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Abstract

The growing Music Emotion Recognition research field is evolving accompanied by an
already massive and expanding library of digital music, which raises the need for it to be
segmented and organized. Traditional Machine Learning approaches to identify perceived
emotion in music are based on carefully crafted features that have dominated this field and
brought state of the art results.

Our goal was to approach this field with Deep Learning (DL), as it can skip this expensive
feature design by automatically extracting features. We propose a Deep Learning approach
to the existing static 4QAED dataset, which achieved a state-of-the-art F1-Score of 88.45%.
This model consisted in a hybrid approach with a Dense Neural Network (DNN) and a
Convolutional Neural Network (CNN) for the features and melspectrograms (converted
from audio samples), respectively.

Additionally, different methods of data augmentation were experimented with for the static
MER problem, using a Generative Adversarial Network (GAN) and classical audio augmen-
tation, which improved the overall performance of the model. Other pre-trained models
were also tested (i.e. VGG19 and a CNN trained for music genre recognition). The Music
Emotion Variation Detection field was explored as well, with (Bidirectional) Long Short
Term Memory layers in combination with pre-trained CNN models, as we consider that
the perceived emotion can change throughout the song.

This research gave us a good insight into several distinct deep learning approaches resulting
in a new state-of-the-art result with the 4QAED dataset, in addition to getting to know
the limitations of both datasets.

Keywords

deep learning, audio augmentation, music emotion recognition, music emotion variation
detection
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Resumo

A investigagdo do Reconhecimento da Emog¢ao na Musica (MER) esta evoluir, acompan-
hado por uma biblioteca de musica digital ja4 macica e em continua expansao, o que levanta
a necessidade de ser segmentada e organizada. As abordagens tradicionais de Aprendiza-
gem Computacional para identificar a emogao percebida na musica baseiam-se em features
cuidadosamente trabalhadas que dominam este campo e sao acompanhadas de resultados
de estado da arte. O nosso objectivo foi abordar este campo com Aprendizagem Profunda,
uma vez que pode saltar o dispendioso processo de criacao de features, extraindo automati-
camente as features. Propomos uma abordagem de Aprendizagem Profunda com a base de
dados estatica - 4QAED - ja existente, que alcangou um F1-Score de 88,45%, superior ao
estado da arte. Este modelo consistiu numa abordagem hibrida, com uma Dense Neural
Network (DNN) e uma Convolutional Neural Network (CNN), para as features e mel-
spectrogramas (convertidos a partir de amostras de audio), respectivamente. Além disso,
foram experimentados diferentes métodos de aumento de dados para o problema de MER
estatico, utilizando uma Generative Adversarial Network (GAN) e estratégias classicas de
modificagao de dudio, o que melhorou o desempenho global do modelo. Outros modelos
pré-treinados foram também testados (ou seja, VGG19 e uma CNN treinada para o re-
conhecimento do género musical). O campo de Detec¢ao da Variagdo da Emogao Musical
(MEVD) também foi explorado, com camadas de (Bidireccional) Long Short Term Memory
em combinagao com modelos CNN pré-treinados, considerando que a emogao percebida
pode mudar ao longo de uma misica. Esta investigacao deu-nos uma visao aprofundada
de varias abordagens distintas de Aprendizagem Profunda, contribuindo com num novo
resultado de ponta com o conjunto de dados 4QAED, para além de conhecer as limitagoes
de ambos os conjuntos de dados.

Palavras-Chave

aprendizagem profunda, aumento de dados de audio, reconhecimento de emocao na misica,
reconhecimento da variagao da emog¢ao na misica
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Chapter 1

Introduction

Never before has music played such a persistent role in our day to day life. The technological
evolution within the mobile devices powered the presence of music in our daily routine and
this digital era provided a way for music to be stored and consumed like never before.

Music Information Retrieval (MIR) came as a need to compartmentalize the growing library
of digital music and provide more advanced, flexible and user-friendly search mechanisms,
adapted to the requirements of individual users. In recent years, with the introduction of
streaming services, this already massive database of songs registered a significant growth
as technology enabled more artists to publish their work to a larger audience. For example,
Spotify, the major audio streaming platform at the moment, registered 40 thousand songs
being uploaded daily and, as of 2018, 140 million daily active users [2|. This ever growing
database propels the attention given to this research field, as its use is immense, from
playing or queuing a song based on the mood of the user for entertainment purposes or
even from a health standpoint [3].

Music in general has the capability to trigger a memory buried deep in our brain and bring
out the most overwhelming and powerful emotions. This is, for many artists, the core
intent of producing this form of art. Emotion is for many of them the integral part of a
song, the reason behind it. For that reason, it only makes sense to be able to distinguish
and categorize music in that way, enabling users to select what to hear based on the feeling
that it tries to convey.

There is no agreement among music psychology researchers on a standard approach or
definition for emotion in music. It can be said that Music Emotion Recognition (MER)
is a growing and exciting new field with a very difficult task and part of this is due to
not being able to exactly pinpoint the components that affect the emotional part of it.
MER focuses on the emotion present in the song itself, what is perceived, independent of
the listeners mood, in other words, it stays as objective as possible by analyzing the song
itself, on what it is trying to convey to the listener rather on what the listener feels when
listening to it (see Section 2.1).

In music, one key aspect that can set apart a song is its evolution as time progresses. It is
not uncommon for a song to change its emotional content after some time and the emotion
it conveys varies, for example: with a sudden or progressive change of pace, a breakdown,
a key change or an emerging solo. Music Emotion Variation Detection (MEVD) tackles
this issue by, instead of targeting an average perceived emotion across an excerpt or a full
song, recognizing that some dependency between time and musical information exists.
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1.1 Problem and Motivation

MER has a wide range of uses, for example: it can be applied in the daily use of music
recommendation systems, in the advertising and movie industries, and in the improvement
of our well-being in humans as it can be also linked to health purposes [4] (e.g. psychological
monitoring [5]).

In recent times, both studies on static MER and MEVD converged to an analysis through
Deep Learning (DL) models, although many researchers still strive to improve and in-
vestigate relations between emotion tags and acoustic features. Aligned with the current
research trends, our aim is to explore multiple DL approaches and to evaluate them on the
existing 4QAED dataset [1]. This is a quality dataset (in terms of its diversity of styles,
genres and care of annotation), despite being somewhat small for DL experiments.

Currently, MER faces two main research problems: static MER and MEVD. Static MER
is focused on the classification of short audio clips (i.e. 30 seconds) with an uniform
and unique emotion tag. On the other hand, MEVD addresses the problem of detecting
emotion variation typically in complete songs, finding segments with uniform emotion and
automatically classifying each of them.

MEVD is not as well studied as the static MER research field, having some key problems
such as the absence of large quality datasets. It requires much more time detecting and
labeling continuous changes in a song maintaining a high quality level, as quantity seems
to prevail in this field.

The use of DL in this research field is being rapidly adopted as traditional Machine Learning
(ML) supports itself on feature extraction, which is an expensive and difficult process
with certain levels of uncertainty of whether the extracted features are related to musical
emotions. The trend to use this popular method is present in the majority of research
fields after its massive success in Computer Vision and MER is no stranger to it. In 2010,
at the ISMIR conference, there were only two deep learning models present; six years later
this number grew to sixteen and is fair to say that the role of DL is of high regard in MER
and MIR [6].

As previously stated, it is very hard to design and compute features to retrieve some
information from music although, as seen in Chapter 2, a huge effort is being put into it
and the results are there to prove it. We can use DL in our advantage by automatically
retrieving features from music itself, skipping the high effort process of feature design.
This is our main objective, to build upon already existing extensive work with the intent
to outperform classical ML models.

Another important issue with MER is the copyright restrictions as the datasets that use
copyrighted music can not be passed along to other researchers that easily. The annotation
process tends to fall on the researchers and it is a very time consuming and burdensome
task. Later in the document we will show that the somewhat large databases also have their
disadvantages (see Section 2.2), as they normally result from a combination of unofficial
online annotations and tags.

1.2 Objectives and Approaches

With the initial plan and various progresses through the first and second semesters, our
goal became clearer and these are the proposed objectives (see Table 1.1), ranked based on
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their priority - High, Medium or Low, with regard to their importance and contribution,
given the existing time constraints.

Table 1.1: Objectives for the second semester

‘ Objective ‘ Priority ‘
‘ Static MER - Evaluate existing and new DL approaches against existing traditional ML models in controlled datasets ‘ High ‘
‘ Static MER -Transfer Learning with State of the Art (SOA) MIR models (i.e. genre) ‘ Medium ‘
‘ MEVD - Dynamic Database creation ‘ Low ‘
‘ Static MER - Continuous AV (using 4QEAD tags) traditional ML and DL approach ‘ High ‘
‘ MEVD - Evaluate existing and new DL approaches against SOA models in controlled datasets ‘ High ‘
‘ MEVD - GAN model for Dataset Augmentation ‘ Medium ‘
‘ Static MER - End to End Raw Audio Approaches ‘ Low ‘

The main purpose with this study, as explained before, was to exploit several different DL
approaches on the employed dataset (Section 3.1.1), as a quality reference, with structures
such as CNNs and LSTMs, being the static analysis the primary focus. We also explored
a hybrid solution, therefore including both carefully extracted features used in traditional
ML (Section 2.4.1) and features extracted from the CNN models. As stated in the following
Section 2.1, we will be using the Russell emotion taxonomy, as it allows for the use of both
discrete (4 quadrants) and continuous (Arousal and Valence values) models. Regarding
MEVD, a 29-song dataset previously used (Section 4.1), annotated along the entire length
of the song, will be used with models such as CNNs and RNNs, more precisely LSTMs.
In addition, a comparable study will be made in order to evaluate the contribution of
augmented data with Generative Adversarial Network (GAN) models as well as classical
audio augmentation (e.g. pitch shifting, time stretching).

Note that the previously established priorities suffered some changes with the evolution
of the project: the transfer learning, did no perform as well as we hoped and not many
authors made their models publicly available in order for us to experiment with them; the
database creation proved to be much more complex and time consuming than expected
and our focus shifted towards the GAN approach and different DL, models for the static
MER dataset.

Overall, the goal was to assess if a DL approach provides the same or a better result and get
a sense of its advantages as well as its disadvantages over the traditional ML approaches,
given their heavy computation and difficulty, in specific to the 4QAED dataset (Section
3.1.1).

1.3 Results, Contributions and Limitations of the thesis

The key results to retrieve from this thesis are:

e an F1-Score of 88.45%, which is above the current state-of-the-art approach for this
dataset;

e the same F1-Score and accuracy results as the state-of-the-art for the MEVD problem
on the current dataset, which will be a primary focus in future work;

e improved F1-Score with audio augmentation and transfer learning (i.e. VGG19)
approaches.

The essential contributions to come out of this project are:
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e the analysis of the impact of several different architectures for the static MER and
MEVD fields;

e a proposal of a DL solution which outperformed the state-of-the-art classical ML
approach;

e the analysis of the impact of data augmentation on a small quality dataset regarding
the static MER field.

The limitations encountered through out the project:

e a reduced amount of samples for the static MER and MEVD datasets which, as
referenced in Chapter 5, are currently being expanded and will be explored in the
future.

1.4 Outline

The following Chapter 2 presents a review of the state-of-the-art approaches to MER and
MEVD. The different emotion taxonomies are described in Section 2.1 in addition to a
critical review of the existing datasets in Section 2.2. Recent and significant progresses
with respect to MER, from classical ML to DL approaches are also exposed, in both static
(Section 2.4) and dynamic datasets (Section 2.5).

A summary of the performed experiments regarding the static MER problem are present
in Chapter 3, accompanied by an introduction to the used datasets (Section 3.1), as well
as a critical analysis of the results (Section 3.3). The same is done for the MEVD problem
in the following Chapter 4.

An overall conclusion and future work guidelines are given in Chapter 5.

1.5 Organization, Resources and Planning

The purpose of this section is to: showcase the progress over time and the distribution of
the time invested in each task. An high level analysis is given regarding the deviations
from the expected plan, followed by the team description and an overview of the computing
resources available to carry out this project.

1.5.1 Planning

The following figures represent the expected plan and the real effort put into each task
over the first semester - Fig 1.1 - and over the second semester - Fig 1.2.

First Semester

The first 8 weeks of the semester were set exclusively to deal with the literature review,
to educate myself and gather the core information from an extensive research in order to
create a comprehensive SOA. The rest of the semester was dedicated to getting familiar
with the existing MER dataset, assessing established models, experimenting with basic
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DL models and transfer learning with the aim to build a strong theoretical and practical
baseline.

Given some initial difficulty getting into the DL approaches in MER, and having already
invested some time into researching the traditional ML aspect of the SOA, most of the
time was invested in experimenting. This effort was made as a way to get a better grasp
on the practical side of the project. This explains the shift of the initial plan regarding the
last weeks of October.

Regarding the extended period with the DL approaches, it involved a greater amount of
time than I expected and some misjudgment from my part when it came to the transfer
learning model. Also, key errors on creating initial CNNs models took a significant toll on
the expected plan.

Revisiting and complementing the SOA became, therefore, a necessity and a consequently
easier task given the familiarity with the different ML and DL models used.

It is important to address that some weeks, primarily the sixth, seventh, thirteenth and
fourteenth, were heavily affected by other side projects from the remaining classes, which
were not expected.

Second Semester

The decision to extend the final deadline was the culmination of a couple of factors. One
of them being the several inconsistencies with the server used for the experiments (Section
1.5.3), which delayed the project significantly. The other major factor was the opportunity
to dive deeper into different approaches (i.e. GAN model for dataset augmentation, audio
augmentation, separate voice from audio), which, given the exploratory nature of the
project, made the most sense.

The end-to-end task did not worth the time, as early experiments demonstrated a poor
performance. On the other hand, transfer learning had very interesting results so a larger
chunk of time was given to it and given the lack of public models, a late strive was made.
The GAN expected time period (1 week) gives a good example on how far from reality (5
weeks) the estimated time for some tasks was, as does the expected time period for the
DL approaches to the 4QAED dataset.

Additionally, it is important to bear in mind that the added time period made it possible
to experiment with models that achieved the best results, because the gained experience
posed as a huge advantage, being able to improve on early designed models and strategies.

Overall, it can be said that the effort required to perform all experiments was extremely
underestimated, as seen in the plan (see Figure 1.2).
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1st Semester

Real
Expected
WBS
NUMBER TASKTITLE

1 1st Semester
11 State of the Art

Traditional ML approach
111

Deep Learning Approaches
1.1.2

MEVD
1.1.3

SOTA document
1.1.4
1.2 Initial Experiments

Traditional ML approaches
1.2.1

Deep Learning on Selected Features
1.2.2

Transfer Learning with MIR networks
1.2.3

CNN on 4QAED dataset
1.2.4
13 1st Semester Report

Assemble document
131

Review and corrections
132

February

November

December
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1.5.2 Team

The team responsible for this project is composed by 4 elements:

e Pedro Sa is an MSc student from the University of Coimbra, where he concluded his
Bachelor’s degree in Computer Engineering and is currently pursuing a MSc degree
in Intelligent Systems with interest in Music Emotion Recognition.

e Renato Panda as the thesis co-advisor, is a PhD from the University of Coimbra,
where he also concluded his Master and Bachelor degrees. He currently is an Auxil-
iary Researcher at the Smart Cities Research Center, from the Polytechnic Institute
of Tomar. He is a member of the Cognitive and Media Systems group at the Cen-
ter for Informatics and Systems of the University of Coimbra (CISUC). His main
research interests are related with Music Emotion Recognition (MER) and Music
Information Retrieval (MIR).

e Ricardo Malheiro is a PhD from the University of Coimbra, where he also con-
cluded his Master and Bachelor degrees, respectively in Informatics Engineering and
Mathematics. He is a former Professor at Miguel Torga Higher Institute, Coimbra.
He is also a member of the CMS research group at CISUC. His main research in-
terests are in the areas of Natural Language Processing, Detection of Emotions in
Music Lyrics and Text and Text/Data Mining.

e Rui Pedro Paiva as the main thesis advisor, is a Professor at the Department
of Informatics Engineering of the University of Coimbra, where he concluded his
Doctoral, Master and Bachelor degrees in 2007, 1999 and 1996, respectively. He
is also a member of the CMS group at CISUC. His main research interests are in
the areas of MIR and Health Informatics. The common research hat is the study of
feature engineering, machine learning and signal processing to the analysis of musical
and bio signals.

1.5.3 Server and Environment

All models were trained and tested in the server shared by the team that has:

e Intel Xeon Silver 4214 CPU @ 2.20GHz x 48
e 3 x NVIDIA Quadro P500 16GB

All models ran exclusively on the GPUs (Graphics Processing Unit) which saved a great
amount of time as compared to the CPU performance. The primary language used was
Python. With the main libraries being tensorflow, keras and scikit-learn and Matlab was
also used, especially when dealing with large matrices and operations regarding them in
order to save time (i.e. getting the average and covariance matrix for the GAN input) and
to perform the statistical tests on the results.

It is important to note that, although very capable, the server is not always entirely
available. The CUDA (Compute Unified Device Architecture) library was utilized to take
advantage of the GPUs but it does not always know how to properly streamline the process.
In other words, we have to manually dictate which and how many GPUs we will use and
during the training process (which some of the tests took up to a few days) they remain
‘locked’ and unusable by any other user. This obviously can present itself as a big issue as
sometimes there are no GPUs available and some training processes even got corrupted.
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State of the Art

This section serves as a literature review from a critical standpoint referencing the land-
marks and significant research in the field.

2.1 Emotion models

As stated by Kleinginna et al. [7]: "Emotion is a complex set of interactions among sub-
jective and objective factors, mediated by neural/hormonal systems, which can give rise
to affective experiences such as feelings of arousal, pleasure/displeasure; generate cogni-
tive processes such as perceptually relevant effects, appraisals, labeling processes; activate
widespread physiological adjustments to the arousing conditions; and lead to behavior that
is often, but not always, expressive, goal-oriented, and adaptive”. This definition is a re-
sult of 92 compiled and analyzed ones, being it such an ambiguous topic. A more broad
perspective, as the Merriam-Webster dictionary describes it: "a conscious mental reaction
subjectively experienced as a strong feeling usually directed towards a specific object and
typically accompanied by physiological and behavioral changes in the body".

Overall, emotions can be seen in three major categories: perceived, induced and ex-
pressed. We tackle this problem focusing ourselves in the perceived form as it is what
is present in the song itself. Induced emotion is the emotion felt by the listener which is
highly subjective, depending on his state of mind. Bear in mind that this is not a straight-
forward topic as one artist can try to convey a certain emotion (expressed emotion) such
as sadness and the song might come out as calm and serene (perceived emotion) possibly
inducing the listener to a state of happiness (induced emotion) [8].

Therefore, it is very important for the listener to be able to make this assessment. In other
words, be capable of distinguishing his emotional response to the music (induced emotion)
from the presence of emotional content in the music (perceived emotion) as it is a separate
perceptual-cognitive process [9].

As exposed before, there is no real standard model to evaluate emotion in music as there
is no consensus in the psychology field. There is no uniform agreement on how many
categories should be considered or even if it should be discrete or continuous [10]. Even
when discussing simple terms such as emotion, mood or affect, there is no unanimous
agreement [9].

We can summarize the existing models as discrete (categorical) and dimensional (contin-
uous).
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2.1.1 Discrete

In 1992, Ekman et al. stated that an emotion could be expressed by a limited amount
of basic emotions as a discrete basic model composed of labels like anger, sadness and
happiness [11], arguing that every emotion is perceived by an independent neural system.
This model soon failed to be supported in MER, as it was also based on facial expressions.

A standout model was presented in Scherer et al. [12]: the nine-factor Geneva Emotion
Music Scale - GEMS. This resulted from several studies and in the experiments it outper-
formed the existing discrete and dimensional models. However, this can be refuted as they
support its performance on classical music only [13] and were focused on induced emotions.

Hevner’s model [14] consists of eight clusters of adjectives, having a close meaning, layed
out in a circular form with their distance apart addressing their similarity. This conclu-
sions came from an experiment, involving, for the most part, classical music which poses
as an issue not being diverse. Constructing this clusters restricts the entire universe of
emotions to this eighth categories, and from a semantic standpoint, it is possible to not
fully understanding its separation as some emotions tend to overlap (i.e. joyous, playful).

7
exhilarated

8l soaring 6

vigorous triumphant merry

robust dramatic joyous

emphatic passionate gay

martial sensational happy
1 ponderous agitated cheerful 5
spiritual majestic exciting bright humorous
lofty exalting impetuous playful
awe-inspiring restless whimsical
dignified fanciful
sacred 2 4 quaint
solemn sober pathetic lyrical sprightly
serious doleful leisurely delicate

sad satisfying light

mournful 3 serene graceful

tragic dreamy tranquil

melancholy yielding quiet

frustrated tender soothing

depressing sentimental

gloomy longing

heavy yearning

dark pleading

plaintive

Figure 2.1: Hevner’s emotion clusters

2.1.2 Dimensional

A dimensional approach can be preferred to a discrete one, as the later brings out ambi-
guities in the annotators interpretation of the discrete values. Many authors claim that a
higher amount of annotators reduces the subjectivity in the annotation, however it can not
reflect the proximity or disparity between discrete categories, as one cannot truly quantify
it.

Russell [15][16] affirms that our emotion perception can be divided into two neurophysi-
ological responses: arousal and valence, dividing the plan into 4 major quadrants (Fig.
2.2b). In cross-cultural emotion recognition, due to the difficulty of using equivalent emo-
tion adjectives in all languages, less categories (i.e. quadrants) are more consistent [17].

Another important point is that, arousal can be related to tempo (fast/slow), pitch (high/low),
loudness level (high /low), and timbre (bright /soft), valence is related to mode (major /minor)
and harmony (consonant/dissonant) [9] and this is the main reason why, from a MER point

of view, the arousal detection capability is by the most part, superior given it is based on
pace and power. Using this same model, Meyers [19] divides the Russell circumplex plane

10
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(a) Russell model and quadrants

Figure 2.2: Russell model quadrants

into 8 equal slices with the distinct tags: arousal, excitement, pleasure, relaxation, sleepi-
ness, depression, displeasure and distress (see Figure 2.3).

Displeasure - Pleasure

Depression

Sleepiness

Figure 2.3: Russell model with 8 categories (adapted from [19)])

Thayer [20] and Vieillard et al. [21] also propose a multidimensional approach having
their primary dimensions as energetic arousal, tension arousal and energy and tension,
respectively.

As of today, the major model and the one that gained more supporters is the one that this
study focuses on, the Russell AV (Arousal/Valence) model, as it offers a higher consistency
[13]. This model will be tackled from a continuous and discrete point of view, as we have
two dimensions that can be separated into 4 separate quadrants.

It is pertinent to mention the difficulty that researchers face as so many different authors
follow divergent emotion models that makes a comparison a somewhat complex task to
perform, which is aggravated in the databases that each supports and uses (See Section
2.2).

11
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2.2 Music Emotion Databases

Hugq et al. [4] state that dataset quality is comprised by 3 factors: the number of ratings
per clip, the number of clips in the dataset and the setting in which the data is collected.
To these quality criteria we could add others, such as dataset balanced, coverage, diversity
and annotator agreement rate.

It is also very important to address how the clip is classified and the criteria for class
agreement, as being humanly annotated brings out discrepancies. Collecting data in this
manner is a time-consuming and labor-intensive process, which limits the feasibility of
growing the number of tracks and reflects our decision to emphasize quality over quantity
when creating the dataset. This is opposed to huge datasets that generally focus on quan-
tity over quality, being that the result of a narrow selection of music clips, small number
of annotators or their low confidence and lack of music background. A so called artificial
approach when creating a new dataset is the attempt to select music clips for particular
emotions, manually selecting this or that clip for the perceived emotion in contains. This
can be supported or refuted by many authors and has its advantages: being able to get a
strong representation for each targeted emotion with the hope to extract strong features
unique/related to them; and its disadvantages: not being a true representation of a real
world scenario.

Several researchers opt to create a very focused dataset, for instance a creation of a Turkish
only dataset or involving only one genre such as K-Pop. However, since the purpose of
MER is to facilitate music retrieval and management in everyday music listening, analyzing
the emotional content of popular everyday music is our main focus with this project. One
key aspect to keep in mind is that a significant portion of the datasets used are labeled
with tags that are not focused in emotions as it can portray a certain genre or other key
aspect perceived by the annotator as it is a free choice (i.e. energetic, calm, exciting).

The following table encapsulates the primary aspects of these datasets and a more thorough
analysis is made after.

12
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Table 2.1: Databases Overview

Name Approach | Features/Data Duration Emotion Tax- | Size Possible limitations
onomy

DEAM Dynamic/ Sound Signal, Meta- | 45 seconds song ex- | AV values 1802 clips Random starting points, 45 seconds

Static data (Artist, Song | cerpts and 0.5 sec- may be to large for one emotion, low
name, Duration and | onds agreement rate.
Genre)

Million Static Sound Signal (major- | 30 seconds song ex- | Tags (freely | 1000000 Unreliable annotation quality, combi-

Song ity), Extracted Fea- | cerpts written) clips nation of diferent datasets

Dataset tures (i.e. tempo, en-

ergy, key), Metadata

(Artist, Song name,

Lyrics, Genre, ...)

CALb’00exp | Dynamic Sound Signal 3 and 16 seconds | 67 Tags 500  songs | Based on 67 tags from the previous
clips (divided CAL500 dataset

into 3 and
16  seconds
clips)

Soundtrack | Static Sound Signal 15 seconds clips 7 emotion tags | 360 clips Clips were retrived from 110 films,
and bipolar the size is not desirable for the low
values for va- diversity
lence, energetic
arousal and
tense arousal

Bi-Modal Static Sound Signal, Lyrics | 20 seconds clips 4 AV quadrants | 163 clips Although carefully picked and fil-

tered, it has a small size

4QEAD Static Sound Signal, Meta- | 30 seconds clips 4 AV quadrants | 900 clips Random clips in song

data (Genre, original
emotion tags and re-
spective AV values)

1000 Songs | Dynamic/ | Sound Signal, Ex- | 45 seconds clips | AV values 1000 clips Dynamic annotations to concen-

for EAM Static tracted Features (i.e. | (divided into 0.4 trated on the center of Russell’s AV

MFCC, Timbre Fea-

tures)

seconds segments
annotations)

model

11y 93} JO 93®lS
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The DEAM! dataset consists of 2013 to 2015 ‘Emotion in Music at the MediaEval Multi-
media Evaluation Campaign’ datasets, to evaluate the models performance. It is composed
of 1802 clips with both static 45 seconds annotations and dynamic ones, converted to a
rate of 2Hz (labeled each 0.5 seconds). The emotion model used for annotations is the
continuous numerical values representation of Russell’s AV (Arousal/Valence) [16] model.
The 45 seconds excerpts are all re-encoded to have the same sampling frequency (44100
Hz) and are extracted from random starting points in a given song. This raises a poten-
tial issue as, for example, selecting the intro of a song that can be complete silence. The
averaged annotations and their respective standard deviations are provided so that one
can have an idea on the margin of error. As stated by Vale et al. [8] 45 seconds is too
long for static annotations as longer samples tend to not encapsulate a single emotion.
The dataset’s mean of the agreement rate is 0.47 which shows that most songs had prob-
lems with disagreement between annotators. The annotations in question were a result of
crowdsourcing using Amazon Mechanical Turk. The authors state that a procedure was
developed to filter out poor quality workers but the agreement rate, as pointed out by Vale
et al. [8], is not the best representation of that. Therefore it is recommended a sample
selection based on the agreement rate prior to its utilization.

A known database in MIR is the Million Song dataset?, with nearly a million song entries
is the largest database in MIR and its main goal is to encourage research on MIR solutions.
It is a collection of audio features and metadata but the majority of the audio files can also
be retrieved as it is a cluster of complementary datasets contributed by the community.
Annotations are therefore retrieved from tags assigned by a large community of music
listeners as an option, instead of professionals or even listeners educated to do so. This
can raise an important problem as common listeners do not take their time to form a well
thought out response. This is why many researchers tend to to follow the AllMusic tags
instead, being them made by experts [1].

CAL500exp? is an enriched version of the CAL500% dataset, as it segments the original
music clips into 3 to 16 seconds, This was done based on a audio-based segmentation that
allowed to identify acoustically homogeneous segments by clustering them in order to se-
lect representative segments for annotation, making the connection between tags and music
better-defined. They also recruited eleven annotators with strong musical backgrounds for
better annotation quality [22]. The final dataset uses 67 of the original CAL500 labels in-
stead of offering the option to users to freely create a tag which inevitably adds consistency
however, it makes it dependent on the previous dataset limiting the annotators options.

The Soundtrack database® (used by Er et al. [23]) is composed of 110, 15 seconds clips,
extracted from 60 movie soundtracks from 1958 to 2006. These excerpts were annotated
in a listening experiment by 116 non-musicians but the segments were handpicked by
experts with the intention to represent discrete emotions such as happiness, sadness, fear,
anger, surprise and tenderness and 3 categories defined by valence, energetic arousal, tense
arousal. Attention was given so that no lyrics or sound effects are present. The original
360 clips suffered a selection process and 110 clips were chosen. Although being non-expert
students, the experiment itself was very controlled with each subject rating clips from 1
to 7 in terms of discrete emotions, as well as using a bipolar scale for the dimension ones
(valence, energetic arousal, tense arousal). All the volunteers were subjected to similar

"http://cvml.unige.ch/databases/DEAM/,

’https://labrosa.ee.columbia.edu/millionsong/,

*http://slam.iis.sinica.edu.tw/demo/CAL500exp/,

“http://calabl.ucsd.edu/~datasets/cal500/,

Shttps://www.jyu.fi/hytk/fi/laitokset/mutku/en/research/projects2/past-projects/coe/
materials/emotion/soundtracks/Index,
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conditions, using studio quality headphones in a soundproof room. The two issues with
this dataset are its small size however, it is the result of a very thought out experiment,
and the fact that is from movie soundtracks can be refuted as not diverse enough.

Also in [24] the Bi-Modal® dataset was used, being this a combination of lyrical and audio
information. It was used only for its audio and the associated labels. A total of 200 clips,
20 seconds each, were in the initial dataset from a variety of genres which were annotated
by 39 individuals. The perceived emotion was captured by assigning values from -4 to 4
to both valence and arousal dimensions and converted to the 4 quadrants from the Russell
Model [16]. The final values were the mean of all subjects and the clips with higher standard
deviation were discarded as well as kept in mind the agreement between the annotators.
The final product consists of 133 audio clips. As the previous dataset, its main problem is
its small size.

The 4QEAD (4 Quadrant Emotion Analysis Dataset) [1] is a 900 30 seconds clips, each from
a specific song. The used emotion taxonomy was the aforementioned Russell AV quadrants
[16]. The clips were retrieved from the AllMusic platform as well as their mood tags , which
were then mapped to their quadrants according to Warriner’s adjectives list that contains
a value for arousal and valence for each 200 out of the 289 AllMusic claimed emotion tags.
This dataset also contains its metadata (i.e. genre, emotion tags as well as its AV values).
A similar approach was taken later in this project from a continuous emotion problem
standpoint (see Section 3.2.2). After some filtering 2200 song clips were achieved after the
quadrants and the genres in those quadrants were balanced. In the pursuit for a better
quality dataset, a blind check was applied and all clips with poor quality and unmatched
AllMusic annotations were discarded, resulting in a 900 clip dataset. The dimension of
this dataset is somewhat small. However, it went through a significant filtering stage given
the semi-automatic process behind its retrieval. One possible issue is the lack of knowledge
from the AllMusic platform, as it is not stated how the 30 seconds clip is chosen.

The 1000 Songs for Emotional Analysis of Music 7 consists of 1000 clips both static and
dynamically annotated by over 10 subjects. The annotations follow Russell’s AV model
with continuous values. The clips are continuously labeled and the annotations are ex-
tracted with a 2 Hz rate. A strong filtering phase was employed, as potential participants
were tested for their capability perceiving the emotion present in the song as well as the
genre, arousal variation in a test set and even a demographic background was considered.
All of this was taken into account and annotations from low confidence annotators were
discarded. Two possible issues are the distribution of the dynamic annotations given that
a significant part is concentrated on the center of Russell’s model and the annotations
were made using the aforementioned Amazon Mechanical Turk platform. Nevertheless,
this dataset was tested heavily in the paper [25] and is used by Du et al. [26] having some
promising results.

2.3 Deep Learning Explained

The purpose of this section is to introduce basic elements of Deep Learning that will be
discussed later on.

Shttp://mir.dei.uc.pt/downloads.html,
7h‘l'.tps ://dl.acm.org/doi/10.1145/2506364.2506365,
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2.3.1 Basic concept

A deep neural network is essentially a set of various layers of neurons that mathematically
transform data. After a training phase, it can transform a group of inputs into the desirable
output learning the relationships between them. We can divide a network in input, hidden
and output layers, each composed of neurons (See Figure 2.4).

Figure 2.4: Simple Fully Connected Neural Network structure

These neurons or nodes (also referred as perceptrons) are basically a mathematical function
analogous to a biological neuron. Its value is usually a weighted sum of the input followed
by an activation function (See Figure 2.5). Each input value has its weight (trainable
parameter) and the neuron has its bias. The result of this weighted sum is fed to an
activation function (i.e. step function in the Figure 2.5).

X1
W

X1 W2
— < [1, if Y wx+b20

ixi flx)= m
M i=1[wux|]+blas __> (x) N ifz esbed y
x
w
: )
Summation
Inputs  Weights and Bias Activation QOutput

Figure 2.5: Neuron basic structure®

An essential part of any neural network is the loss and optimization methods used in order
for the model to adapt to the data. The loss function measures the quality of the prediction
compared to the actual true class, in this case, the quadrant label. Being a categorical
problem (assigning a category, a label), we used the categorical cross entropy function as
it measures how distinguishable the two probabilities distributions are (see Figure 2.6).

The model learns by calculating the gradient of the loss at every parameter. The opti-
mization method (or optimizer) minimizes that loss by updating the weights of each layer,
working from the end of the model to the beginning, increasing the value for the correct
output node (corresponding to the correct label) and decreasing it for the incorrect output

8from https://www.javatpoint.com/single-layer-perceptron-in-tensorflow
from https://peltarion.com/knowledge-center/
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Figure 2.6: Categorical cross entropy loss function®

nodes. This process is known as backpropagation. It can be implemented with different
types of optimizers which follow the same overall rule, following the gradient. After a batch
(number of samples of training samples) goes through the network, the overall average loss
and derivative with respect to the weights are calculated and the weights are updated.
This update depends on the learning rate, in other words, the step size the model takes
along the gradient in search for the minimum loss possible.

The chosen optimizers were the SGD (Stochastic Gradient Descent) and the Adam (Adap-
tive Momentum Estimation). Note that when referring to SGD, the process is what is
known as Mini-Batch Gradient Descent. After a batch of samples are processed by the
network, its weights are updated at a constant learning rate following the gradient at each
neuron. Batch size is a hyperparameter that can and will be explored, such as learning
rate and epochs (number of times the network cycles through the all training data). Adam
implements an adaptive learning rate for each parameter based on previous gradients, as
well as adaptive momentum, which helps the model not get stuck to a local minimum by
adding to its learning rate based on previous gradient changes [27]. Adam is the most
popular optimizer, as it deals well with large scale and complex models [28] but it can
tend to not perform as well as other in the test data as, especially in our case, it overfitted
most models as it just tends to ignore the initialized weights and adopts a very large initial
learning rate adapting too well to the training dataset.

An activation function is applied to the output of the neuron in order to introduce non
linear properties to the network. The explored function is the ReLU (Rectified Linear Unit)
activation function (see Figure 2.8a). The one used in the last layer, the output layer, is
the Softmax activation (see Figure 2.8b) function (usually used in the output layer) as it
maps the probability for each possible output. The one with an higher probability is then
chosen as the output class.

() = (0 Output Softmax i
flu) = max(lu) layer activation function Probabilities

1 1.3 0.02

o ) 5.1 ezi 0.90

2.2 |— »|0.05

S e 0.01
B 0.7 j=1 .

1.1 0.02
(a) ReLU activation function (b) Softmax activation function

Figure 2.7: ReLU and softmax activation functions

The ReLU activation function is used in every layer (apart from the last one) as it is more
likely to tackle the vanishing gradient problem [29]. The vanishing gradient problem is a
common issue in DL. As the error is back propagated through the network, updating the
weights, it slowly decreases given the derivative of the activation function (i.e sigmoid).
ReLU helps by having a constant gradient and a faster computation as it is just choosing
the max value.

In regard to a regression problem, two main activation functions were used: sigmoid and

17



Chapter 2

tanh. The sigmoid function keeps the output value between 0 and 1 as the tanh keeps it
from -1 to 1.

(a) Sigmoid activation function (b) Tanh activation function

Figure 2.8: Sigmoid and tanh activation functions

The depth of a neural network is the amount of layers it has. The optimal depth is very
hard to predict, it depends on the problem but, typically, a larger dataset with various
possible outputs tend to need a more complex and deeper network [6]. The width of a layer
is the number of nodes in the layer, as for CNNs, the width is the number of feature maps
(see Section 2.3.2). A classical neural network where all nodes are connected in between
layers (not within the layer itself) is a Fully Connected Neural Network or a Dense Neural
Network (DNN) and usually used as the classifier section of complex neural network (i.e.
CNN) as it receives features that have been automatically retrieved previously.

Similar to a classical machine learning model, the network goes through a training phase
where it adjusts its weights attempting to reduce the overall loss. This loss is calculated
thought a loss function which measures the difference between the output (i.e. Arousal and
Valence values) and the actual truth (i.e. annotated values). A method called backprop-
agation is responsible for updating the weights computing a gradient of the loss function.
The model aims to minimize its loss and, sometimes, can overfit. Overfitting is when a
model achieves a very good result for the training set but can not generalize well when
faced with unseen data. Generally, a dropout layer can be used to prevent this by randomly
discarding a selected amount of values.

2.3.2 Convolutional Neural Network

A convolutional neural network (CNN) is heavily used in Computer Vision as it was in-
tended. In simple terms, it is able to detect patterns in images and has been a major
step forward in various applications (i.e. self driving car capability). It receives images as
input (the values of each pixel), for example, when receiving a Spectrogram, each value is
the the amplitude of a given frequency at a given time. A kernel (a matrix of learnable
parameters) "sweeps" the the input performing a dot product between itself and the input.
The kernel can slide, for example, one pixel horizontally and vertically meaning an input
with 20x20 values becomes 19x19. This sliding value is called stride and this all operation
is called convolution (see Figure 2.9).

The output of a convolution operation portrays an activation map that will hopefully
represent a detectable pattern, this activation map is called a feature map and the number
of feature maps per layer define the width of the layer. In sum, it can be said that the
convolution operation computes the correlation between the kernel and the input [6]. Going
through the layers, this patterns get more and more defined.

Pooling layers are used to reduce the size of the feature maps, downsampling them. The
two main methods are max pooling and mean pooling. Max pooling picks the maximum
value from a defined space region (see Figure 2.10). Mean pooling, as the name implies,
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image patch hidden layer 1 hidden layer 2 final layer
1 layer 4 feature maps 8 feature maps 4 class units
36x36 28x28 14x14 10x10 5x5

convolution max convelution max convolution
(kernel: 9x9x1) pooling (kernel: 5x5x4) pooling  (kernel: 5x5x8)

Figure 2.9: Basic CNN structure!”

computes the mean of the selected region. The latter method is not heavily used, although
some authors opt use it in the last convolutional layer. An usual CNN structure consists on
a series of convolutional and pooling layers (feature extractor) followed by a fully connected
neural network (classifier).

max-pooling

(.3)
=1,

7

input output

Figure 2.10: Max pooling (adapted from [30])

2.3.3 (Generative Adversarial Network

With the set divided into a training and testing set, the network may not have enough
data to learn from and this is where data augmentation is useful. Adding some distortion
to the training set (e.g. pitch shifting) while preserving the core properties can then be
advantageous. Many authors have tackled this problem by time stretching or pitch shifting
a sound signal [23]. Generative Adversarial Networks (GAN) are a recent breakthrough in
DL, particularly in Computer Vision (see Figure 2.11).

Training set V Discriminator
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Generator Fake image

Figure 2.11: GAN!
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It basically consists in two models competing with each other: a discriminator and a
generator. The role of the discriminator is to receive real images (real input) and fake
images (generated input) and distinguish which is which. The fake images are the result
of the generator model that receives an input filled with noise and attempts to generate
an image closest possible to the real one.

As both models train, both will aid one another. The main goal is to get as close to real as
possible in order for the discriminator to get to a point that it can not tell the difference.
This can be used to increase the size of the training set and to our knowledge, it has not
been explored in MER.
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Figure 2.12: Autoencoder and GAN process

As a standard in GAN development, the activation function used is the LeakyReL U, which
is a variation of the ReLLU activation function previously discussed but allows for a negative
input. When the input value is negative, the output is the sum product of the input with
a constant.

In order to have a strong baseline to train the GAN model, and to better take advantage of a
small dataset, it is common to use autoencoders [31][32]. An autoencoder follows the same
structure as a GAN, it has an encoder and decoder portions. Having the same topology as
the GAN model, it can be trained by using all the samples in the dataset with two main
goals: provide a strong foundation for the GAN model by using the encoder portion of
the autoencoder as part of discriminator and the decoder portion as the generator; also,
we can take full advantage of the output of the encoder section by drawing a distribution
from it, in order to generate random latent vectors to feed to the generator section of the
GAN (see Figure 2.12).
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2.3.4 Recurrent Neural Network

In simple terms, recurrent neural networks (RNN) allow for previous information to be fed
as input in future iterations (being stored in a so called hidden state). We then assume that
there is a a relationship between data samples. The network not only uses the information
it learned from training but also from past inputs, so hypothetically, being the networks in
the same level, the same input can produce different results depending on previous inputs
(see Figure 2.13). The hidden states that contain the information are updated moving
forward. In basic RNNs, as the gap between relevant information grows it becomes unable
to assess it. This is the primary reason why Long Short Term Memory Networks (LSTM)
came to be.

output

YW hidden

Figure 2.13: Recurrent Neural Network basic flow (adapted from [6])

In a basic RNN, the input data is combined with the data from the hidden state via a tanh
function which we can interpret as a neuron. LSTMs adds three neurons. The backbone
of the LSTM is to regulate the information that passes by with gates. Three gates are
typically employed: forget, input and output, which essentially control the information
going through. This decision is based on previous outputs, allowing the model to actively
pick the most relevant information. A Bidirectional LSTM not only gets access to past
information but also, future input samples.

As expected, RNN as a whole can be very heavy computationally speaking. However, for
example for MEVD, they are a key architecture and one that was explored in combination
with CNN.

2.4 Static Music Emotion Recognition

This section corresponds to an analysis on the progress and current state of research in
MER as a static evaluation - singular excerpts not accounting relevant past information.
Table 2.4 gathers the information retrieved and all approaches are explained in detail after.
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Table 2.2: Static MER approaches

Author Approach| Database Features/Input Models Emotion Results Observations
Taxonomy
Song et al. | Classical 2904  songs | Dynamic (i.e. en- | SVM 4 emotion | 0.54  Accu- | Only pop music and tags as well as the
ML Last.FM ergy), Rhythm, tags - happy, | racy emotion model can be contested as not
Spectral (i.e. angry, sad supported
MFCC), Harmony and relaxed
(i.e. key mode)
Markov Classical 1000  Songs | MFCC, LSP (Line | SVR and | Russell AV | 0.69 and 0.47 | Possible limitations to the dataset used,
and Matsui | ML for EAM spectral pairs), | GP Regres- | (continuous Accuracy (for | but overall great performance
TMBR, SCF and | sion values) Arousal and
SFM, CHR Valence)
Panda et | Classical MIREX-like 9 melodic (i.e. pitch | SVM MIREX 5 | 0.64 F1-Score | Taxonomy is not psychologically sup-
al. ML and duration, vi- clusters ported
brato) and 2 stan-
dard features
Panda et | Classical 4QAED 29 novel features | SVM Russel AV (4 | 0.76 F1-Score | A thorough process creating the new
al. ML (i.e. glissando de- quadrants) dataset and good overall results
tection) and 71
standard
Seo et al. Classical K-Pop 20 sec- | AVG height of the | SVM Russel AV (4 | 0.73  Accu- | The dataset only consists of K-Pop songs
ML onds clips the soundwaves, categories) racy and the project tends to hint to a detec-
peak average, the tion of inductive emotion and not a per-
number  of  half ceived one
wavelengths, AVG
width and BPM
Choi et al. | DL Million Song | Mel-Spectrogram CRNN 50 tags (12 | 0.85 AUC Multi tag problem, not as fitted to MER
Dataset mood tags)
Liu et al. DL CAL500 and | Spectrogram CNN 18  emotion | 0.59 F1-Score | It is not explained how the 18 emotion
CAL500exp tags tags are retrieved and which architecture
had the best results
Liu et al. DL 1000  Songs | Spectrogram CNN Russel AV (4 | 0.72 F1-Score | Has some discrepancies regarding the ar-
for EAM quadrants) chitecture
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Table 2.2: Static MER approaches

Author Approach| Database Features/Input Models Emotion Results Observations
Taxonomy
Seo et al. DL K-Pop 20 sec- | AVG height of the | DNN Russel AV (4 | 0.72  Accu- | The dataset only consists of K-Pop songs
onds clips the soundwaves, categories) racy and the project tends to hint to a detec-
peak average, the tion of inductive emotion and not a per-
number  of  half ceived one. Used only as a classifier
wavelengths, AVG
width and BPM
Canén et | DL Speech Spectrogram CNN Russel AV (4 | 0.48 F1-Score | Transfer learning approach outputting de-
al. Recognition quadrants) cent results indicating a co-relation to
+ 4QAED speech
Er et al. DL Turkish 500 | Spectrogram AlexNet 4 emotion | 0.76 F1-Score | Data augmentation process makes the
clips and and VG-16 | tags - happy, process biased and unrealistic
Soundtrack (CNNs) (+ | angry,  sad
(data  aug- SVM) and relaxed
mented)
Sarkar et | DL Soundtrack, Mel-Spectrogram CNN Russel AV (4 | 0.83 F1-Score | The datasets are split into 5 seconds clips
al. Bi-Modal and (adapted quadrants) (4QAED) but it is not explain how to annotations
4QAED from VG- follow this division
GNet)
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2.4.1 Classical Machine Learning Approaches

MIR started as a traditional ML problem and for that, an essential part of the solution
would be a strong and rich selection of features as they are the main ingredient for a great
performing model. MER is a solid proof of this as since 2003 more and more features are
conceptualized and extracted in order to outperform the latest state of the art model.

The overall process behind classical ML approaches in MER is described in Figure 2.14.
An annotation process is undergone to label the audio clips to the emotion taxonomy
adopted, this being discrete or continuous as mentioned above. A set of features is carefully
extracted, processed and with both features and annotations, a model is trained which is
than evaluated in the test set.
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Figure 2.14: Classical ML approach to MER (adapted from [33])

Meyers [19] came up with a two way approach as he considered information from the
audio and lyrics components in music. The objective was to generate a playlist around the
listener being the mood he experienced or the main activity in question the main focus.
The emotion model targeted was a mapped version of the Hevner’s adjective model [34]
to Russell’s [16]. Features as mode, harmony, tempo, rhythm and power were extracted
which, combined with the lyrics information, made up for some good results as stated
by author with comparison to the music experts opinion. This model was designed with
a 372 song database and the results were compared to experts opinions. One important
aspect to mention is the use of a decision tree followed by a K-nearest neighbors for the
classification of the songs that, added to the lyrics emotional value, made up for some miss
classifications. The evaluation of this model is not quantified although it suggests a good
performance comparing the output label with All Music Guide experts tags.

Song et al. [35] used a Support Vector Machine (SVM) with a 2904 pop song database
with four emotion words associated ("happy", "sad", "angry" and "relax") collected in The
Last.FM platform. These tags were used as the emotion model and it is fair to say that
this model primarily focuses on induced emotion and not perceived ones. They showed
that combining spectral, rhythmic and harmonic features improved the accuracy. As the
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database used consisted of pop songs only, it is hard to say that this system provided
some good results as it did not encompass a wide range of genre/sounds. Additionally,
the emotional model followed, as well as the tags retrieved, do not form a controlled
environment.

Markov and Matsui [36] proposed a Gaussian Process (GP) approach that, according to
the results, showed a better performance over standard SVMs. GP is not widely used in
ML but Markov and Matsui tested its behavior in MER. It basically consists in assigning
a probability to possible regression functions and based on its distribution we are able to
give a level of confidence to a solution [37]. Noted that it can also be used in categorical
classification tasks. In this case the emotion model used was the Russell’s [16], outputting
the arousal and valence values for each clip with the Medieval 2013 database being utilized
(composed of 1000 45 seconds clips from random locations in songs from 8 different genres,
uniformly distributed from a wide range of unique artist and manually annotated). Results
showed an improvement over SVMs and overall better performance in the arousal section
(0.69 accuracy) as expected given that, as noted before, it is an easier and more accurate
distinction being based on loudness and rhythm.

Panda et al. [38] proposed a model combining the use of standard audio and lyrics features
with melodic ones extracted from the audio dataset in attempt to break the so called glass
ceiling, which is a problem in the MER community demonstrated for instance by the annual
Music Information Retrieval Evaluation eXchange - Audio Mood Classification (MIREX)
task where the results have stagnated in recent years in recent years [39]. This dataset
was obtained by mapping AllMusic tags to five different clusters, summing up to 903
30 seconds clips reasonably diverse and uniformly distributed across all five categories.
Feature selection was used and so the best result was obtained by using only 11 features,
melodic and standard by a SVM model with 0.64 F1-Score.

Novel audio features were introduced [1] with the results supporting a 9% improvement
(76.4 % F1-Score) over existing ones across all quadrants. This was achieved with 100
features, 29 novel and 71 standard ones. This contribution was accompanied by a 900
clip dataset (4QAED) creation by mapping existing AllMusic tags mapped to Russell’s
quadrants followed by a validation phase where clips were discarded for bad quality and
no agreement among annotators.

Seo et al. [40] contributes to the MER field with the development of SVM, Random
Forest and even a simple fully connected neural network (see Section 2.5.2) models to
tackle MEVD, in order to contribute to intelligent IoT Applications such as personal voice
assistants. Features like average height of the the soundwaves, peak average, the number
of half wavelengths, average width and BPM are extracted, which is unusual in the field as
it does not fully encapsulate the overall emotional information in a song. The annotations
are based on the arousal and valence dimensions using 20 seconds clips from 2 minutes
songs. Arousal and valence values from -100 to 100 were annotated by the participants,
which were mapped to four categories: happy, glad; calm, bored; sad, angry; excited,
aroused, and put these categories in between the first and fourth; fourth and third; third
and second; and second and first quadrants respectively (see Figure 2.15). The annotators
had no specific background on music but the study was comprised of 39 subjects in various
ages. The dataset consists only of K-Pop songs, which is a downside. It is not stated the
amount of samples used in training but 35 unseen K-Pop songs were used as a test set and
the SVM model had an agreement rate of 73% with all annotators. An important aspect
is that although is not stated in the paper itself, the project tends to hint to a detection
of inductive emotion and not a perceived one as it refers to the annotators experience.

Lower agreement tends to indicate a lower score and that was the case for the third and
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Figure 2.15: Russell Model with 4 categories (adapted from [40])

fourth quadrant (Russell’s [16]). This is something noticed in the community as these
quadrants share such a similar musical pattern. This is one of the reasons why deep
learning is such an interesting approach as a good model can give such a rich insight to
some unseen/underlying connections.

Very recently, a survey was made approaching the general audio features used in MER [39].
Recent studies support themselves on existing standard features (i.e. already used in other
MIR task) and improved machine learning techniques and although this attitude, towards
a better performance in the field is a valid one, a focus on capturing the emotional content
conveyed in music through better designed audio features is interpreted by the authors as
the main and crucial strategy.

As this short and concise review shows, traditional machine learning heavily supports itself
on the quality of the features it uses and sometimes can fall towards a model that is not
capable of assessing a diverse dataset when put to the test.

2.4.2 Deep Learning Approaches

Building on previous observations, traditional ML approaches rely on the quality of hand
crafted features and this is one of the reasons why, in recent years, there has been a shift
to DL techniques across all research fields. In MER we as human beings, have a distinct
sense of what is an emotion and what sets of that particular emotion and finding acoustic
features in music that significantly contribute for this detection is a very challenging task.

Also, an important aspect in the MER research field is that most researchers tend to prepare
their own dataset which is always a great contribution, however it can be considered as
too precise and not broad in the way that they do not gather sufficient diversity to be
applicable to other significant model contributions or in a real world scenario.

The first deep neural network used in MER, to our knowledge, was presented by Feng et
al. in 2003 [41]. It consisted on a 3 layer feedforward neural network and rely solely on
tempo characteristics. Another criticism is the dataset used as it was heavily unbalanced
as it output decent but misleading results.

Choi et al. [30] suggested the use of Convolutional Recurrent Neural Networks (CRNNs) to
take advantage of Convolutional Neural Networks (CNNs) (see Figure 2.18) for local feature
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extraction and recurrent neural networks RNN for temporal information of the extracted
features. They state that CRNNs fit the music tagging (multi-label MER problem) task
well as RNNs are more flexible in selecting how to summarize the local features than
CNNs which are rather static by using a weighted average. A CRNN model was compared
to various other CNN based ones (combining 1-D and 2-D kernels with 1-D and 2-D
convolution operations). The input was downsampled to 12kHz and transformed into a
Mel-Spectrogram which encapsulates the audio data through the Mel scale - where the
different pitches can be interpreted by the human ear as equally spaced from one another
(see Figure 2.16).
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Figure 2.16: Mel-Spectrogram computation (adapted from [42])

This problem is a multi-label classification one, as the output is mapped to 50 tags by a
sigmoid activation function. The CNN base models range from 4 to 5 convolution layers
followed by 2 fully connected layers that act as a classifier. The dataset used is the Million
Song Dataset with last.fm tags associated. This is a concern given that this dataset,
although massive, has a very poor quality. The CRNN model consists of 2 recurrent
layers with gated recurrent units (GRU) after the four layer CNN (k2c2) (see Figure 2.17).
The experimental phase is extensive as various levels of parameters are tested ranging
from 0.5M values to 3M and noted that although for the most part, more values means
more information, therefore a better result, this is not the case as a reduced number of
feature maps also removes redundancy among the samples. As expected the CRNN model
outperforms the CNN ones with 0.86% AUC (Area Under the Curve) for the general part
as it is also much more complex and has a computational cost well above the others. Given
the massive output options, this progress, as so many others, tend to go unnoticed as so
many other authors choose different emotion models.

RNN g

frequency

Figure 2.17: CRNN (adapted from [30])

Liu et al. [43] faced the emotion recognition problem as a multi-label task, with 18 possible
tags (each with values from 1 to 5). The authors developed a CNN with 4 layers, ranging
from 100 to 200 filters each (see Figure 2.18). It is never said which architecture had the
best results. The dataset used was the CAL500 which is composed by 500 songs with 18
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emotion tags associated, annotated with 1 to 5 values and CAL500exp based on the songs
from the previous dataset but segmented to accommodate the possibility of having different
emotions, so the dataset grows to a total of 3223 clips. Results as stated by the authors
claim a better performance over traditional ML approaches with micro F1-Score of 0.709%
and good AUC results. This is not the case for the macro F1-Score (average of F1-Scores
for all classes) as it registers a highest value of 0.596%. The disparity between the datasets
is also addressed, as the CAL500 does not provide for a good training experience compared
to the CAL500exp and has a lower agreement among annotators.
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Figure 2.18: CNN (basic architecture) used by Liu et al. (adapted from [43])

Liu et al. [44] propose a CNN model using the 1000 song dataset (referenced in Section
2.2) and as a form of input, utilized a basic spectrogram. The emotion model followed
is the Russell AV as a categorical target based on the four different quadrants. The
network consists of 8 layers, 3 convolutional layers (with a reLu activation function as
most researchers use), each followed by a mean pooling layer. In the latter portion there
are two fully connected layers that act as a classifier. The paper has some inconsistencies
as for describing the model detailing that it was added a batch normalization layer later
and stating that a max pooling algorithm was used however, prior to this information, it is
clear that a mean pooling layer was used. The 1000 songs dataset is filtered (eliminating
duplicates) resulting in 744 songs that are split into 5 seconds clips. The AV values are
mapped to their respective quadrants making this a discrete problem. The convolutional
layers use a uniform 2-D kernel (5x5) and a dropout layer is added before the fully connected
layers to prevent overfitting. This system is compared to a SVM but it is not referenced
the input that this model uses, outputting 0.385% of F1-Score. Not surprisingly, the CNN
outperforms the SVM with an average of 0.724%.

In Seo et al. [40] paper, the authors also created a DNN with 3 hidden layers, 30 nodes
each trained over 1000 epochs. The model obtained a 72.9% accuracy being the second
best model, behind the SVM. A key thing to note is that this does not take full advantage
of DL as it receives the features extracted before, it only acts as a classifier.

Canon et al. [17] build on previous work on the search for a language-sensitive emotion
recognition model. The idea was to pre-train models using speech in both English and
Mandarin and tune them with music clips from both languages with the hope that features
from speech would be transferable to a music environment. Several studies such as the one
mentioned in the paper [45] state significant differences of emotional ratings by listeners
raised in different mother tongues where online surveys were conducted with participants
with English, Spanish, German and Mandarin backgrounds. This only supports what was
previously pointed about how subjective and therefore difficult MER is. The targeted
emotion model was the Russell AV [16] 4 quadrants and the English library for music
was the one used by Panda et al. [1]. The feature extractor for the speech model was
a sparse convolutional autoencoder (SCAE), where the encoder section is mainly three
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double 2-D convolutional layers (with 3x3 kernels) followed by max-pooling and dropout
layers (to prevent overfitting) which is then fed into the decoder section with the same
structure but instead of max pooling, up sampling layers (see Figure 2.19). This latter
section is then removed and fitted a 3 layer fully connected layer with a total of 512
neurons and two models are made: SCAFE Feat. Ezt. where the weight values are frozen
and the the DNN is fine tuned with the music datasets and SCAE Full where a the
weights are unfrozen and the network is trained with a lower learning rate. Using the
SCAE exclusively as a feature extractor shows average performance for all configurations
(48% F1-Score). The model and authors state that even though the results for quadrant
detection were not spectacular, arousal and valence detection as separate planes was good,
which can be explained because the primary confusions tend to be between the first and
second quadrant as well as the third and fourth. This paper can be seen as a personalized
MER approach, using annotations from a specific type of user, and training a personalized
model based on them. It gathers users according to individual factors (e.g., demographics,
musical expertise, and personality), and averages the annotated data as common "ground
truth”. This an interesting and common approach, as a search for a independent solution
is extremely hard. One point to make is that the models were not trained based on a
10-fold validation base, as they were only trained 4 times and the dataset which contained
Mandarin music had almost double the size as the English one, same for the music.
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Figure 2.19: SCAE used by Canoén et al. (adapted from [17])

Er et al. [23] presented a recent and strong model as it used pre-trained models such as the
award winning AlexNet and VGG-16 (convolutional) neural networks and fed the output
to SVM systems tuned to the targeted 4 different categories - "happy", "sad", "angry",
"relax" from a 150 music clip dataset Soundtracks. The AlexNet was trained on a 1.2M
images and consists of 25 layers which made a huge contribution to the Computer Vision
research distinguishing over 1000 objects. The VGG-16 model has 41 layers and same
as the AlexNet, focused on distinguishing patterns. These networks were used as feature
extractors and the last layers were adapted and fitted to the Soundtracks dataset (see
Figure 2.20).

They also introduce a solely Turkish dataset with over 500 clips. Additionally, to increase
the size of the input, data augmentation was introduced with two different deformations
to each music recording in both datasets. The first was shifting, and the second one was
stretching. The sound samples that are obtained at the end of each process are added to
the original sound sample class as new data. This poses a problem as augmented data
should not be present in the test set as it is not a true representation of real music and
makes the model itself biased. The Soundtrack dataset goes from 30 samples to 180 for
each class and the Turkish dataset goes from 100 to 600 therefore making them six times
bigger. The best classification result before data augmentation is applied, is from the
output of the Fe6 layer of the VGG-16 with a softmax classifier with 76% F1-Score in the
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Figure 2.20: AlexNet adaptation (adapted from [23])

Turkish music clips. After the data augmentation, the best classifier success was obtained
from the Fc7 layer of the VGG-16 with the SVM classifier with 89.2% on the Turkish
dataset. According to the results, it is safe to say that pre-trained deep learning model can
be used for MER problems. Bear in mind that using a considerable amount of augment
data in the test input, as stated before, is a concern because it obligates the model to fit
around data that is not real and not labeled as original.

Sarkar et al. [24] contribute to this field by exploring the VGGNet (already mentioned
above), making it lighter in layers and consequently, less computationally expensive as-
sessing its behavior in the following datasets Soundtracks (360 audio-clips collected from
background tracks of movies with duration around 30 seconds) and Bi-Modal (162 songs
where each song clip is of 30 seconds duration and both audio signal and lyrics data is
included, being the later one ignored) and MER_ taffc (AQAED) [1]. The songs are divided
in 5 seconds clips which are transformed in Mel- spectrograms resulting in a 196x128 input
size. A 3x3 kernel is used while the stride varies across all 7 convolutional layers, having
5 max pool and 3 dropout layers in between followed by 2 fully connected layers with 2
dropout layers in between them too. The emotion model used is Russell’s AV one, mapping
the values to their separate quadrants. The model is pitted against a SVM, a Random
Forest, a Decision Tree (trained on 66 standard features including time domain, spectral,
LPCC (Linear Predictive Cepstral Coefficients) and MFCC as well as their mean and std)
and a basic Feed Forward Network. The Bi-Modal and MER_ taffc presented the overall
better results. The final CNN model (which possessed over 1.2M trainable parameters)
performed relatively well against the traditional approaches getting a F1-Score of 82.95%
for MER_taffc and a 77.82% for the Soundtrack dataset. A potential issue not address is
that when comparing the results with proposals from Panda [1] it is not fully explained
how is this compared given the fact that Panda’s approach is a 30 second clip classification
and the one in this paper only assesses 5 seconds.

2.5 Music Emotion Variation Detection

This section corresponds to an analysis on the progress and current state of research in
MEVD accounting for past /relevant information that pose some interesting and challenging
approach worth considering. The following Table 2.5 gathers all information retrieved as
the next section explains it in detail.
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Table 2.3: Dynamic MER approaches

Author Approach | Database Features/Input Models Emotion Results Observations
Taxonomy
Schubert Classical Romantic Loudness,  tempo, | Linear re- | Russell AV (4 | 0.33 Accuracy | Very limited dataset with a unusual
et al. ML music (4 | melodic contour, | gression categories) (in changes | result metric
songs) (1 | texture and spectral detected)
second) centroid
Panda et | Classical 57 song (25 | Standard (i.e. inten- | SVM Russell AV (4 | 0.44 Accuracy Very small dataset
al. ML seconds) sity, rythm, timbre) quadrants)
Markov et | Classical 1000  Songs | Standard (i.e. inten- | GP Regres- | Russell AV (4 [ 0.69 R? for | The entire song is not considered, on
al. ML for EAM (0.4 | sity, rythm, timbre) | sion quadrants) arousal and | 45 seconds and the complexity of the
seconds) 0.44 R? for | GP model can be a problem when ap-
valence plied in a large scale.
Malik et | DL DEAM (0.5 | Standard features + | CRNN Russell AV | 0.231 RMSE | 45 seconds do not contain significant
al. seconds) Mel-Spectrogram (continuous for arousal and | emotional disparsity
values) 0.279 RMSE for
valence
Li et al. DL DEAM (0.5 | Standard Bidirectional| Russell AV | 0.225 RMSE | Very complex system as it combines
seconds) LSTM (continuous for arousal and | the results of various Bidirectional
values) 0.285 RMSE for | LSTM models
valence
Hizlisoy et | DL Turkish Emo- | Spectrogram + 66 | CNN + | Russell AV (3 | 0.99 F1-Score No agreement among the annotators
al. tional Music standard features LSTM + | quadrants) is referenced and only 3 quadrants
DNN are used
Du et al. DL 1000  Songs | Mel-Spectrogram + | CNN + | Russell AV | 0.07 RMSE for | Data augmentation is used and it is
for EAM (0.5 | Cochleogram Bidirec- (continuous arousal and 0.06 | not specified if it is in the test set,
seconds) tional values) RMSE for va- | being its presence a serious problem
LSTM lence as it makes the model biased
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2.5.1 Classical Machine Learning Approaches

To the best of our knowledge, the first model to tackle MER as a time varying problem
was present by Schubert et al. [46]. It took features like loudness, tempo, melodic con-
tour, texture and spectral centroid and fed it to a linear regression model. Sixty-seven
participants rated four Romantic music pieces expressing different emotions in the form of
a two-dimensional emotion space - happy/sad for valence and aroused/sleepy for arousal)
following the Russell emotion model [16] once per second. Two linear regression models
were trained separately and it was evident by the results that changes in loudness and
tempo were associated positively with changes in arousal and the melodic contour varied
positively with valence, though this finding was not conclusive.

Panda et al. [47] presented a mood tracking platform based on SVM models in order to
detect the variation of the song’s emotional content where the before mentioned 4 quadrant
taxonomy is used. The features from the Marsyas'? framework used were based on a sliding
window structure. The model was trained with a 194 song dataset with arousal an valence
values for 25 seconds clips and for the test set, two volunteers listened to 57 full songs
(from the original dataset) and registered changes between quadrants for the entire song’s
duration in 25 seconds clips. The new annotations were analyzed and compared in order to
measure the matching ratio between volunteers. Being the remainder only 29 songs, where
volunteers agreement was higher than 80%. The best result obtained was an average of
44.09% accuracy. The size of the dataset was the main limitation for this problem and as
the author states, a use of a ranked set of features could result in a better performance.

Markov et al. [48] presented an unusual approach do MEVD in the form of a GP model.
As aforementioned, GP models are becoming more popular for their superior capabilities
to capture highly nonlinear data relationships. The database used was the MediaEval 2013
database (described before as the 1000 Song Dataset) with 1000 45 seconds music clips and
a window of size 23.2 milliseconds was used that with the help of the Marsyas framework
provided a feature vector of the standard features in traditional MER research such as
MFCC, LSP and TMBR. A total of 20 frames were grouped into a window that retained
their mean feature value and standard deviation (both as features). The sliding windows
overlapped as the window shift was set to 1 frame. A SVM (SVR) model was trained
on the same features and the GP model considerably outperformed it, achieving 0.665%
and 0.442% R? for arousal and valence, with one particular model achieving 0.692% and
0.473%. The valence result is impressive given that valence distinction is a difficult task in
MER. An important note stated by the authors is that GP models have a great training
complexity which makes them difficult to use in large scale tasks.

2.5.2 Deep Learning Approaches

Malik et al. [49] propose a CRNN model outputting to a 2-dimensional VA emotional
space. This model as been stated before [30] as it is getting traction among sound detection
and speech recognition. The network consists in a 8 layer CNN (followed by a dropout
layer) outputting to basically two branches (one for arousal and one for valence) which
are composed of 8 fully connected layers and 8 bi directional recurrent layers. Standard
parameters are used in the CNN such as a 3x3 kernel, ReLLU activation functions (providing
nonlinear relations).The dataset in question is part of the DEAM dataset referenced in
Section 2.2. It contains 431 music clips with 45 seconds total (being the first 10 discarded)
continuously annotated arousal and valence at a 2Hz rate (every 0.5 seconds) from -1

2http://marsyas. info,
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to 1. Using a 45 second clip as a song can not possibly contain significant emotional
disparity but the test dataset consists of 58 full songs which is a nice evaluator. Two input
approaches are used: standard features (extracted from the openSMILE! toolbox) as well
as a Mel-spectrogram and only the spectrogram. The best configuration was the CRNN
with both inputs achieving a RMSE (root mean square error) of 0.279 for valence and
0.231 for arousal. The idea to separate the valence and arousal classifiers is a great way to
differentiate the dimensions as some features better fit each one.

For the same dataset as the one mentioned above, Li et al. [50] present a Deep Bidi-
rectional Long Short Term Memory (DBLSTM) model. Emotion can be associated with
previous and future information, therefore, a bidirectional approach is present. A bidi-
rectional LSTM can be seen as two LSTMs for each training sequence forward and back-
ward,respectively having both information impacting the model. This is then connected
to an output layer (see Figure 2.21). The authors also reference that MEVD results are
highly dependent on the sequence length and therefore present a model that combines the
information from different time scales. The model can be separated into 2 major parts:

e the DBSLTM system itself that provides valence and arousal values, post-processing
that contains a better temporal correlation as the AV (arousal and valence) values are
transformed from a center point in the segment to a time-continuous value segment
with the aid from a triangle filter smoothing, MLR (Multiple Linear Regression) and
a SVR;

e the last part, the so called fusion, fuses the results from various DBLSTM models
with different time scales where the average, MLR, SVR and even a neural network
are used to combine them.

The test set contains 58 full songs as well. The model is trained with standard MER
features, 260 to be precise, from the 0.5 seconds segments. The BLSTM was trained for
valence and arousal separately and consisted of 5 layers being the first 2 trained based on
the features (like an autoencoder) and had their weights frozen. Gaussian noise was also
introduced to prevent overfitting. The best model was the combination of fusion followed
by post processing parts with a triangle filter and a neural network being used for arousal
detection outputting 0.225 RMSE and 0.285 for valence with SVR being used. As said by
Malik et al. [49] this is a very complex approach but it presents some interesting ideas and
results to back those.
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Figure 2.21: DBLSTM model outputting Valence and Arousal (V/A) values (adapted
from [50])

Bhttps://wuw.audeering.com/opensmile/,
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Hizlisoy et al. [51] propose a solution based on convolutional long short term memory deep
neural network (CLDNN) architecture. Adding to this, they created a new Turkish emo-
tional music database (TEM) composed of 124 Turkish traditional music excerpts with a
duration of 30 seconds each that is later on divided into 10 seconds segments, resulting in a
372 clip dataset. The music clips were evaluated by 21 university students. The emotional
content of each music was rated on a scale from -5 to 5 for valence and arousal. The mean
of annotations for each excerpt was calculated by taking the average over all annotators
decision for arousal and valence. This raises a question as there is no pre-validation agree-
ment over the annotators. Being only the mean used, some clips can have a major gap
in both dimension values which is overlooked. The music clips are distributed into three
quadrants making it a 3-class music emotion classification which can be considered a major
issue as it removes the third quadrant which is one that alongside the fourth brings out the
worst results sharing so many acoustic similarities. The CLDNN model uses the output of
CNN as features and combination of LSTM and 2 dense (FC)layers as the classifier. The
LSTM layer consists of 200 hidden units. A 1-D CNN layer is used to extract features
followed by a flatten layer outputting 1x768 feature vectors. Each FC layer has 100 hid-
den units and softmax output layer is added to obtain a final category (quadrant). The
authors also note that Log-Mel Filterbank Energies and MFCC (Mel-Frequency Cepstral
Coefficients) are the most widely used features because they are considered to convey the
most relevant information for speech recognition and MER. In addition to this, standard
audio features are extracted from the audio signal and fed to the DNN, which is combined
with the output of the CNN (see Figure 2.22). These features suffer a selection based on
correlation ranging from 66 to 87. The 4 layer CNN is followed by a dropout layer with
0.50% rate. Combining all features brings it to a total of 110 which outputs the best result
at 99.19% accuracy after a 10-fold cross validation. Bearing in mind the absence of one
quadrant, it is presented as a great result to a not very large but very distinct dataset as
by comparison, a SVM model with all selected features has a F1-Score of 97.7%. This in-
dicates a high correlation and fit to the dataset created which suggests a poor performance
in other environments.
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Figure 2.22: CLSTM architecture used by Hizlisoy et al. (adapted from [51])

Du et al. [26] contribute with a CNN-BLSTM model which uses an emotion taxonomy that
is heavily adopted, the Russell emotion model with AV continuous values being output.
The input is set to a Mel-spectrogram and a Cochleogram (converts a sound waveform into
a multidimensional vector with the intention to represent the information sent from the ear
to the brain). Basically, the network as a whole consists in two CNNs, each for its different
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input, either on having a total of 3 convolutional layers with 2x2 feature maps (6 filters -
width each), plus a max pooling and a batch normalization layers, which are then flattened
and fed together to a fully connected layer that connects to the BLSTM and the last fully
connected layers outputting arousal and valence values respectively (see Figure 2.23). A
potential issue with the approach is that, while using a dataset very similar to one used
in the aforementioned papers (1000 song dataset7) which possesses 1000 45 seconds clips
annotated at a 2 Hz rate with AV values, they perform a data augmentation by changing
the frequency and amplitude (not explicit how). These processes, although valid, when
used for the test set and effectively doubling the dataset dimension can have a negative
effect as the model tends to fit to them and not be a true representation for a real world
scenario. The results were great, averaging a RMSE of 0.07 and 0.06 for the arousal and
valence dimensions respectively which outperformed the baseline models.
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Figure 2.23: CNN-BLSTM (adapted from [26])

One note to take from this complex models is its complexity. Adding various possibilities
and outputting (for the most part) better results, it comes with some heavy computational
cost which will be taken into account in this project.

2.6 Overview

In conclusion, we can say that the current state of the art heavily favors quantity over
quality, therefore it is important to get a grasp on what can be accomplished with a
quality dataset (4QAED) with DL approaches compared to what was achieved before with
traditional ML. We based our models on previously discussed architectures regarding static
MER as well as MEVD. A primarily exploratory strategy was used in order to get a better
understanding of the dataset and which approaches translated in the best overall results.
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Chapter 3

Static MER

The purpose of this section is to expose and detail the datasets used for static MER as
well as the experiments made with them with a central emphasis on the best model for
each different approach.

3.1 Data

This section introduces the data used for the static MER models.

3.1.1 Database - 4QAED

This dataset consists of 900 thirty seconds clips with a balanced target, 225 samples for
each quadrant (see Figure 3.1) [1]. All these samples went through a heavy selection
process, as a matter of fact, the initial number of entries was 370611.

Total Quadrant Labels

250 4
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Figure 3.1: Quadrant distribution on 4QAED dataset

The construction of this dataset started by querying the top songs on AllMusic! with
the 289 emotion tags associated. These emotion tags are not from any known taxonomy,
although, according to the AllMusic platform, they are assigned by “professional editors”.
The next step was to relate the 289 tags to the Russell’s AV emotion quadrants based
on Warriner’s list of English words, which have an assigned value of arousal and valence.

"https://www.allmusic.com
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This made it possible to appoint a quadrant to each tag. Samples with a non-dominant
quadrant (at least 50% of the tags associated being from one quadrant) were discarded
as well as duplicates and samples with less than 3 tags. The resulting 2200 samples were
manually inspected: noisy and unclear clips were removed and a quadrant was annotated
for each sample. The samples in which the given annotation did not match the mapped
quadrant from the emotion tags, based on the Warriner’s list, were discarded. The dataset
was then balanced in terms of the possible 4 targets (see Figure 2.2), resulting in 900
samples. Given that the emotion tags have an associated arousal and valence values, these
were saved in order to use this dataset in regression problems as well (see Section 3.2.2).

The average and median arousal and valence values were considered and, for the exper-
iment, the median was chosen as it clearly gives a better separation between quadrants
(see Figure 3.2b). The average tends to place the samples closer to the axis (see Figure
3.2a) which does not leave much room for error as the model receives various points from
different quadrants but with very little variation between them.
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(a) Average Arousal and Valence values for (b) Median Arousal and Valence values for
each sample each sample

Figure 3.2: Arousal and Valence distribution

In order to use the 30-second clips in the following DL approaches, each of them were
converted to a melspectrogram (see Figure 2.16). The melspectrogram, as explained before,
is a representation used with the intent to present the sound information as the human ear
perceives it. We do not perceive the different intervals (with the same gap) of frequencies
the same way. For example, our perception of distance between a 500 Hz tone and a
1000 Hz tone is not the same as for a 7000 Hz tone to a 7500 Hz tone, although the gap
between both remains the same, 500 Hz. It preserves the most perceptually important
information to a human ear. This input form is the most used in the MER and MEVD
deep learning approaches as it presents the best results [6]. The data was downsampled
to 16kHz, preserving the core information bearing in mind the cost to compute such a
dimension. The wav files were converted to melspectrograms with 128 filter banks, a hop
size of 512, which resulted in a 942x128x1 sample, only having one channel. This are
the most used values when converting to a mel-spectrogram as they give a wide range of
frequency intervals and keep a reduced dimension [24]. However, other input parameters
should be tested in the future.

3.1.2 Features

This dataset is based on the audio clips in 4QAED, where, in total, 1714 features were
extracted for each audio clip [1]. The standard features were extracted with the MIR
Toolbox, Marsyas and PsySound, which resulted in 1603 values per sample. The nature
of these features varied from melodic, to dynamic, to rhythmic, etc. Given the strong
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connection between all frameworks, a feature reduction was performed by removing the
ones with a correlation higher than 0.9 and the RelieF' [52] feature selection algorithm was
used to further reduce the number of standard features. This brought down the number
to 898. Besides these standard baseline features, novel features were also added to the
feature set, as described in [1] (this work was carried out by Prof. Renato Panda in his
PhD research work). In total, the dataset with 1714 features has 898 decorrelated standard
features and 816 novel ones. The novel features significantly improved the classifier by
reaching a 76.4% F1-Score (previously 67.5%), which was reproduced in Section 3.2.1
with only the top 100 features, with 71 standard and 29 novel features (see Appendix A).

3.2 Methods and Results

This purpose of this section is to explain the different static MER approaches and their
results. It is important to note that every model was evaluated with a 10-fold cross
validation repeated 10 times.

3.2.1 Classic Machine Learning

To replicate the previously referenced result [1], we used an SVM with a polynomial kernel,
a cost of 8 and a gamma value of 0.001953125 with a 10-fold cross validation repeated 10
times. The data used was the top 100 features from the 4QAED dataset [53] and
the best result achieved was an average macro F1-Score of 76.0%. The main purpose was
to solely achieve the previous result in order to compare with other DL approaches.

3.2.2 Deep Learning

From the start, it became clear that the evolution of the architecture was basically set on
one objective: achieving the best result while preventing the model from overfitting (when
it models the training data too well and can not generalize). Given the size of the dataset,
the overfit problem was expected as the model is not capable of generalizing patterns in the
training set. The fewer the training samples, the fewer the possible patterns the model can
learn from and, therefore, the lower the performance on samples it has never seen before.

One way to prevent this is using a simpler model with fewer trainable , as it brings un-
needed complexity. To achieve this, instead of the initially thought 3 to 4 dense layers
(see Figure 3.3), we used 2 or even 1, bringing a lower training accuracy but a better
performance in the test set. Another way to prevent overfitting is to use dropout layers
as previously discussed. Their purpose is to randomly ignore the information outputted
from the neurons. A dropout layer set for example to 0.4 transforms the output of 40%
of the neurons to 0 making it irrelevant on the next layer. This layer was initially set just
before the classifier section of the network but its use after each convolutional layer became
clearly advantageous as it prevented the model from reaching a higher value of accuracy
early on the training set.

Many other possible alternatives were also tested, for example, label smoothing. Basically
it consists in randomly modifying the target value of the sample, going from [0, 1, 0, 0]
to |0, 0.8, 0, 0], which directly influences the loss calculated when training, adding some
noise, which can prevent the model from becoming too ‘overconfident’ with its predictions.
Unfortunately, neither of these improved the accuracy of our models.
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For the most part, two major architectures were used after some extensive testing (see
Figure 3.3) with two distinct kernel sizes: 3x3 and 5x5, the latter one outperforming the
smaller one in the case of larger samples. We started by having 3 convolutional layers
but quickly gravitated towards 4 as it heavily reduced the size of the output and provided
better results. The same can be said for the number of filters used for each layer. It is
considered a standard to increase the number of filters per layer as we go deeper in the
network, not only in MER [6] but also in object recognition [54]. As the data goes through
the model, layer by layer, the patterns, the features it recognizes, become more and more
complex so it makes sense that this is a basic rule of thumb. Although, when dealing
with a small dataset, this quickly becomes detrimental to the model as it overfits with the
unnecessary complexity.
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Figure 3.3: Basic CNN Architectures

Regarding the data, there are some ways to restrain from overfitting such as data aug-
mentation. Two main processes were taken: classical audio data augmentation (i.e. pitch
shifting, time shifting, time stretching and power shifting) (see Section 3.2.2) and generat-
ing new artificial data with a GAN (see Section 3.2.2).

One key aspect heavily experimented and far from standard was the used optimizer, as
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well as its associated learning rate. When working with a small amount of data, the
learning rate had to be minimized in order to not have the model overfit after just 10 or 20
epochs. The opposite can be said for a large amount of data, as a relatively low learning
rate actually made the model underfit. The batch size (number of samples seen by the
model before updating its weights) gravitated from the lowest possible to the maximum
with a 50 step size, being the few hundreds (150/200/300) the most effective sizes. The
number of epochs strongly correlated with the optimizer and its associated learning rate.
We tested from 10 to 200 epochs with a 10 step size, also depending on the dataset used.
The learning rate for SGD was mainly 0.1, as it translated into the more safe and less prone
to overfitting models, and Adam with values ranging from 0.0005 to 0.01 with a 0.0005
step size. Although being considered one of the last major step forwards in DL, it did not
perform as well, making the model very prone to overfit. All values are presented in Table
3.1. It is important to note that these values are a template of what was experimented
with. As explained before, the parameters heavily depend on each other and especially on
the model and the data used.

Table 3.1: Hyperparameters intervals

Parameter Range

Adam - learning rate | [0.0005:0.0005:0.01]
SGD - learning rate | [0.005, 0.01]
Epochs [10:10:200]

Batch size [1:50:900]

4QAED - Original Melspectrogram

Firstly, we experimented with the dataset without any alterations, with a simple CNN
which we worked on and improved to have the architecture Basic CNN 5x5, displayed in
Figure 3.3. The 5 by 5 kernel performed better than the 3 by 3 which is expected as a
bigger input tends to benefit from a bigger kernel. The highest F1-Score was 63.56%
which is not, by any means, impressive. We can quickly see a discrepancy in the accuracy
among quadrants, primarily between the second quadrant and the third (and forth) (see
Table 3.2).

Quadrant
(label)
4QAED
(900x942x128)

Figure 3.4: CNN on 4QAED

Table 3.2: Confusion matrix and F1-Score per quadrant for 4QAED 30-second dataset
(predicted labels vertically and annotated labels horizontally)

Q1 Q2 Q3 Q4 F1-Score

Q1 | 1605 | 381 148 116 64.31%
Q2| 421 | 1734 79 16 76.59%
Q3 | 393 83 1233 | 541 55.43%
Q4 | 314 62 669 | 1205 57.85%
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Note that when discussing a neural network, in this case a CNN where a sample of input
corresponds to a label, the assigned input size is fixed as opposed to an RNN where we
can have different approaches (see Section 4.2).

A similar approach was made with the intention to experiment with a larger dataset, double
the number of samples. Assuming the emotion remains the same across the 30-second clip,
and that in a 15-second clip we can accurately detect that emotion, the dataset samples
were split into 2, 15 seconds each. For this, the network architecture remained the same
but with a smaller kernel given the smaller sample, 3x3. The larger number of samples
made an increase in filters possible, instead of a fixed 16 filters for each convolutional layer,
the latter 2 doubled by having 32 each.

Quadrant
(label)

4QAED
(900x942x128)

4QAED Split
(1800x471x128)

Figure 3.5: CNN on 4QAED Split (half)

This resulted in a higher F1-Score of 66.59%, which is statistically significant with a
p-value of 2.02 x 10~7, outperforming the previous model.

Table 3.3: Confusion matrix and F1-Score per quadrant for 4QAED 15-second dataset

Q1 Q2 Q3 Q4 F1-Score

Q1 | 3170 | 655 193 482 67.54%
Q2| 586 | 3703 | 99 112 81.64%
Q3 | 555 140 | 2312 | 1493 56.39%
Q4 | 555 70 978 | 2897 60.79%

We also experimented with regression by focusing on the arousal and valence values sepa-
rately in the hope to achieve a better valence accuracy, given that it is the weaker part of all
MER approaches. As described in Section 3.1.1, we used this same dataset, but, instead of
being mapped to the respective quadrant, we took the median arousal and valence values
as targets for our model (see Figure 3.6).

Each branch is an independent network. Later on, we mapped the predictions for the
arousal and valence to their respective quadrants and achieved an F1-Score of 50.36%
which is beneath the two previous models. The RMSE (Root Mean Squared Error) with
respect to the arousal was 0.189 and the valence, as expected, was far greater at 0.424.

Audio Augmented Data

As explained before, the scarcity of samples poses as our biggest issue. Audio augmentation
is a way to upsample the training set while maintaining only original samples for the test
set, therefore respecting a real-world scenario where the model has never seen the samples
or similar ones. Four different ways of augmentation were experimented with: time shifting,
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Figure 3.6: Double branch CNN for Arousal and Valence

pitch shifting, time stretching and power shifting. The following figure represents a normal,
original melspectrogram (see Figure 3.7).

Mel Bins
(Frequency)

Frames

(Time)
Figure 3.7: Original sample from 4QAED

Time shifting: the audio sample shifted to left or to the right, backwards or forwards, at
random, from 0.5 to a maximum of 3 seconds, for each sample (see Figure 3.8).

Mel Bins
(Frequency)

Frames
(Time)

Figure 3.8: Sample after time shift

Pitch shifting: randomly lowered or raised the pitch by a tone which according to Aguiar
et al. [55] outperformed a half of a tone shift (see Figure 3.9).

Mel Bins
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Frames
(Time)

Figure 3.9: Sample after pitch shift

Time stretching: randomly increases or decreases the speed of the song by a factor of
0.5 (see Figure 3.10).
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Frames
(Time)

Figure 3.10: Sample after time stretch
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Power shifting: as the name implies, we randomly added or subtracted 10 dB over the
whole sample (see Figure 3.11).

Mel Bins
(Frequency)

Frames
(Time)

Figure 3.11: Sample after power shift

All of these methods serve a purpose: adding some robustness and generalization capability
to our model.

We ended up with over 4 times the original number of samples for training, 4410. We
experimented with the whole dataset, as well as individually, with each augmentation
method.

Firstly, with the maximum number of samples, the basic 5x5 model used before began to

underfit given the larger amount of samples. To compensate for this, another two layers
were added to the classifier section of the network (see Figure 3.12).

2DConv 2DConv 2DConv 2DConv
5x5 kernel 5x5 kernel 5x5 kernel 5x5 kernel © ] "
16 filters 16 filters 16 filters 16 filters 2 S 2
8 o 8 Quadrant
2x2 MaxPool 2x2 MaxPool 2x2 MaxPool 2x2 MaxPool o E 2 (label)
[to) s -
4QAED 0.1 Dropout 0.1 Dropout 0.1 Dropout 0.4 Dropout

+ All Augmented
(4500x942x128)

Figure 3.12: CNN for all augmented data
To add to this, the Adam optimizer proved to be a better fit which meant that a lower
learning rate was used as it tends to aggressively update the weights from the start.

The following approach was the same for the augmented data from each method (see Figure
3.13).

Basic
R
5x5
4QAED
+ Augmentation
(1800x942x128)

Figure 3.13: CNN for each type of augmented data

None of the models trained with the individual sets of data performed better than the
one with the whole data. The model trained on the augmented data had an F1-Score of
66.36%, which is a statistically significant result, with a p-value of 9.59 x 10~® compared
to the best model trained on the 900 original (30-second) samples, but not significantly
different from the model trained on the dataset split into 2, with a p-value of 0.5447 > 0.5.
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GAN Generated Data

Just as the audio augmentation previously covered, a higher number of samples can be
beneficial. With that in mind, we aimed to develop a GAN that was capable of generating
replicas of melspectrograms for each class. We began to create a cGAN (Conditional GAN),
which takes into account the class of samples, in this case, the quadrant, and is able to
adapt to it. As explained in Section 2.3, an autoencoder was trained on the whole dataset
(see Figure 3.14a) to use as starting point, a baseline for the GAN train, but to also create
four different distributions in order to generate a random input for the GAN model based
on the quadrant (see Figure 2.12).

We realized that there were too few samples in order for the model to truly adapt to the
data. Although the output data was not far from the original (see Figure 3.14), it did not
make a positive impact on the overall performance of the network. We tested with 25 to
100 additional samples from the GAN, for each quadrant, the best being the 25 additions
per quadrant with an F1-Score of 60.44%, underperforming compared to the first model
trained on the 900 samples.

autoencoder original
0 200 400 600 800 200 400 600 800

0 200 400 600 800 0 200 400 600 800

0 200 400 600 800 200 400 600 800
0 200 400 600 800 200 400 600 800
4] 200 400 600 800 200 400 600 800

(b) GAN output example

(a) Autoencoder results comparison

Figure 3.14: Autoencoder and GAN outputs

Voice Separated with Spleeter

With the aim in mind to improve the valence accuracy and overall performance, we used
the Spleeter? tool to separate the voice from the instruments for each sample. It was
developed and released by Deezer for this same purpose, to be used with research in mind.

0 200 400 600 800

Figure 3.15: Original sample

It is capable of separating the sample up to 5 different channels: vocals, drums, bass,
piano and other instruments. We decided to only separate the voice from the rest in order

https://github.com/deezer/spleeter
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Figure 3.16: Voice only sample

to evaluate its performance as an addition to the original dataset (see Figure 3.16). The
vocals tend to significantly influence emotions from quadrant 3 and 4 [1], as variations in
tremolos, vibratos and other techniques can be associated with sad and depressed songs.
In order to do it, the voice input has its own independent branch (working as a feature
extraction solely for the vocals) and a second branch for the original, untampered, dataset
(see Figure 3.17).

!*’

4QAED (Voice only)

900x942x128 2 g8
(900x942x128) g g8 Quadrant
? Spleeter g er ‘g (label)
!
4QAED
(900x942x128)
without the
:‘ output layer !

Figure 3.17: Double branch CNN for voice and original 4QAED inputs

The results proved that the attempt to improve the overall performance or the valence
differentiation was not successful, achieving an F1-Score of 63.38% not being a statisti-
cally significant result compared to the original dataset model results with a p-value of
0.1167>0.05.

Transfer Learning

Efforts were also made in order to study the performance of models trained on different
datasets for different purposes. One major constraint was the fact that not all authors
make their models public and others tend to not display the entire information regarding
the training phase of their network (i.e. number of epochs, batch size). We found a music
genre classification model® that performed well, attaining an F1-Score of 83.2%, on a well-
known public dataset, gtzan? with 1000 samples and 10 target genres: blues, classical,
country, disco, hip-hop, jazz, metal, pop, reggae and rock. It is important to note that
there is some correlation between genres and emotions [56] (e.g. hip-hop and heavy-metal
with Q2, reggae with Q4), which makes transfer learning experiments with this types pf
models worthwhile. Nevertheless, the gtzan dataset has just 100 more samples than the
4QAED dataset, which do not gave us much hope for a great result, not having a great

3https://github.com/Hguimaraes/gtzan.keras/tree/10ec9ac896¢181a5703b70de8987£3689544a350
“https:/ /www.tensorflow.org/datasets/catalog/gtzan
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amount of variation.

Each sample represents a 30-second clip which is split into 1.5 seconds windows with a
50% overlap. The labeling process is done by majority voting, where the most voted genre
is the chosen one. Therefore, the same process was applied to our dataset, the 30-second
were divided and the label, in this case, the quadrant associated with each sample was
decided by majority voting.

Similar to all transfer learning approaches, the model is loaded with the pre-trained weights
and the feature extraction section is frozen (unable to further train). Three layers were
added in order to act as a classifier (see Figure 3.18).

GTZAN : 2DConv 2DConv 2DConv 2DConv 2DConv

(1000x129x128) : 3x3 kernel 3x3 kernel 3x3 kernel 3x3 kernel 3x3 kernel 0.5 Dropout

: 16 filters 32 filters 64 filters 128 filters 256 filters 10

! 512 Dense |, | Dense
| | 2x2 MaxPool 2x2 MaxPool 2x2 MaxPool 2x2 MaxPool 2x2 MaxPool i | (output)

e 0.25 Dropout |:
'\ 0.25 Dropout 0.25 Dropout 0.25 Dropout 0.25 Dropout 0.25 Dropout .

Genre
Genre Model (label)
4 Dense Quadrant
—>
4QAED :
(900x7x129x128)

frozen pre-trained E
weights

Figure 3.18: Genre trained model for transfer learning

The results were very low, with the best F1-Score (related to the total sample) being
19.1%. The F1-Score regarding the 1.5 clips was 36.26% but it is still far worse than the
previous seen models.

Table 3.4: Confusion matrix and F1-Score per quadrant for Genre Transfer learning model

Q1 | Q2 | Q3 Q4 F1-Score

Q1 | 137 | 560 | 438 | 1115 9.53%
Q2| 64 | 539 | 463 | 1184 24.45%
Q3 | 118 | 458 | 501 | 1173 14.92%
Q4 | 100 | 529 | 498 | 1123 27.48%

As trained models for genre and speech emotion recognition are not available, we decided
to experiment with other pre-trained models. One of the most known and used neural
network is the VGG19 [54]. It was trained to detect over a 1000 objects, from different
dog breeds, to musical instruments, to common daily objects like a desk or a can opener.
This is a very complex problem, as it deals with a thousand objects that are, for the most
part, unrelated. This network is very deep, with 19 layers (see Figure 3.19). The training
dataset had 1.3 million images and even with several high end GPUs, it took up to three
weeks to train a single model. It is important to point out that given the complex nature
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of this problem, this network is ready to detect various patterns and the many convoluted
ways they correlate, in order to differentiate from a thousand unrelated objects.

RIRIEIRIRIEIRIRIRIRIEIRIRIRDIRIE IR IR IRIEIRIRIRIREE o
x| 15[ 18113 3%| [ 8113|3313 813 |>I15|%|8]13]|x]5||||8]3%||x|]>%|x%||8 b
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3 0 = ]
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Figure 3.19: VGG19 model for transfer learning

We removed the last dense layer and were able to use two dense layers that acted as clas-
sifiers. The previous convolutional layers were frozen. Surprisingly, after several iterations
for the classifier section we reached an F1-Score of 67.86% (see Table 3.5). This is a

statistically significant result compared to the split dataset model result, with a p-value of
0.0063.

Table 3.5: Confusion matrix and F1-Score per quadrant for VGG19 Transfer learning
model

Q1 Q2 Q3 Q4 F1-Score

Q1 | 1562 | 292 196 200 69.44%
Q2 | 235 | 1835 96 84 80.95%
Q3 | 182 100 | 1410 | 558 60.87%
Q4 | 222 51 616 | 1361 60.20%

Features

As discussed in Section 3.1.2 and using the data used for the SVM (see Section 3.2.1), we
designed a DNN to explore a DL approach to the features. This was also an opportunity
to experiment with a recent addition to the dataset: 11 new features retrieved from the
Spotify® platform [53]. We trained three different models: one for the top 100 features [1],
one for the top 100 features plus the top 11 Spotify features and one for the all set of 1714
features retrieved in [1] (see Figure 3.20).

Given the small number of samples, the network was very difficult to manage even using the
SGD optimizer and a lower learning rate with the Adam optimizer. To put into perspective,
the initial network had 6 layers with 150 neurons each and by the tenth epoch, it overfitted.
Being a DNN and receiving only 100 or even 1714 values, as opposed to the 115200 values

Shttps://developer.spotify.com /discover/

48



(900x1714)

1714
Features

(900x100)

Top 100
Features

100 Dense
4 Dense
(output)

Quadrant

(label)

(Spotify)
(900x111)

Top 111
Features

100 Dense
4 Dense
(output)

Quadrant

(label)

Static MER

4 Dense
(output)

Quadrant
(label)

Figure 3.20: DNN models for features dataset

that the initial CNN receives, the overall training time is heavily reduced accompanied by
the fact that the Adam optimizer is much faster (and much more aggressive) at training.

The model with the top 100 features reached an F1-Score of 72.88% which is a lower
result being statistically significant compared to the 76.0% achieved with the SVM, with
a p-value of 1.04 x 1078, The model with the top 111 features outperformed the one with
the top 100 reaching an F1-Score of 73.83%. The model that received all the features
available reached an F1-Score of 82.34%, being a statistically significant improvement
over the previously best performing model with this dataset with a p-value of 6.01 x 10726
(see Table 3.6).

Table 3.6: Confusion matrix and F1-Score per quadrant for the DNN with all 1714 features

Q1 Q2 Q3 Q4 F1-Score
Q1 | 1910 | 143 93 104 83.79%
Q2| 110 | 2030 | 75 35 89.35%
Q3 | 68 87 | 1847 | 237 79.93%
Q4 | 221 35 365 | 1629 76.32%

The latter model suffered the most changes, as it constantly overfitted, which is expected
as the higher dimensionality and much higher number of learnable parameters (over one
million as opposed to fifteen thousand) are the best ingredients for the model to adapt too
well to the training data. To handle this, a dropout layer was added, the number of epochs
was reduced to 10 and we limited the maximum training accuracy the model could reach
to 90% before stopping the training phase.

Features + 4QAED

We combined both the CNN and DNN models with the aim to improve the performance of
the DNN model with all the features (see Figure 3.21). For this, we trained the DNN model
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Figure 3.21: Hybrid model with pre-trained features model and 4QAED

and froze its weights for every fold. We then loaded the model and proceeded to only train
the CNN with the original 900 melspectrograms input. A hidden layer and the output
layer were added to combine the information from the two branches. The model reached
an F1-Score of 88.45%, proving to be a statistically significant improvement compared to
the DNN trained solely on the features, with a p-value of 3.6367 x 10717,

The difference is especially significant regarding the fourth and third quadrants when
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compared to previous models, which still remain the hardest to differentiate (see Table
3.7).

Table 3.7: Confusion matrix and F1-Score per quadrant for the CNN-DNN hybrid model

Q1 Q2 Q3 Q4 F1-Score

Q1 | 2067 | 33 44 106 89.13%
Q2| 128 | 2026 | 61 35 92.11%
Q3 64 59 1882 | 235 86.58%
Q4 | 120 21 119 | 1990 85.98%
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3.3 Results Analysis

All the best model’s hyperparameters, results and time of computation are present in Table
3.8.

Overall, it is easy to say that the reduced number of samples is the main problem for the
CNN approach. Splitting the data into 15-second clips improved the model’s ability to
generalize (see Figure 3.22). We can see that the split dataset model takes more iterations
to reach the same training accuracy as the model trained on the original, untampered
dataset.
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(a) CNN (trained on the original 30-second (b) CNN (trained on the split 15-second
dataset - 900 samples) F1-Score evolution dataset - 1800 samples) F1-Score evolution
per epoch per epoch

Figure 3.22: Model evolution over 200 epochs

As seen in the graphs, it is very difficult for the model to generalize and have a a good
performance on the test set. This is true for almost every model and can be associated,
once again, with the small number of samples.

It is important to mention that although giving the model more data is important, it is
not the answer. Several experiments were made with only 1, 2, 5 and 10-second clips and
it did not translate into better results. The same can be said, for example, for the audio
augmentation dataset where the individually augmented data did not improve the overall
result, only all the data combined brought some robustness to the model.

Related to the transfer learning model, trained on the genre dataset, a possible explanation
can be found for the poor performance. According to study by Griffiths et al. [56], the
perceived emotions of genres such as blues, classical, reggae and jazz can be associated
with a sad and relaxed emotion which is associated by the authors as a quadrant 3 and
quadrant 4 emotion, respectively. This can be one of the reasons for the model results as
the model seemed to deviate towards the fourth quadrant (see Table 3.4). The accuracy
for the third and fourth quadrants are the worst, for all models and this is a recurring
theme in the MER and MEVD world [6], as it easier to perceive the difference between
positive and negative arousal than positive and negative valence, even for us, annotators.

Regarding the DNN models, and applicable to all models, the initial thought to create a
deep network to take full advantage of the server capabilities did not work as it became
clear that more parameters generally meant less accuracy in the test set. A smaller dimen-
sionality usually means that the data is less sparse and more statistically significant for
the model to learn from. This, surprisingly, proved not to be the case for the DNN trained
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on all 1714 features but it is crucial to keep in mind that the training phase was heavily
limited and extra efforts were made for the model not to overfit as explained previously.

The computational time it took for each network to train was recorded but it became
logical that the overall combinations of different hyperparameters, number of trainable
parameters as well as different datasets was too complex to be able to draw any specific
conclusion regarding the elapsed time. Adding to this, the server, as previously discussed,
was not only dedicated to these experiments. In other words, the resources were not a
stable variable. However, it can be said that besides the experiment with the dataset split
into 2s clips with a 12.5% overlap, the maximum elapsed time was 996.7 minutes which is
explained by the 1800 samples, which is not a huge amount of time given the number of
samples.

A key aspect to note is that this computational time refers to the training and testing
process only. In other words, when using the model to classify any sample, the model pro-
cesses it in seconds, being the transformation from audio to melspectrogram the most time
consuming computation. This represents a huge advantage when compared to a traditional
ML approach, where the feature extraction represents a much more time consuming step.
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Table 3.8: Best results for DL static MER approaches

Model Input Filters | # of Optimizer Batch | Epochs Fi- F1- Time
param- (lrate) Score Score | (min)
eters (mean)| (std)
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Chapter 4

Music Emotion Variation Detection

The purpose of this section is to introduce the data used for the MEVD problem as well
as to explain the process and the decisions behind the experiments.

4.1 Data

The original dataset used by Yang et al. [57] contained the arousal and valence values
annotated across 25 seconds clips of 194 different songs. Various problems regarding this
dataset were addressed by Panda [47] which resulted in a continuous annotation of 29 entire
songs from the same data. The original dataset presented a significant proximity to the
origin of the arousal and valence axis with over 71% of the songs being in the |0, 0.5] interval
for both arousal and valence values. From that dataset, the full songs were extracted and
Panda proposed that the oriental songs were excluded, leaving 57 entire songs. These were
annotated continuously by two annotators and only samples with a 80% or more agreement
rate were considered. This downsampling process, although necessary, brought down the
number of songs to 29 and the quadrant distribution poses an even more difficult problem
as, for example, the third quadrant is strongly underrepresented (see Figure 4.1).

Total Quadrant Labels

25000 -

20000

15000 4

Number of clips

10000 4

5000 4

Quad 1 Quad 2 Quad 3 Quad 4
Quadrant

Figure 4.1: Total quadrant distribution

As for the continuous annotations for each song, we can see that a maximum of two
quadrants are represented in a single song. Also, apart from one song, in all cases of songs

o6



Music Emotion Variation Detection

where only one quadrant was identified, that quadrant is the fourth one (see Figure 4.2).

Quadrant Labels per Song

Q1
Q2
Q3

4000 -

3000

2000

Number of clips

1000

0 5 10 15 20 25 30
Song

Figure 4.2: Quadrant distribution per song

The dataset was tested with 1 and 2-second windows and with an overlap of 250 as
well as 100 milliseconds.

4.2 Methods and Results

The purpose of this section is to explain the MEVD approaches and their results. It
is important to note that every model was evaluated with a 4-fold cross validation
repeated 10 times. The reason why a 4 fold was chosen was the need for the training
set to be significantly larger than the test set while still maintaining a test set with all
quadrant being present (21 for training, 8 for testing).

4.2.1 Deep Learning

The main dataset that was used was the 2-second windows with a 100-millisecond overlap as
the 1 second windows did not provide the model with the sufficient information given that
the accuracy in the test set did not surpass the 20% accuracy rate. The 100 milliseconds
overlap was chosen as it gave more samples per song, a total of 296930 samples.

Unfortunately, the chosen dataset did not make a major significance as the primary problem
remained: overfit. Attempts were made in order to fight this, such as pre-training the model
with the 900 samples dataset (sampled at 22kHz to match the window size of the MEVD
dataset) split into 2-second windows with the 100 milliseconds overlap.

The pre-training of the feature extraction section of the network was made with a sequence-
to-one approach (see Figure 4.3), which means that a series of, in this case 281 clips
representing the 2-second windows, runs through the model before it returns a single
output, which refers to the entire sequence of windows. Therefore, we have an output for
each 30-second sample. This approach is different from the one used in the MEVD models,
which is a sequence-to-sequence method, where each output corresponds to a single frame,
a 2-second window (see Figure 4.3 and 4.5).

In the end, the result did not differ, as the best model (see Figure 4.4) outputted an F1-
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Figure 4.3: Static CNN-LSTM model
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Figure 4.4: MEVD CNN-LSTM model

Score of 20.25% with an accuracy of 47.5%. This was reached using a similar approach
to the static models, with three convolutional layers and a dropout layer in between, to
prevent the model from overfitting. The LSTM layer was added to account for changes
given that, as previously explained, it can recognize past results. In order to try to give
more information to the model, a BILSTM layer was used (see Figure 4.5) but the results
were not statistically significant, with an F1-Score of 20.68% and an accuracy of 49.1%.
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Figure 4.5: MEVD CNN-BiLSTM model

4.3 Results Analysis

Overall, the results do not impress but they follow the same line as the results from Panda’s
MEVD approach [47] (accuracy of 47.42%), suggesting that there is a glass ceiling with this
dataset due to the low amount of samples. One of the issues is that the initial model, even
being pre-trained on the 4QAED dataset, after a few epochs immediately started to assign
the same quadrant to the songs that had very few changes in terms of emotion (see Figure
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4.6). As a consequence, the number of neurons in the latter layers had to be stripped-down
(see Figure 4.4 and 4.5). It is also clear that the model struggles to give an accurate label
depending on the train and test set, as the standard deviation on both models results
reached a value much greater than any model from the static evaluation with 57.28% for
the CNN-LSTM model and 51.02% for the CNN-BiLSTM model (see Table 4.1).

Several different methods were attempted to make the prediction significantly softer, that
is to say, to control the sudden peaks and valleys present in the output labels across the
song (see Figure 4.6a). Such methods consisted in saving the output labels for each clip
and creating a DNN that received it as an input, trained based on the real labels per clip.
However, this did not perform as expected. Given the various different sizes possible for
the output (different size songs), it consistently trained the model to output the same label
for the entirety of the song. We discovered that by using the mode, with a 5 clip window,
the visual output improved (see Figure 4.6b). However, it did not translate into a better
F1-Score or accuracy.
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Figure 4.6: MEVD model output for the test set over the entire duration of the songs

In terms of computational effort, the RNN layers, namely the LSTM and BiLSTM layers,
required much more training time, as the dataset had to be split into smaller samples and
the number of trainable parameters increased, specially in the model with the input data
of the split 4QAED dataset, taking over 33 hours to train on a 10-fold cross validation.

All the best model’s hyperparameters, results and time of computation are present in Table
4.1.

Table 4.1: Best results for DL MEVD approaches

Model Type Filters | # of Optimizer Batch | Epochs F1- F1- Time
param- (Irate) Score Score | (min)
eters (mean)| (std)

16
D Dataset MEVD 29 Mu- | 16 449,850 | SGD 1 50 0.2025 | 0.5728
sics - Melspectro- 16 (0.01) 512.5
gram

MEVD Dataset 16

CNN-BiLSTM MEVD 29 Mu- 16 894,550 SGD 1 50 0.2068 0.5102 545.4

sics - Melspectro- 16 (0.01)
gram

Split Data 16

(2s/250ms) MEVD 29 Mu- 16 1,914,200 Adam(0.005) 50 80 0.3447 0.1286 2011.7

CNN-LSTM sics - Melspectro- 16

gram
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Chapter 5

Conclusion and Future Work

The aim of this chapter is to summarize and briefly discuss the main findings and contri-
butions from this project. As several different approaches were tackled, we feel that we
successfully explored the datasets and achieved significant results (Section 5.1). However,
some important aspects deserve further attention in future work (Section 5.2).

5.1 Conclusion

In retrospect, the expected time to create and test all approaches above was not realistic.
Being the first time working with DL models (with a real-world dataset), especially with
CNNs, the planed deadlines were not pragmatic. The extended time frame allowed for a
better dive into different perspectives and fresh technologies such as the GAN models, and
the Spleeter tool, but more importantly, it was possible to apply the knowledge gained
along the project to approaches such as the DNN with the input of all the features. To
put into perspective, in the early stages, this model’s performance was so poor that we
considered not including it. This and several other performance improvements, as well as
a wider range of experiments than expected, goes to show the effect of a better experience
and familiarity with the technologies and the problem at hand.

Another aspect to note is the infinite combination of possible hyperparameters and archi-
tectures that can (and should) be tested. Our aim was to cover as many technologies and
different methods as possible, with a primary focus on static MER. Evidently, an effort
was made to reach the best possible results within the several approaches and, fortunately,
that was the case. The hybrid model proved to be the best approach with an F1-Score of
88.45%, the best result so far in the literature for the dataset in question.

As previously pointed out, the number of samples is the primary problem of both datasets,
predominantly for the MEVD dataset as the model was not able to perform better than
an F1-Score of 20.68%. The use of LSTM layers also did not bring any improvement to
the static evaluation. One possible reason is the effective size of the window, as it can be
too small for the model to learn from.

5.2 Future work

Therefore, we propose that the following points, be considered for future experiments:
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Conclusion and Future Work

e extending the database for both the static MER and MEVD problems, with a special
consideration for the MEVD;

e diving deeper into the audio augmentation solutions, for both static MER and MEVD
problem as it proved to improve the overall result (static MER);

e tuning and experimenting with different architectures and hyperparameters for the
DL approaches;

e experimenting with various others parameters for the creation of the mel-spectrogram;

e exploring a different method to smooth out the output from the MEVD models in
order to prevent unexpected changes and hopefully raise the results;

e experimenting with a sequence-to-one approach for the MEVD problem (i.e. dividing
the dataset in a way that a series of clips correspond to a single output instead of
being an output for each clip).

We optimistically hope that, by following these suggestions and with a great effort and
dedication, higher results can be reached.
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Appendix

Appendix A

Table 1: Top 100 features used by Panda et al. [1]

Feature Type | Name

Standard Fluctuation (std)
Standard Fluctuation (skewness)
Standard Fluctuation (max)
Standard Events Density
Standard High-frequency Energy (std)
Standard High-frequency Energy (skewness)
Standard High-frequency Energy (min)
Standard Spectral Flux (skewness)
Standard Spectral Centroid (std)
Standard Spectral Skewness (std)
Standard Spectral Skewness (max)
Standard Spectral Entropy (std)
Standard Spectral Entropy (min)
Standard Inharmonicity (mean)
Standard Inharmonicity (std)
Standard Inharmonicity (min)
Standard Tonal Centroid 3 (std)
Standard Rolloff (MeanA /StdM)
Standard MFCC'0 (MeanA /StdM)
Standard MFCC1 (MeanA /StdM)
Standard MFCCO (StdA /MeanM)
Standard MFCC1 (StdA/MeanM)
Standard Rolloff (StdA /StdM)
Standard MFCC1 (StdA/StdM)
Standard Rolloff (mean)

Standard MFCC1 (mean)
Standard MFCC1 (std)

Standard MFCC1 (max)

Standard LSP? 1 (mean)
Standard LSP 3 (min)

Standard LSP 4 (std)

Standard LSP 4 (min)

Standard LSP_5 (std)

Standard LSP 5 (min)

Standard SFM® _ 6 (mean)
Standard SFM 7 (mean)
Standard SFM 7 (skewness)
Standard SFM _ 8 (skewness)
Standard SFM_ 9 (mean)
Standard SFM_ 9 (skewness)
Standard SFM 10 (skewness)
Standard SFM 11 (skewness)
Standard SFM 12 (mean)
Standard SFM 15 (mean)
Standard SFM 15 (std)

Standard SFM 17 (std)
Standard SCF™_9 (mean)
Standard SCF _ 10 (mean)
Standard SCF 11 (mean)
Standard SCF 12 (mean)
Standard SCF_13 (mean)

'Mel-Frequency Cepstral Coefficients
2Line Spectral Pairs

3Spectral Flatness Measure
4Spectral Crest Factor
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Feature Type

Name

Standard SCF_ 15 (mean)

Standard SCF_ 15 (std)

Standard SCF_16 (std)

Standard SCF 17 (mean)

Standard FFT® Spectrum - Average Power Spectrum (mean)

Standard FFT Spectrum - Average Power Spectrum (median)

Standard FFT Spectrum - Spectral 2nd Moment (median)

Standard FFT Spectrum - Skewness (median)

Standard Dynamic Loudness (C & F) - Sharpness (std)

Standard Loudness (MG & B PsySound2) - Loudness (skewness)

Standard Loudness (MG & B PsySound2) - SharpnessA (skewness)

Standard Loudness (MG & B PsySound2) - Volume (skewness)

Standard Loudness (MG & B PsySound2) - Tonal Dissonance (HK) (std)

Standard Loudness (MG & B PsySound2) - Tonal Dissonance (S) (skewness)
Standard Loudness (MG & B PsySound2) - Spectral Dissonance (HK) (max)
Standard Loudness (MG & B PsySound2) - Spectral Dissonance (HK) (std)

Standard Loudness (MG & B PsySound2) - Spectral Dissonance (S) (skewness)
Standard Pitch (Terhardt) - Chord Change Likelihood (median)

Standard Pitch (SWIPEP) - SWIPEP Pitch Strength (mean)

Standard Loudness (Moore, Glasberg and Baer) - Short-term Loudness (skewness)
Novel ORIGINAL-EXPRESSIVE TECHNIQUES-Glissando Extent (Std)

Novel ORIGINAL-EXPRESSIVE TECHNIQUES-Glissando Length (Std)

Novel ORIGINAL-EXPRESSIVE TECHNIQUES-Glissando Slope (Std)

Novel ORIGINAL-EXPRESSIVE TECHNIQUES-Glissando Direction (Up)

Novel ORIGINAL-TEXTURE-Musical Layers (Mean)

Novel ORIGINAL-TEXTURE-Musical Layers (Max)

Novel ORIGINAL-TEXTURE-Musical Layers (Std)

Novel ORIGINAL-TEXTURE-ML1-Monophonic Texture (Percentage)

Novel ORIGINAL-TEXTURE-State Transitions ML1 - MLO (Per Sec)

Novel ORIGINAL-TEXTURE-State Transitions ML1 - ML2 (Per Sec)

Novel ORIGINAL-TEXTURE-State Transitions ML2 - ML3 (Per Sec)

Novel ORIGINAL-EXPRESSIVE TECHNIQUES-ART-Other Notes Duration (Mean)
Novel ORIGINAL-EXPRESSIVE TECHNIQUES-Tremolo Notes in Cents (Mean)
Novel ORIGINAL-EXPRESSIVE TECHNIQUES-Tremolo Notes in Cents (Max)
Novel ORIGINAL-EXPRESSIVE TECHNIQUES-Tremolo Notes in Cents (Min)
Novel ORIGINAL-EXPRESSIVE TECHNIQUES-Tremolo Higher Notes Coverage (C4+)
Novel ORIGINAL-EXPRESSIVE TECHNIQUES-Vibrato Rate (Std)

Novel ORIGINAL-EXPRESSIVE TECHNIQUES-Vibrato Rate (Kurtosis)

Novel ORIGINAL-EXPRESSIVE TECHNIQUES-Vibrato Extent (Std)

Novel ORIGINAL-EXPRESSIVE TECHNIQUES-Vibrato Extent (Kurtosis)
Novel ORIGINAL-EXPRESSIVE TECHNIQUES-Vibrato Length (Kurtosis)
Novel ORIGINAL-EXPRESSIVE TECHNIQUES-Vibrato Length (Skewness)
Novel ORIGINAL-EXPRESSIVE TECHNIQUES-Vibrato Base Freq (Min)

Novel ORIGINAL-EXPRESSIVE TECHNIQUES-Vibrato Base Freq (Std)

Novel ORIGINAL-EXPRESSIVE TECHNIQUES-Vibrato Base Freq (Kurtosis)
Novel ORIGINAL-EXPRESSIVE TECHNIQUES-Vibrato Higher Notes Coverage (C4+)
Novel ORIGINAL-EXPRESSIVE TECHNIQUES-Vibrato to Non Vibrato Notes Ratio
Novel ORIGINAL-VAT-Probability of Creaky Voice (Skewness)

Novel VOICE-TEXTURE-State Transitions MLO - ML1 (Per Sec)

5Fast Fourier Transform
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