid. The latter two are shared

across the two sets of experiments. The initial training grid is set as the nine-point

training unit depicted in blue in Figure 6.1(a), whereas the search grid is defined as a

mesh grid of 10,000 unlabeled points uniformly distributed in [0, 1]2. The edges of both

squared grids match those of the input domain being explored. The search values varied

according to the experiment and were arbitrarily set for the sake of demonstration.

Experiment 1

In this experiment, the active learning strategy was applied to identify the input

region that is mostly associated with survival rate values close to 50%. Thus, 0.50 was

set as the search value of interest, i.e., sV = 0.50. The results are summarily depicted

in Figure 6.4 and 6.5.

As the initial training grid is comprised of a set of labeled data points, that is,

input-output tuples resulting from a series of computer experiments, a GP is fitted to

these simulation results. This first approximation, represented by a three-dimensional

surface, can be observed in Figure 6.4(a), and it corresponds to the GP predictions

made over sGrid. The same panel does show not only the surface contours but also the

input points constituting trGrid. Hereafter, using the GP predictions, the algorithm

searches for the best-suited sub-grids (recall the red grids in panel (a) from Figure 6.1)

to advance with the learning process. The best candidates are associated with those GP

predictions whose values are closer to 0.50. This selection requires the computation

of the Euclidean distance between the GP approximation and the plane z = 0.5.

Observing Figure 6.4(b), the sub-grid delimited by [0.0, 0.5]⇥ [0.0, 0.5] was selected as

the best candidate to be added to trGrid for the following iteration. In other words,

this means that it is most likely to contain simulation input values that trigger the

search value 0.50.

The predictive variances related to each GP prediction are then averaged out over

sGrid, and thus APV is computed. Finally, the selected sub-grid is labeled by the sim-

ulator. This is attained by running the simulation model with the input values associ-

ated with the points comprising the selected sub-grid. Naturally, each two-dimensional

data point corresponds to a single simulation run.
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The algorithm proceeds in an iterative manner, alternating between the GP train-

ing/fitting stage, the simulation runs, and the expansion of the training data. Fig-

ures 6.4(d)-(f) show the results from the last three iterations, as well as the final

configuration stages of trGrid. The algorithm was able to detect that the series of

sub-grid defined within [0.0, 1.0] ⇥ [0.625, 0.750] specifically trigger simulation output

values close to 0.50. This input region approximately matches the intersection area

between the plane z and the GP surface. On the other hand, Figures 6.5(a)-(h) show

the sequence of the distances between the search value and surface provided by the GP.

Dark color tones imply small distances. Here we can observe that the search procedure

does not evolve linearly, not at least in the first iterations. As more points are added to

the training grid, the GP reacts with different prediction behaviors until it eventually

stabilizes. The obtained simulation input region of interest is visible in Figure 6.5(h),

here depicted as a dark narrow horizontal band.

The GP’s fitting performance within the input region identified by the algorithm

is supported by the finer grid of training points enclosing it. Note that the sub-grids

gradually added to the training grid get narrower as the process advances. Thus, sGrid

expands towards the input regions of interest defined by sequentially and increasingly

finer grids. This is not only expected but also the ultimate goal of the proposed

methodology. The algorithm stops when the addition of a new training point does

not improve the fitting of the GP, i.e. when APV starts not to vary significantly

from iteration to iteration. Figure 6.5(i) shows the evolution of APV . The algorithm

required 17 iterations to stop.

It is worthwhile to mention that, in this work, the main objective of the GP is

not to serve as the perfect simulation metamodel. Although it should be, of course, a

reasonably good approximation for the underlying simulation model, most importantly,

it should guide the active learning algorithm towards the identification of the most

informative input points with regards to the simulation output search value. These

points, arranged in grids, lead the algorithm in the direction of relevant input regions

while minimizing the computational workload. This ultimately turns the exploration

process of such regions faster, as well as more efficient.
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(a) (b) (c)

(d) (e) (f)

Figure 6.4: Iterative GP surface approximations and associated contour plots with sequential

training grids and sV = 0.50. Panels (a)-(c) and (d)-(f) correspond to iterations 1-3 and

15-17, respectively. The flat horizontal surface is located a z = 0.50 (search value).

Experiment 2

In this experiment, the algorithm was extended to encompass two search values,

namely, sV1 = 0.40 and sV2 = 0.55. Again, these values are arbitrarily set for the

sake of illustration. Figures 6.6 and 6.7 summarize the results. The main goal of this

experiment was to show that the proposed algorithm can be easily adapted to a multi-

directional nature. As expected, the problem gets more challenging as the number of

search values, input domain range, and dimensionality increase.

Following the same strategy, the algorithm starts from the simple nine-point grid

(see Figure 6.6(a)), ending up with a mesh grid of training points, as seen in Fig-

ure 6.6(f). Within this final grid, two series of finer sub-grids clearly stand out from the

rest, in particular the grids defined by [0.0, 1.0]⇥[0.875, 1.0] and [0.0, 1.0]⇥[0.375, 0.50],

corresponding to the input regions that trigger sV1 and sV2, respectively.

In Figure 6.7, panels (a)-(h) show several non-consecutive steps in the evolution of

the distance (or absolute difference) between the GP surface and each of the search

values. Here, notice that, contrary to the input region associated with sV1, which
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.5: Absolute difference between the obtained GP surface approximations and sV =

0.50. Panels (a)-(d) and (e)-(h) correspond to iterations 1-4 and 14-17, respectively. Panel

(i) depicts the evolution of the Average Predicted Variance.
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(a) (b) (c)

(d) (e) (f)

Figure 6.6: Iterative GP surface approximations and associated countour plots with sequential

training grids with sV1 = 0.40 and sV2 = 0.55. Panels (a)-(c) and (d)-(f) correspond to

iterations 1-3 and 27-29, respectively. The flat horizontal surfaces are located a z1 = 0.40 and

z2 = 0.55, representing the two search values.

is highlighted by the dark tone horizontal strip seen in panel (g), the same does not

hold for sV2 (see panel (h)). In terms of distances, we observe that instead of a single

narrow region, a wider band is also visible, roughly defined within [0.0, 1.0]⇥ [0.0, 0.5].

Although the algorithm was able to identify the input region that effectively triggers

the output value of 0.55, it does not pay any particular attention to the surroundings

of that value. Consider the scenario where the GP partially exhibits a near-flat surface

parallel to the search value plane (z2 = 0.55 in this case) and that the distance between

the two is sufficiently low. Here, the algorithm will ignore most of the associated GP

predictions, to the detriment of those near the intersection zone between both surfaces,

despite the closeness to sV2. This is what has occurred in this experiment, and it is

observable, for instance, in Figure 6.6(f). On the other hand, the same did not happen

to sV1 since the GP surface does not present a flat shape parallel to z1 in the vicinity of

this search value, as depicted in the same figure. An improvement to address this kind

of situation should be considered in the future. Figure 6.7(i) shows that this time, the

algorithm took 29 iterations to stop, as well as the expected decrease of APV .
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.7: Absolute difference between the obtained GP surface approximations and the

two search values. Iterations 1-3 are depicted in panels (a)-(c) and (d)-(f), respectively for

sV1 = 0.40 and sV2 = 0.55. Panels (g) and (h) represent the two last iterations for each

corresponding search value. Panel (i) depicts the evolution of the Average Predicted Variance.
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Table 6.2: Averaged performance results from 30 random runs for the two experiments.

Exp Grid sV RMSE MAE RAE RRSE

1
inside

0.50
0.0049 0.0039 0.3658 0.3917

outside 0.0428 0.0360 0.6441 0.6677

2
inside

0.55 0.0033 0.0026 0.5255 0.5603

0.40 0.0054 0.0045 0.3690 0.3805

outside 0.55 & 0.40 0.0302 0.0231 0.5730 0.6451

6.3.3. Validation

In this section, we present the results of a series of computer runs in order to assess

the general predictive performance of the GP-based metamodel within the obtained

final grids. We summarize these results in Table 6.2.

Several error-based metrics were used, namely Root Mean Squared Error (RMSE),

Mean Absolute Error (MAE), and Root Relative Squared Error (RRSE). The reported

average values were obtained from 30 random computer runs and 10 test points.

Each metric was computed by comparing the predictions provided by the GP from

the last iterations against the corresponding simulation outputs. Within each ex-

periment, we compared the GP’s predictive performance inside and outside the ob-

tained training grids. Here, the grids used for validation correspond to the finer grids

that ultimately lead to the identification of the input region of interest, particularly

[0.0, 1.0]⇥[0.625, 0.750], and [0.0, 1.0]⇥[0.375, 0.50][[0.0, 1.0]⇥[0.875, 1.0], respectively

for experiments 1 and 2.

We can see in Table 6.2 that the GP consistently performs better inside each ob-

tained grid as opposed to the outside. As more points are acquired during the active

learning procedure, particularly towards the unknown input regions of interest, the

density of the training grid increases locally. Thus, it is expected that the GP yields

increased predictive performance within the finer obtained grids. This behavior is

particularly highlighted within RMSE and MAE columns.
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6.4. Practical Implications

The proposed method can be used, as stated, to explore the input space that leads

to pre-determined outputs. This process opens doors to a reverse engineering method-

ology, benefiting from existing transport system models, leading to a novel approach

for traffic and mobility planning. As of now, city planners, transport providers, and

researchers build transport system models (or use existing ones) when faced with the

necessity of improving a specific performance indicator of their system. With these

models, they are able to test and assess possible measures, changes, or additions that

may or may not lead to an improvement of the specified indicator. This process requires

the definition of potential scenarios, and their respective analyses within the defined

models, through an interactive process of trial-and-error in which the user continu-

ously fine-tunes them or eventually proposes new ones until they reach a satisfactory

output performance. Such processes of scenario design and planning, which must be

guided by specialized domain knowledge, traditionally require systematic simulation

experimentation and exploration.

With the presented approach and the results obtained herein, there is the possibility

to inverse the process by defining the target output of interest, or even a rough collection

of possible output values or even regions, and explore the respective input domain

that triggers them. This methodology would allow for an efficient and expeditious

analysis of transport system requirements or changes, which would improve the decision

mechanism and would offer a better overview of the possible solutions. Hence, the

proposed approach provides EMS managers and planners a method to identify input

domain regions that most influences target performance of interest. In this case, the

input domain is the location of vehicles and the uncertainty of traffic and demand. This

allows them to quickly identify where to reinforce resources and where, for example,

traffic uncertainty will have a higher impact. In practice, the approach can provide

practitioners with a solution matrix with the station configurations that, for a certain

condition, would improve the target metric such as the survival rate discussed in this

work.

This work was highly motivated by recent early work. In the same context of EMS

and emergency response systems, Amorim et al. (2019a) has proposed an integrated

strategic and tactical planning decision methodology to address the problem of opti-
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mal ambulance location, particularly relying on a GP-based metamodel to mimic the

real-world system state as a complement to a location optimization model. Using such

a metamodel, a local search for feasible and reasonable solutions was employed with

successful results. In most modeling situations, evaluating a single solution might re-

quire several minutes or even hours. Therefore, a metamodel-based simulation was

preferred since it allows a rather fast evaluation of alternative solutions with a minor

and controlled accuracy loss. In this particular setting, the metamodel took the role

of the simulator, effectively proposing a heuristic approach based on simulation meta-

modeling to help to solve the underlying hard optimization problem. On the other

hand, it is worthwhile mentioning that a pre-trained GP was used during the entire

optimization process. Although this heuristic proved to attain good results, we believe

that it can be further improved if active learning is added to the equation. Instead

of using a pre-trained GP, a more dynamic learning approach can be easily adopted

by integrating the three main entities, namely, the simulation model, the optimization

model, and the active learning metamodeling strategy as the link between them. From

the optimization problem perspective, both the simulation model and metamodel are

treated as black-boxes that provide alternative empirical evidence with respect to the

real world since experimenting in the latter can prove to be prohibitively or impracti-

cal. Therefore, active learning can be employed to effectively balance the challenging

trade-off between computational parsimony and accuracy loss. More training points

can be added by request as the optimization process evolves in order to not only steer

the learning towards important input regions but also, and consequently, to increase

the prediction performance of the simulation metamodel.

To the best of our knowledge, the recent works of Amorim et al. (2019a) and An-

tunes et al. (2019) constitute the first applications of simulation metamodeling to an

EMS simulator within a simulation-optimization setting. As of now, most emergency

response studies continue to rely on systematic and exhausting simulation experiments

on a trial-and-error basis. This often poses a considerable hindrance to a fast modeling

and decision-making process. Hence, we are certain that the conjoint use of active

learning and simulation metamodeling represents important complementary tools for

researchers and practitioners in the field.

The obvious burden of this methodology falls on the data acquisition to train the
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metamodel, inevitably requiring the use of the simulation model. This drawback is also

the main motivation for our directional approach, which steers the metamodel training

phases to the most important simulation input regions from a modeling point of view.

The proposed approach will always be dependent on the simulation model itself. The

idea is that we extract as few training points as possible, especially avoiding redun-

dancy, in the most informative way possible. Nevertheless, despite the complexity of

the underlying problem and simulation model, we can eventually bypass the simula-

tion burden of an in-depth exploration of scenarios. Additionally, we are even able to

target specific simulation outcomes to understand the input regions which are directly

responsible for influencing them.

6.5. Conclusions and Future Work

This chapter presents a methodology combining active learning and simulation

metamodeling, which identifies relevant regions within the simulation input space that

specifically triggers an output value previously set by the user. The survival rate out-

come of an EMS simulation model was used as a case study. The results show that

the presented approach can effectively guide the exploration process of the input space

of a simulation model towards specific input regions whose output values are close to

pre-defined search values of interest while minimizing computational workload at the

same time. This makes the exploration process not only faster but also more efficient.

The presented approach can be improved in several directions. The possible corre-

lation between the simulation outputs can prove to be useful to improve the modeling

process. Therefore, a multi-output regression, namely the multi-output GP framework,

will be taken into account in the future. Adopting popular designs for computer exper-

iments, such as the Latin-hypercube, and combining them with the proposed sub-grid

sequence, should further improve the statistical significance of the proposed approach.

Additionally, the grid-based search should also be revisited. The generalization for

more appropriate geometric arrangements, rather than the squared grid, should be

taken into account, depending on the properties of the simulation input space under

analysis, as well as on the particular goals of the metamodeling approach. Ultimately,

we aim to compare the current approach with similar alternative methods, including

different active learning schemes and stopping criteria. We also plan to improve the
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presented method by encompassing the development of heuristics (e.g., local search)

within simulation-optimization approaches, which are commonly used tools in the re-

search field of EMS planning and related decision support systems.
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Chapter 7

Conclusion and Future Work

“Tudo em mim é a tendência para ser a seguir outra coisa; uma impaciência

da alma consigo mesma, como uma criança inoportuna; um desassossego

sempre crescente e sempre igual. Tudo me interessa e nada me prende.

Atendo a tudo sonhando sempre.”

Fernando Pessoa, 1888 - 1935

Simulation modeling is a powerful and, in many cases, the only reliable approach

to address complex and intricate systems that otherwise would not be tractable via

closed-formula analytic methods. It constitutes a well-known and perfectly established

approach to study real-world urban transportation systems or to assess the perfor-

mance of projected ones. Nevertheless, simulation models can become computation-

ally expensive to execute when designed with enough detail and realism, especially

when systematic experimentation is required. Within the transportation community,

many simulation-based studies focused on predicting future states of reality typically

rely on the manual exploration of the simulation model’s behavior to retrieve outputs

that ultimately lead to meaningful insights regarding the underlying real-world system

they are meant to replicate. Scenario planning and what-if approaches are ultimately

employed in an effort to reduce and discretize uncertainty into a finite set of possible fu-

tures. As expected, this kind of exploratory process can prove to be a computationally

exhausting task whenever supported by the analysis of heavy simulation models.

In this thesis, we explored a methodological approach to reduce the computational

hindrances emerging from exhausting and systematic computer-assisted analyses in

the context of transport simulation modeling. Furthermore, we investigated solutions

for automatizing the typical manual workflows, often associated with such exploratory

processes. The presented methodology essentially relies on an integrated approach com-

bining simulation metamodeling and active learning. On the one hand, metamodels are
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employed to approximate the input-output mapping inherently defined by simulation

models and are typically recognized by their functional simplicity and speed, thereby

providing parsimonious alternatives to study the underlying system under study. On

the other hand, active learning is a modeling paradigm that aims to achieve higher

predictive performance with as few training points as possible. This goal is attained

by actively selecting the most informative points which potentially provide the highest

modeling gains.

To the best of our knowledge, despite the advantages of both simulation metamod-

eling and active learning, these techniques have seldom been applied in an integrated

manner within the transport simulation community. In this work, we investigated the

feasibly of such an integrated approach in the context of transport simulation problems.

The results obtained from different experimental settings show the potential of such

kind of approach in minimizing the computational impacts of simulation-based stud-

ies. Moreover, the exploration process is effectively automatized, clearly distinguishing

itself from other more manual-intensive approaches. Nevertheless, this does not mean

that proper supervision is not required. On the contrary, the entire process should

be overseen by expert knowledge to ensure that the obtained results generally follow

the domain-specific premises and expected behaviors. As expected, minor adjustments

might be required, depending on the problem under study and the specific goals the

methodology is aiming at.

Another important aspect to bear in mind across the entire research is the ap-

proximate nature of the resulting simulation metamodels. We should not expect any

metamodel to completely replace the underlying simulation model without, at least, a

minor accuracy loss. Despite the nonlinear and nonparametric modeling properties of

GPs, their generalization capabilities still heavily rely on the data points comprising the

training set and their corresponding spatial neighborhoods. Whenever the exploration

process begins to visit input regions where the similarities between the training points

and the unlabeled ones, measured by the kernel, are difficult to establish, the GP’s

prediction uncertainty increases dramatically. This can be regarded as a limitation but

also as a feature to exploit. Actually, it is not our intent to dismiss the simulation

model entirely after the metamodel is obtained. Instead, our ultimate goal is to deploy

the active learning metamodel along with the simulator itself as a bundled modeling
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framework, as both models play a crucial and complementary role within this inte-

grated approach. While the metamodel aims at reducing the exploratory redundancy

by trying to seek the most informative and distinct input data points, the simulation

model ensures that this exploration process is maintained on the right track.

Besides encompassing a parsimonious auxiliary model that strives to mimic the

simulation model’s behavior, the metamodel is particularly useful to discover or suggest

exploration directions in which the information gains are potentially higher. If we

can avoid redundancy within the training set, we can certainly reduce the number

of noninformative simulation runs, i.e., computer experiments whose results do not

add relevant insights from a modeling perspective. The metamodel should discover

those input regions that it has never “seen” before, thereby extracting the most out

of each simulation run. Differently, the simulation model, by providing ground truth

data on-demand, forces the metamodel to be constantly connected to the underlying

process it aims to approximate, especially within high uncertainty regions, where its

generalization tends to underperform.

Most of the GP’s generalization performance is encapsulated in its kernel, as it is

through this covariance function the similarities between the training points and the

unlabeled ones are computed. During the metamodeling process, fitting a GP to sim-

ulation data encompasses optimizing the kernel’s parameters, typically via likelihood

maximization. As mentioned earlier, whereas the GP may perform outstandingly in-

side the simulation input region designed for training, the same often does not hold

outside it. This limitation shows that, up to a certain extent, the GP essentially tries

to find patterns based on correlations and other statistical properties within the ob-

served data. Whenever predicting outside the training region where spatial similarities

are difficult to find, the GP’s performance drops, as correlations are likewise hard to

establish or virtually nonexistent. Notice that correlations are essentially normalized

covariances.

From the above aforementioned generic conclusions, we reintroduce our scientific

contributions, which could address the research questions and help us attain the goals

initially defined in this thesis. We summarize such contributions in the following.

• The feasibility of active learning metamodeling strategies in transport-related

simulation problems was shown through several experimental settings. We used a
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Demand Responsive Transportation simulator, a Traffic simulator, and an Emer-

gency Medical System simulation model.

• Through the definition of concrete predictive variance-based simulation queries

and stopping criteria, the metamodeling process was automatized. In turn, this

has enabled us to reduce, to a certain degree, the need for manually exhausting

simulation runs, thereby decreasing its associated computational drawbacks and

accelerating the transport simulation analysis.

• We showed the potential of the presented integrated active learning metamodeling

methodology for applications of policy analysis and decision-making processes in

the context of a simulated emergency response system. Also, in a similar setting,

but within a simulation-optimization problem, we showed the applicability of

simulation metamodeling to study strategic and tactical planning solutions via

metamodel-based heuristics.

• The explored methodology provided an opportunity to establish different com-

munication platforms and research collaborations between different areas of ex-

pertise, especially bridging the machine learning and the transport simulation

modeling fields.

The earlier discussed limitations of the GP modeling are not exclusive to this frame-

work but rather a common characteristic of most machine learning approaches. Hence,

if, on the one hand, these kinds of methods, when employed as metamodels, are success-

fully capable of approximate the simulation results with generally good performance,

on the other hand, as correlation does not imply causality, they fail to capture causal

relationships between the variables composing the simulator. Motivated by this idea of

extracting causality (Pearl, 2009) from simulation models, the development of active

learning causal metamodels might constitute an interesting challenge for future work.

These models should be able to outperform the traditional simulation metamodels

solely based on statistical patterns, especially in terms of generalization power outside

the training regions. Additionally, this would also present an opportunity to diverge

from the typical black-box metamodeling approaches to more explainable ones.

Another research direction to be explored in future work is related to developing

active learning metamodeling strategies based on heteroscedastic metamodels. In this
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research, only the homoscedastic variant of the GP framework was used. Here, the

assumption is that the signal variance is constant throughout the input space. Con-

trariwise, heteroscedastic implementations (Le et al., 2005; Kersting et al., 2007; Titsias

and Lázaro-Gredilla, 2011; Wang and Neal, 2012) assume a variable disturbance of the

output data as a function of the input. The assumption of homoscedasticity is fairly

sufficient for most applications. However, in the absence of prior knowledge regarding

the simulation output variance, our approach can be further improved if heteroscedas-

ticity is taken into proper account. As our active learning strategy deeply relies on

using the GP’s predictive variance as a proxy for potential information gains, char-

acterizing the variance as a function of the input space should make the exploration

process more reliable and efficient.

It is worth remembering that no discrete input variables were used as part of the

active learning strategies developed in this research. In discrete spaces, the notion

of a neighborhood, which is crucial in our approach, degenerates completely, posing

new challenges to the sampling process, mainly when both continuous and discrete

are jointly used. In the end, performing exploration within discrete space has clear

resemblances with the standard combinatorial problems. Therefore, the active learning

sampling schemes must be revisited accordingly, constituting a possible line of future

work.

Following the results from Chapter 6, we also would like to explore the idea of

“reversed metamodeling” in the context of active learning. In other words, we would like

to use a metamodel to approximate the output-input mapping rather than the opposite

conventional direction. This approach would enable us to make predictions within the

space of inputs while using the output variables as regressors. For example, given a

pre-defined output region of interest, in which a particular transport policy tends to fail

or perform poorly, active learning could be employed to guide the exploration process

towards those input points that trigger, via simulation, the output values contained in

those regions. Furthermore, the metamodel and the reversed one could be combined in

an integrated active learning loop in which one feeds, or suggests, the other with new

training points, each of which is within their own corresponding input spaces. This

approach can be implemented via multi-output modeling (Alvarez and Lawrence, 2011;

Moreno-Muñoz et al., 2018; Liu et al., 2018). Some of these ideas are, in fact, part of
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ongoing exploratory work.

One last future line of work would be to develop a software package, possibly with a

graphical user interface (GUI), in which the present or similar approaches could be eas-

ily accessible to the average practitioner and simulation modeler. Nevertheless, many

hindrances are likely to be ahead of this plan. As discussed during this research, a

data link between the simulation model and the metamodeling algorithm is constantly

required for active learning to work correctly. Moreover, to ensure smooth commu-

nication between them, both must feed on similar input data structures. Whereas in

most machine learning techniques, the input data is conventionally organized in matrix

structures, where typically each column corresponds to an input variable and each line

to a single observation, the same might not be so straightforward in the case of some

simulators. Depending on the simulation platform, language, or even implementation

design itself, data might be organized in fundamentally different ways. Additionally,

the way the data is stored, either within the simulation implementation via simple

text-based files or externally using dedicated databases, presents another critical detail

to be taken into account from a rather practical point of view. Hence, the idea of devel-

oping a universal software package that works with an arbitrary simulation model is a

very ambitious one. The experience resulting from this research tells us that significant

changes are usually necessary according to the simulator’s implementation nature and

inherent design. A plug-and-play solution might be more feasible if conditional on the

type of simulation model.

Some of these plans will be totally or partially put into practice in the immediate

future as part of the EU-funded NOSTROMO research project mentioned in Chapter 1.

In the context of Air Traffic Management (AMT) simulation analysis, we will have the

opportunity to further explore and improve the presented methodology in the context

of transport-related problems. More complex simulation models will be studied, and

thus many unpredictable challenges are likely to be faced. In any case, despite their

limitations, we are confident that integrated active learning metamodeling methodolo-

gies have their rightful within the transport simulation community and, if employed

wisely and carefully, constitute a robust auxiliary framework that further enhances and

complements the traditional simulation modeling approaches.
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