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Chapter 1

Introduction

Smooth problems with a twice continuously differentiable objective function frequently arise in the
unconstrained nonlinear optimization literature and in its applications. Efficient strategies to address
this class of problems are typically based on Newton’s method, which requires the solution of a linear
system at each iteration. The matrix of this system is the Hessian of f and its right-hand side is the
negative of the gradient. In many application instances, the Hessian is not available for factorization or
is too large to factorize at a reasonable cost, but Hessian-vector products are available and affordable.
In such cases, the linear systems cannot be solved directly, but an iterative method can be applied.
When solving certain application problems, it becomes relatively cheap to compute true Hessian-vector
products for arbitrary vectors using the problem’s structure. Examples are problems governed by
differential equations [1, 6, 43] and the training of neural networks for deep learning [45, 48]. When
the problem structure cannot be used to calculate Hessian-vector products, one can use techniques from
numerical analysis and computer science to accurately compute these products, either by applying
finite-differences using gradient calls [33, 52], or by using automatic differentiation techniques
(see [4, 7, 38]), in particular those tailored to the calculation of Hessian-vector products [26, 41].

When one is using an iterative method to solve the linear system, it is known that there is a
residual error in the application of the iterative solver and that such a residual can be made smaller by
asking more from the solver. This reasoning gave rise to the so-called inexact or truncated Newton
methods, which have formed an important numerical tool for many decades. (We will compare the
proposed approaches against the inexact Newton method.) It is well known since the contribution [21]
what conditions one should impose on the norm of the residual of the linear system to obtain linear,
superlinear, or quadratic local convergence in the iterates of the underlying method (see [52]). Global
convergence of inexact Newton methods is also well studied [27, 40]. One knows well also how to
deal with negative curvature while solving the linear system using Krylov-type methods (conjugate
gradients or Lanczos), either using a trust-region technique [35, 61] or a line search [50].

When Hessian or Hessian-vector products are not available, estimating the Hessian within an
optimization approach can then play an important role, however the existing approaches are not
entirely satisfactory. If the Hessian matrix is sparse and its sparsity pattern is known, the approach
in [30] enforces multiple secant equations in a least squares sense, solving then a positive semi-
definite system of equations in the nonzero Hessian components. Their approach does not show
a significant improvement compared to the L-BFGS or Newton trust-region methods. In [58] the
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2 Introduction

Hessian is estimated by finite differences in the gradient, but by dividing the Hessian columns first into
groups. Using symmetry and the known sparsity of the Hessian, it is possible to find approximations
to different Hessian columns at once. This method is cheap in computer arithmetic and provided
better results when compared to [20]. A more recent approach [34] imposes the secant equations
componentwise, leading to fewer equations when taking into account the available sparsity pattern.
The numerical results show that the algorithm can find the Hessian approximation fast and accurately
when the number of nonzero entries per row is relatively low.

In this dissertation, two techniques are proposed and analyzed for the Hessian-free scenario where
only Hessian-vector products are available for use. Our goal is to use as few of these products as
possible without losing the ability to converge to a solution or a stationary point of the original
problem. Having this in mind we form a quadratic model around a point x, using function and gradient
values at x and function values at the interpolating points yℓ, ℓ= 1, . . . , p. The Hessian matrix H of
this model or some kind of Newton step has then to be recovered.

Our first approach enriches these interpolating conditions with the information coming from a
single true Hessian-vector product ∇2 f (x)(y− x), for a point y different from any of the yℓ’s of those
conditions. In fact, to avoid degeneracy in the enriched interpolating conditions (which are affine
conditions on H), one has to choose y differently from those yℓ’s and one cannot consider more
than one of these products. The computation of the model Hessian is carried out by minimizing its
norm or its distance to a previous model Hessian (say from a previous iteration of the optimization
method)1 subject to the enriched interpolating conditions. Such a Hessian recovery can then lead to
the computation of an approximate Newton step.

Our second approach allows us to consider more than one Hessian-vector product in the model
formulation. The interpolating conditions are now enriched by the second-order information coming
from the Hessian-vector products ∇2 f (x)(yℓ− x), ℓ= 1, . . . , p. Then, avoiding degeneracy and the
inverse of the Hessian model, the recovery is done in the space of the Newton direction models, using
a modified set of enriched interpolating conditions. Again, the computation of the Newton direction
model is carried out by minimizing its norm or its distance to a previous Newton direction model
subject to the modified enriched interpolating conditions.

In both cases we will provide some theoretical support for the recoveries by proving that the
absolute error (in model Hessian or in model Newton direction) is decreasing in the case where
the enriched interpolating conditions are underdetermined. The main results will be established
for the case where f is quadratic but theoretical insight is given for the non-quadratic case as well.
We will also provide accuracy-type upper bounds for the absolute error coming from the enriched
interpolating conditions (in a determined situation). We report numerical results to confirm that both
approaches are sound and can lead to a significant reduction in the number of Hessian-vector products.
The dimension of the problems tested is rather small. The linear algebra is dense, and the number
of function evaluations used can be relatively high. It is left for future research the application to

1The case of minimizing the distance to a previous model Hessian resembles the spirit of quasi-Newton methods [22, 23,
28] when they are motivated by least-change secant updating principles [24]. Limited memory quasi-Newton methods [46,
51] have been extensively used for large-scale problems since they avoid the storage and the factorization updates of n×n
secant/quasi-Newton approximation matrices. Anyhow, quasi-Newton or limited memory quasi-Newton techniques are
typically applied when no second-order information whatsoever is available.
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medium/large-scale problems. The second approach based on a Newton direction model can be also
easily parallelized.

The two main approaches proposed in this dissertation pave the way for three ideas that can be
explored to extend or improve the methodology underlying the recovery problems. In particular, two
additional recovery approaches can be developed based on the enriched interpolating conditions used
in the Newton direction recovery problem. A first approach concerns the possibility of determining
both the Newton direction and the Hessian inverse by applying an appropriate transformation to the
interpolating conditions. The idea is to recover the product of the whole inverse times a vector rather
than storing the whole inverse, which is computationally expensive. A second approach aims to
recover a modified Newton direction where a multiple of the identity matrix is added to the Hessian to
ensure positive definiteness, as required by line-search methods to obtain global convergence. Such a
direction can be obtained by a further adjustment of the interpolating conditions. Finally, the recovery
of the Newton direction may be enhanced by adopting an iterative solver, which may allow for parallel
procedures in order to improve the overall performance.

This thesis is organized as follows. In Chapters 2 and 3, we briefly review algorithms for un-
constrained nonlinear optimization and interpolation models used in derivative-free optimization,
respectively. In Chapter 4, the most popular Hessian approximation approaches in nonlinear optimiza-
tion are presented. Chapters 5 and 6 focus on the Hessian-free scenario where only Hessian-vector
products are available. In particular, in Chapter 5 we present the approach for recovering the model
Hessian, while in Chapter 6 we describe the approach for recovering the model Newton direction. For
both cases, we report illustrative numerical results on small problems. Some other ideas to extend or
improve the general methodology are explored in Chapter 7. The thesis is finished in Chapter 8 with
some final remarks and conclusions.

The notation O(A) will be used to represent the product of a constant times A whenever the
multiplicative constant is independent of A. All vector and matrix norms are Euclidean, unless
otherwise specified. The notation A† is used to denote the Moore-Penrose generalized inverse of a
matrix A.





Chapter 2

Review of algorithms for unconstrained
nonlinear optimization

This chapter reviews the main classes of methods for unconstrained nonlinear optimization, focusing
on the algorithms that are of interest for the methodology proposed in this thesis. It is mainly based
on the books [52] and [62].

2.1 Overview of algorithms for unconstrained nonlinear optimization

Given the following unconstrained minimization problem

min
x∈Rn

f (x), (2.1)

where f : Rn→ R, all the algorithms considered in this chapter start from an initial point, denoted
by x0, and produce a sequence of iterates {xk}∞

k=0 until a reasonable stopping criterion is satisfied.
Such a criterion is satisfied when either no more progress can be made by the algorithm or an optimal
solution has been approximated with sufficient accuracy. To move from the current point xk to the
next iterate, information about the function f at xk may be used together with ∇ f computed at the
same point, according to the class of the algorithm chosen. The evolution of the algorithm may be
determined also by exploiting the information from the previous iterates x0, x1, · · · , xk−1.

Two fundamental strategies are adopted to develop algorithms for unconstrained nonlinear opti-
mization: line-search and trust-region. The former strategy is based on determining a suitable stepsize
along given search directions, while the latter deals with optimizing a model of the objective function
within a ball where the model can be considered a good approximation. To some extent, the two
strategies can be viewed as opposite: while in the line-search algorithms the first decision is the search
direction and then a suitable stepsize is computed, in trust-region methods first the radius of the ball
is chosen and then a step optimizing the model of the function within the resulting trust region is
determined. Line-search methods are described in Section 2.2, while trust-region algorithms are
reviewed in Section 2.3. Moreover, examples of these types of algorithms are given in Sections 2.4 and
2.5, where we focus on inexact Newton methods and quasi-Newton methods, which show remarkable
convergence properties despite relaxing some properties of Newton’s method. In particular, while the
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6 Review of algorithms for unconstrained nonlinear optimization

former methods drop the requirement for an exact solution of the Newton system, the latter do not
require the knowledge of the Hessian matrix.

Before going into details, it is important to introduce the terminology used to measure the
performance of the algorithms in terms of rate of convergence. To this purpose, let {xk} be a sequence
in Rn that converges to x∗. The convergence is said linear (or Q-linear) if a constant r ∈ (0,1) exists
such that

∥xk+1− x∗∥
∥xk− x∗∥

≤ r, for all k sufficiently large.

The convergence is said superlinear (or Q-superlinear) if

lim
k→∞

∥xk+1− x∗∥
∥xk− x∗∥

= 0, for all k sufficiently large.

The convergence is said quadratic (or Q-quadratic) if a positive constant M (not necessarily less than
1) exists such that

∥xk+1− x∗∥
∥xk− x∗∥2 ≤M, for all k sufficiently large.

Note that a quadratically convergent sequence converges faster than a superlinearly convergent
sequence, which, in turn, converges faster than a linearly convergent sequence.

2.2 Line-search methods

In a generic iteration k, line-search methods choose a direction dk and, starting from the current iterate
xk, search a new iterate with a lower objective function value along this direction. The step used to
move along dk can be determined by solving the following problem

min
α>0

f (xk +αdk), (2.2)

which allows finding a positive scalar α , referred to as the step length or the stepsize. If at each
iteration αk is required to exactly solve problem (2.2) in the direction dk (i.e., αk = α∗), the line search
is said exact and αk is the optimal step length. Therefore, the maximum benefit is obtained from the
direction dk since the optimal stepsize allows achieving the point with the minimum function value
along dk. However, computing an exact solution for problem (2.2) may be very expensive and, in
practice, unnecessary since an approximate solution allows achieving satisfactory performance by
requiring a lower number of function evaluations. Hence, we usually find an approximate solution αk

of problem (2.2) that leads to a new iterate where the objective function value is lower with respect to
the current point, i.e., f (xk)− f (xk +αkdk)> 0. Since the optimality requirement is relaxed, such a
line search is called inexact or approximate.

The iteration of a line-search algorithm can be written as follows

xk+1 = xk +αkdk. (2.3)

Once a new point is obtained, a new search direction and step length are computed based on the
information collected, and the process is then repeated. An effective choice of both the search direction
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dk and the step length αk guarantees the success of the line search. In particular, most line-search
algorithms require dk to be a descent direction, i.e., dT

k ∇ f (xk)< 0, which ensures that the value of
the objective function f can be reduced along dk. Several options are available for the choice of the
search direction, and a different algorithm is associated with each of them.

The steepest-descent direction−∇ f (xk) ensures the largest amount of decrease in f . The resulting
optimization algorithm is referred to as the steepest-descent method. Although the anti-gradient
appears to be a reasonable choice, the rate of convergence of the steepest-descent method towards
the optimal solution is linear, which is a slow rate. Therefore, a better choice as a search direction is
given by

dk =−H−1
k ∇ f (xk), (2.4)

where Hk is a symmetric and nonsingular matrix. While in Newton’s method Hk is the exact Hessian
∇2 f (xk) of the function f at xk, in quasi-Newton methods Hk is an approximation to the Hessian that
is updated at each iteration by means of the additional knowledge obtained. Both types of directions
guarantee fast rates of convergence towards the optimal solution due to the use of the Hessian or
an approximation to it, thus demonstrating the importance of the knowledge of the second-order
derivatives. In particular, while Newton’s method shows a quadratic local convergence rate, in quasi-
Newton method a superlinear rate is achieved. Note that the steepest-descent method can be obtained
from (2.4) by simply considering the identity matrix I as Hk. The direction dk is a descent direction if
Hk is a positive definite matrix since dT

k ∇ f (xk) =−∇ f (xk)
T H−1

k ∇ f (xk)< 0 (assuming that ∇ f (xk)

is not zero).

An important class of algorithms for solving large-scale problems is represented by nonlinear
conjugate gradient methods, whose search direction can be expressed as

dk =−∇ f (xk)+βkdk−1,

where the scalar βk ensures that the directions dk and dk−1 are conjugate with respect to Hk, i.e.,
dT

k Hkdk−1 = 0, which is a property that plays a crucial role. Although these methods do not show the
fast local convergence rate of Newton’s method or quasi-Newton methods, storage of matrices is not
required, thus showing a significant advantage.

Once a search direction dk is fixed, a suitable stepsize must be chosen to identify the next iterate
along dk. Sections 2.2.1 and 2.2.2 review the conditions used to identify good values of the stepsize
and the main techniques adopted to determine such values.

2.2.1 Inexact line search techniques

Given a search direction dk, the goal of an exact line search is to find a step length α such that

f (xk +αkdk) = min
α>0

f (xk +αdk), (2.5)

or,
αk = min{α|∇ f (xk +αdk)

⊤dk = 0, α > 0}.

In other words, it aims to find the value of α that minimizes the function f along dk.
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Let us define the function
φ(α) = f (xk +αdk), α > 0. (2.6)

In general, solving the one-dimensional problem in (2.5) to optimality is not very effective, especially
when the iterate is far away from the optimal solution of the original unconstrained problem, due to
the significant number of function evaluations required. Therefore, in many optimization methods, a
step length is accepted as long as it allows achieving a sufficient decrease of the objective function
value. Although problem (2.5) is not solved exactly, the overall performance of the optimization
algorithm is not affected and a noticeable saving in the computational effort is obtained.

There are various termination conditions for line search algorithms. A very simple one is to choose
αk such that f (xk +αkdk)< f (xk). However, for some problems this is not sufficient to guarantee that
the sequence of iterates produced by the algorithm will converge to the optimal solution x∗. To avoid
this behavior, we have to enforce a sufficient decrease condition, which is given by

f (xk +αdk)≤ f (xk)+ c1α∇ f (xk)
⊤dk, (2.7)

where c1 ∈ (0,1). The sufficient decrease condition requires that the reduction of function value f is
proportional to both the step length αk and the directional derivative ∇ f (xk)

⊤dk. Inequality (2.7) is
also called the Armijo condition. Note that the sufficient decrease condition cannot ensure that the
algorithm performs steps that are sufficiently large and makes reasonable progress. Indeed, since in
line-search methods dk is supposed to be a descent direction, even small values of α satisfy the Armijo
condition. To avoid that small values of α are accepted, a second condition needs to be introduced by
requiring αk to satisfy

∇ f (xk +αkdk)
⊤dk ≥ c2∇ f (xk)

⊤dk, (2.8)

where c2 ∈ (c1,1). The inequality (2.8) is called the curvature condition. It is easy to find that the
left-hand side of (2.8) is the derivative φ ′(αk). That is to say, the curvature condition requires the
slope of φ at αk to be greater than or equal to c2 times the slope φ ′(0). Stopping the line search when
this condition is satisfied makes sense because the function value f can be reduced significantly by
moving along the direction if the slope φ ′(α) is strongly negative. On the other hand, it means that
the function value f cannot be reduced too much if φ ′(αk) is only slightly negative or even positive.
Therefore, it is reasonable to stop the line search procedure. In Newton method or quasi-Newton
method, c2 is typically chosen equal to 0.9, while in nonlinear conjugate gradient methods, c1 is
typically fixed to 0.1.

The sufficient decrease and curvature conditions are also referred to as the Wolfe conditions. We
rewrite them for the sake of clarity as

f (xk +αkdk)≤ f (xk)+ c1αk∇ f (xk)
⊤dk, (2.9a)

∇ f (xk +αkdk)
⊤dk ≥ c2∇ f (xk)

⊤dk, (2.9b)

where 0 < c1 < c2 < 1.

An issue with (2.9a) and (2.9b) is that the stepsize may satisfy the Wolfe conditions even if it is
not close to a minimizer of φ . To resolve this issue, we can force αk to lie in a broad neighborhood of
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a local minimizer or stationary point of φ by requiring the strong Wolfe conditions:

f (xk +αkdk)≤ f (xk)+ c1αk∇ f (xk)
⊤dk, (2.10a)

|∇ f (xk +αkdk)
⊤dk| ≤ c2|∇ f (xk)

⊤dk|, (2.10b)

where 0 < c1 < c2 < 1. In these conditions, we can exclude points that are far away from the stationary
points of φ by ruling out the step length αk whose derivative φ ′(αk) is too positive. Therefore, while
the Wolfe conditions ensure that the stepsize is not too short and the sufficient decrease of the objective
function is achieved, the strong Wolfe conditions ensure that the new points are not very far away
from the stationary points of φ . Lemma 2.2.1 ensures the existence of step lengths satisfying the
Wolfe conditions.

Lemma 2.2.1. Suppose that f : Rn→ R is continuously differentiable. Let dk be a descent direction
at xk, and assume that f is bounded below along the ray {xk +αdk|α > 0}. Then, if 0 < c1 < c2 <

1, there exist intervals of step lengths satisfying the Wolfe conditions (2.9) and the strong Wolfe
conditions (2.10).

It is important to point out that considering the sufficient decrease condition (2.7) without the
curvature condition is not enough to guarantee that the algorithm can make reasonable progress along
the given search direction. However, we can dispense with the extra condition (2.9b) and only use the
sufficient decrease condition to terminate the line search procedure by appropriately choosing the step
lengths of the line-search algorithm. To this end, we introduce the so-called backtracking line search
as follows

Algorithm 1: Backtracking Line Search
Choose ᾱ > 0, ρ ∈ (0,1), c ∈ (0,1).
Set α ← ᾱ .
repeat until f (xk +αdk)≤ f (xk)+ cα∇ f (xk)

⊤dk

α ← ρα.

end (repeat)
Terminate with αk = α .

When we use Algorithm 1 in Newton and quasi-Newton methods, we usually choose the step
length ᾱ equal to 1. However, in other algorithms, such as the conjugate gradient methods and the
steepest-descent method, different values can be chosen. Note that, if dk is a descent direction, an
acceptable step length is eventually found since at the end of the line search αk becomes small enough
to satisfy the sufficient decrease condition (2.7). Moreover, in practice, a different contraction factor
ρ can be chosen in each iteration of the line search. Note that the accepted value αk is either equal to
the initial stepsize ᾱ or within a factor ρ from the previous trial value, i.e., αk/ρ , which was rejected
for being overly large and, accordingly, for violating the sufficient decrease condition.

2.2.2 Interpolation methods in line searches

The idea of interpolation methods used in line-search algorithms is to approximate the univariate
function φ(α) = f (x+αd) by first fitting a quadratic or cubic polynomial in α to known data (φ(α̂)
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and φ ′(α̂) at some point α̂), and then choosing a new value for α by minimizing the fitted polynomial.
In particular, every algorithm of this type is composed of two phases: a bracketing phase, which aims
to find an interval where acceptable values of the stepsize are contained, and a selection phase, which
has the goal to determine the final value of the stepsize within this interval. In the selection phase, the
bracketing interval is reduced by using the information collected across the iterations of the algorithm.
Generally speaking, the interpolation methods enhance the procedure described in Algorithm 1 and
are superior to the section algorithms (such as the golden section method and the Fibonacci method,
which are based only on the comparison of the function values, as described in [62]) when the function
has good analytical properties, such as derivatives that are easily available.

Quadratic interpolation methods

Suppose that the interpolation function in α is constructed by using a quadratic polynomial as follows

q(α) = aα
2 +bα + c. (2.11)

We aim to find a, b, and c by using the data at hand. To this end, three cases are possible according to
the number of points used for the interpolation and the known data.

(1) Quadratic Interpolation Method with Two Points (I)
Given two points α1 and α2, their function values φ (α1), and φ (α2), and one of the derivative
values φ ′ (α1) and φ ′ (α2) (without loss of generality, we assume to know φ ′ (α1) ), we can write the
following system

q(α1) = aα
2
1 +bα1 + c = φ (α1) ,

q(α2) = aα
2
2 +bα2 + c = φ (α2) ,

q′ (α1) = 2aα1 +b = φ
′ (α1) .

(2.12)

Solving (2.12), we determine a,b, and c. We can show that q(α) achieves its minimum at the following
point

ᾱ =− b
2a

= α1−
1
2

(α1−α2)φ ′ (α1)

φ ′ (α1)− φ(α1)−φ(α2)
α1−α2

. (2.13)

Hence, the iteration formula can be written as follows

αk+1 = αk−
1
2
(αk−αk−1)φ ′k

φ ′k−
φk−φk−1
αk−αk−1

, (2.14)

where φk = φ (αk) , φk−1 = φ (αk−1) and φ ′k = φ ′ (αk) .

(2) Quadratic Interpolation Method with Two Points (II)
Given two points α1 and α2, and one of the function values φ (α1) and φ (α2) (without loss of
generality, we assume to know φ (α1)), and two derivative values φ ′ (α1) and φ ′ (α2). With the same
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discussion as above, we obtain that

ᾱ =− b
2a

= α1−
α1−α2

φ ′ (α1)−φ ′ (α2)
φ
′ (α1) . (2.15)

Thus, the iteration scheme is
αk+1 = αk−

αk−αk−1

φ ′k−φ ′k−1
φ
′
k. (2.16)

We can prove (see, e.g., [62, Theorem 2.4.1]) that if φ is three-times continuously differentiable, the
sequence {αk} generated by (2.16) converges to a point α∗, such that φ ′ (α∗) = 0 and φ ′′ (α∗) ̸= 0,
with an order of convergence equal to 1.618.

(3) Quadratic Interpolation Method with Three Points
Given three distinct points α1, α2, and α3, and their function values, we can construct the quadratic
interpolation function by using the following conditions

q(αi) = aα
2
i +bαi + c = φ (αi) , i = 1,2,3. (2.17)

Once we determine a and b by solving equations (2.17), we can write

ᾱ =− b
2a

=
1
2
(α1 +α2)+

1
2

(φ (α1)−φ (α2))(α2−α3)(α3−α1)

(α2−α3)φ (α1)+(α3−α1)φ (α2)+(α1−α2)φ (α3)
. (2.18)

We can prove (see, e.g., [62, Theorem 2.4.3]) that if φ has continuous fourth-order derivatives, the
sequence {αk} generated by (2.18) converges to a point α∗, such that φ ′ (α∗) = 0 and φ ′′ (α∗) ̸= 0,
with an order of convergence equal to 1.32.

We can reduce the bracketing interval by comparing αk+1 with αk after obtaining the new αk+1.
The procedure will continue until the length of the interval is less than a prescribed tolerance.

Cubic interpolation method

The cubic interpolation method approximates the objective function φ(α) by a cubic polynomial.
Four interpolation conditions are required to construct the cubic polynomial p(α). We can use either
function values at four different points, three function values and one derivate value at one point, or
function values and derivate values at two different points. It is worth mentioning that, in general, the
cubic interpolation method has better convergence than the quadratic interpolation method. However,
more information is required, thus resulting in a more expensive computation. Therefore, this kind of
interpolation is often used for smooth functions.

We now focus on the cubic interpolation method that uses the function and derivative values at two
points. In particular, suppose that we know two points a and b, their function values φ(a) and φ(b),
and their derivative values φ ′(a) and φ ′(b). The cubic interpolation polynomial can be constructed as
follows

p(α) = c1(α−a)3 + c2(α−a)2 + c3(α−a)+ c4, (2.19)
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where c1, c2, c3, and c4 are coefficients of the polynomial. From the interpolation conditions on the
function and derivative values we obtain

p(a) = c4 = φ(a),

p(b) = c1(b−a)3 + c2(b−a)2 + c3(b−a)+ c4 = φ(b),

p′(a) = c3 = φ
′(a),

p′(b) = 3c1(b−a)2 +2c2(b−a)+ c3 = φ
′(b).

(2.20)

Moreover, since we want a minimizer of p(α), we write the following sufficient optimality conditions

p′(α) = 3c1(α−a)2 +2c2(α−a)+ c3 = 0,

p
′′
(α) = 6c1(α−a)+2c2 > 0.

(2.21)

By combining (2.20) and (2.21), according to the steps described in [62], we obtain the minimizer of
p(α), namely,

ᾱ = a+(b−a)
w−φ

′
(a)− z

φ
′
(b)−φ

′
(a)+2w

, (2.22)

where z = 3 φ(b)−φ(a)
b−a −φ ′(a)−φ ′(b) and w satisfies w2 = z2−φ ′(a)φ ′(b). It is important to point out

that [62] states that the cubic interpolation method with two points has a convergence rate with order
2.

2.3 Trust-region methods

The main idea of trust-region methods is to build an approximate model of the objective function
around the current iterate and determine the next iterate by minimizing the model within a suitable
region, which is called a trust region, where the model is supposed to be a sufficiently accurate
approximation of the objective function (see, e.g., [15] and [52] for an extensive analysis of these
methods). While line-search methods find first a search direction and then select a suitable step length
along this direction, trust-region methods adopt a different perspective by determining the direction
and the stepsize at the same time.

To ensure that trust-region methods are able to converge to critical points regardless of the initial
point (global convergence property), the model used to approximate the objective function is required
to satisfy Taylor-like error bounds on the quality of the approximation. Let ∆ > 0 be the radius
of the trust region. Global convergence to a first-order critical point requires the model to be fully
linear, which means that the norm of the error in the function values at points within the trust region
is bounded by ∆2, while the norm of the error in the gradient values is bounded by ∆. Global
convergence to a second-order critical point requires the model to be fully quadratic, which implies
stronger conditions. In this case, the norm of the error in the function values is bounded by ∆3, the
norm of the error in the gradient values is bounded by ∆2, and the norm of the error in the Hessian
matrix is bounded by ∆.
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A popular choice is to represent the model used at each iteration as a quadratic function. According
to the Taylor-series expansion of f around the current iterate xk, we have

f (xk +d) = fk +g⊤k d +
1
2

d⊤∇
2 f (xk + td)d, (2.23)

where fk = f (xk), gk = ∇ f (xk), and t is a scalar in the interval (0,1). Therefore, at the k-th iteration,
the following quadratic model m : Rn→ R can be used to approximate the objective function

mk(d) = fk +g⊤k d +
1
2

d⊤Hkd, (2.24)

where Hk is a symmetric matrix. Note that if mk is a first-order Taylor model, then mk(0) = f (xk) and
∇mk(0) = gk = ∇ f (xk); if mk is a second-order Taylor model, we also have ∇2mk(0) = Hk = ∇2 f (xk).
If Hk is chosen to be the true Hessian ∇2 f (xk), we call the method trust-region Newton method.
Moreover, in this case the resulting error in the model function mk is O(∥d∥3). When we use an
approximation Hk to the Hessian in the second-order term, we can prove that the difference between
mk(d) and f (xk +d) is O(∥d∥2), which is negligible when d is very small.

To obtain a minimizer of the objective function f , at each iteration the model mk(d) is used to
approximate the true objective function f within a suitable neighborhood to seek a solution of the
trust-region subproblem

min
d∈Rn

mk(d) = fk +g⊤k d +
1
2

d⊤Hkd s.t. ∥d∥ ≤ ∆k, (2.25)

where ∆k > 0 is the trust-region radius, and ∥ · ∥ could be an iteration-dependent norm, but in the
majority of our discussion, we define ∥ · ∥ to be the Euclidean norm. When Hk is positive definite and
∥H−1gk∥ ≤ ∆k, the solution of (2.25) is the unconstrained local minimum of the quadratic function
mk(d), which is given by the full step dH

k =−H−1
k gk. The solution of the subproblem (2.25) is not so

obvious in other cases, but usually it does not require a high computational expense. Whatever case
we consider, we only need to find an approximate solution to obtain convergence and good practical
behavior.

The radius of the trust region is very important for the effectiveness of the method. If the trust-
region radius is too small, we may lose the chance to move to the minimizer of the objective function
in fewer iterations. If the trust-region radius is too large, the minimizer of the model could be far
away from the minimizer of the function in this region. Therefore, we have to reduce the size of the
region and try again. In practice, the size of the region is chosen according to the performance of the
algorithm during the previous iterations. If the model is reliable in the previous iterations and the
behavior of the objective function along these steps can be accurately approximated, then we enlarge
the trust-region radius. On the contrary, if our model cannot accurately approximate the objective
function in the current trust region, we need to reduce the trust-region radius and try again.

To choose the trust-region radius ∆k, at each iteration we define the ratio between the actual and
predicted reduction, namely,

ρk =
f (xk)− f (xk +dk)

mk(0)−mk (dk)
, (2.26)
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which describes the agreement between the objective function f and the model function mk. Since
the predicted reduction is always positive, if ρk is close to 1, it means that there is good agreement
between the model mk and the function f over this step. Therefore, we can enlarge the trust-region
radius for the next iteration. If ρk is close to zero or negative, we need to shrink the trust region
by reducing ∆k. Note that if ρk < 0, it means that the new objective function value f (xk + dk) is
larger than the current value f (xk) and, accordingly, the step needs to be rejected. The scheme of the
procedure is reported in Algorithm 2.

Algorithm 2: Trust Region

Let ∆̂ > 0, ∆0 ∈ (0, ∆̂), and η ∈
[
0, 1

4

)
.

for k = 0,1,2, · · ·
Obtain dk by (approximately) solving (2.25).
Evaluate ρk from (2.26).
if ρk <

1
4 then ∆k+1 =

1
4 ∆k.

else
if ρk >

3
4 and ∥dk∥= ∆k then ∆k+1 = min(2∆k, ∆̂).

else ∆k+1 = ∆k.
if ρk > η then xk+1 = xk +dk.
else xk+1 = xk.

end (for)

In this scheme, ∆̂ represents an overall bound on the step lengths. If ∥dk∥< ∆k, since the trust-
region radius ∆k does not interfere with the progress of the algorithm, we keep the same radius also
in the next iteration when ρk >

3
4 . In particular, the radius is increased only when ∥dk∥ reaches the

boundary of the trust region.

Now we are going to focus on solving the trust-region subproblem (2.25). For the convenience of
discussion, we drop the iteration subscript k and restate the problem (2.25) as follows

min
d∈Rn

m(d) def
= f +g⊤d +

1
2

d⊤Hd s.t. ∥d∥ ≤ ∆. (2.27)

Moré and Sorensen in [49] show that the solution d∗ of (2.27) satisfies

λ d∗ =−∇m(d∗) (2.28)

for some λ ≥ 0, which means that d∗ and −∇m(d∗) point in the same direction. In general, we can
characterize the solution of the trust-region subproblem by using Theorem 2.3.1.

Theorem 2.3.1. The vector d∗ is a global solution of the trust-region subproblem (2.27) if and only if
d∗ is feasible and there is a scalar λ ≥ 0 such that the following conditions are satisfied:

(H +λ I)d∗ =−g, (2.29)

λ (∆−∥d∗∥) = 0, (2.30)

(H +λ I) is positive semidefinite. (2.31)
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Note that (2.29) is equivalent to (2.28) and, together with (2.30), it implies that when d∗ lies on
the boundary of the trust-region and H is assumed to be the true Hessian, d∗ is the Newton direction.
Moreover, if the condition in (2.31) is replaced by the requirement of positive definiteness, then d∗ is
proved to be unique.

Similarly to line-search methods, we guarantee the global convergence of a trust-region method
by requiring the approximate solution dk to ensure a sufficient reduction in the model. To quantify the
sufficient reduction, we introduce the Cauchy point dC

k , which is defined as the point that achieves the
same amount of reduction in m as the steepest-descent direction. The analytical form of the Cauchy
point is

dC
k =−τk

∆k

∥gk∥
gk. (2.32)

where

τk =

1 if gT
k Hkgk ≤ 0;

min(∥gk∥3/(∆kg⊤k Hkgk),1) otherwise.
(2.33)

One should note that no matrix factorization is required to calculate the Cauchy step dC
k , thus resulting

in a cheap computation. The global convergence of a trust-region method relies on the requirement
that approximate solutions of the trust-region subproblem must achieve a reduction in the model mk

that is at least some positive multiple of the decrease attained by the Cauchy step. However, if we
always take the Cauchy point as our step, we are simply doing the steepest-descent method with a
special step length, which does not perform well even if taking the optimal step at every iteration.

Methods for finding the approximate solution of (2.27) are out of the scope of this review and we
refer the reader to [52, Theorem 4.9] for further details.

2.4 Inexact Newton methods

Given the optimization problem (2.1) and assuming that f is twice continuously differentiable, the
Newton iteration is given by

xk+1 = xk +αkdN
k ,

where αk is the stepsize and dN
k =−∇2 f (x)−1∇ f (x) is the search direction. Assuming that x∗ is the

limit point of the sequence {xk} generated by Newton’s method, by considering a step length equal to
1 and other essential assumptions (such as Lipschitz continuity of the Hessian, ∇ f (x∗) = 0, ∇2 f (x∗)
positive definite, and an initial point x0 sufficiently close to x∗), we can prove that Newton’s method
shows a quadratic local convergence rate. Note that this noticeable convergence result can be proved
only locally, namely, the initial point must be sufficiently close to the limit point.

One should note that dN
k is not always a descent direction since the Hessian matrix ∇2 f (x) may

not be positive definite. To obtain a descent direction to be used in a line-search method, one can
make the Hessian matrix positive definite by performing proper modifications. The strategy is to add
a positive diagonal matrix Ek to the true Hessian, namely,

Hk = ∇
2 f (xk)+Ek,
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so that the modified Hessian Hk is positive definite. To preserve most of the second-order information
given by the Hessian, we want the modification to be as small as possible. One simple approach
consists in finding a scalar τ > 0 such that Hk is sufficiently positive definite when Ek = τI. We
refer to −H−1

k ∇ f (x) as a modified Newton direction, which will be briefly discussed at the end of
Chapter 7.

Despite the remarkable fast local convergence, Newton’s method presents the significant drawback
of requiring the knowledge of the Hessian, which is not affordable when either the problem is large-
scale or computing the derivatives is not an available option. Another disadvantage is that the Newton
step dN

k is obtained by solving the symmetric n×n linear system

∇
2 f (xk)dN

k =−∇ f (xk), (2.34)

which needs to be solved at each iteration. Since determining the exact solution by using direct
methods, such as Gaussian elimination, is expensive, alternative ways to keep both the storage and
computational cost of the optimization algorithm at an acceptable level are desirable. The next sections
describe algorithms that compute an approximate solution to the Newton system by using an iterative
scheme.

The idea of inexact Newton methods is to approximately solve (2.34) with efficient algorithms
for linear systems, such as the conjugate gradient (CG) method or the Lanczos method. First, we
discuss how relaxing the requirement for an exact solution of the system (2.34) affects the local
convergence of inexact Newton methods. Then, we show how the CG method (possibly using matrix
preconditioning) and both line-search and trust-region methods are used in the literature to obtain an
approximate solution of (2.34). This family of methods is referred to as the inexact Newton methods.

One natural stopping criterion used in solving (2.34) is based on the relative residual ∥rk∥/∥∇ f (xk)∥,
where

rk = ∇
2 f (xk)dk +∇ f (xk), (2.35)

and dk is the inexact Newton step. This kind of inexact Newton method provides a trade-off between
the amount of work per iteration and the accuracy adopted to solve the Newton system. In general, we
terminate the inexact Newton method when

∥rk∥ ≤ ηk∥∇ f (xk)∥, (2.36)

where {ηk} (with 0 < ηk < 1 for all k) is called the forcing sequence, which is used to control the
level of accuracy. One can prove that if the forcing sequence {ηk} is bounded away from 1, then
inexact Newton methods are locally convergent. That is to say, the sequence of {xk} converges to x∗ if
the initial guess x0 is good enough, as stated in Theorem 2.4.1 (see [21]).

Theorem 2.4.1. Suppose that ∇2 f (x) exists and is continuous in a neighborhood of a minimizer x∗,
with ∇2 f (x∗) positive definite. Consider the iteration xk+1 = xk + dk where dk is such that (2.36)
is satisfied, and assume that ηk ≤ η for some constant η ∈ [0,1). Then, if the starting point x0 is
sufficiently near x∗, the sequence {xk} converges to x∗ linearly and satisfies

∥∇2 f (x∗)(xk+1− x∗)∥ ≤ η̂∥∇2 f (x∗)(xk− x∗)∥. (2.37)
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for some constant η̂ with η < η̂ < 1.

Moreover, in [21] the authors prove that the sequence of iterates {xk} converge to x∗ at the same
rate as the sequence of gradients {∇ f (xk)} converges to zero. From this fact, one can prove that if
lim
k→∞

ηk = 0, the sequences {∥∇ f (xk)∥} and {xk} are superlinearly convergent. If the Hessian matrix

∇2 f (x) is Lipschitz continuous near x∗, then the two sequences converge quadratically. These results
are summarized in the following theorem.

Theorem 2.4.2. Suppose that the conditions of Theorem 2.4.1 hold, and assume that the iterates {xk}
generated by the inexact Newton method converge to x∗. Then the rate of convergence is superlinear if
ηk→ 0. If, in addition, ∇2 f (x) is Lipschitz continuous at points x close to x∗ and if ηk = O(∥∇ f (xk)∥),
then the convergence is quadratic.

In practice, if we set ηk = min(0.5,
√
∥∇ f (xk)∥), then superlinear convergence is obtained. If we

set ηk = min(0.5,∥∇ f (xk)∥), then quadratic convergence is achieved.

We now introduce two implementations of Newton’s method that approximately solve the Newton
system by using the CG method, namely, the line-search Newton-CG method and the trust-region
Newton-CG method. It is important to point out that incorporating inexact Newton strategies within
line-search and trust-region frameworks allows the resulting algorithms to show good global conver-
gence results, not only local, thus overcoming one of the drawbacks of Newton’s method.

2.4.1 Line-search Newton-CG method

The Line-search Newton-CG method is also known as the truncated Newton method. In this approach,
the search direction is computed by applying the CG method to the Newton system (2.34). Note that
the CG method is designed to solve systems with a positive definite coefficient matrix and terminates
once a negative curvature direction is detected. This strategy guarantees that dk is always a descent
direction and the fast convergence rate of Newton’s method is preserved.

In order to describe the line-search Newton-CG method, we denote ∇2 f (xk) as Hk and we write
the linear system (2.34) in the following form

Hkd =−∇ f (xk). (2.38)

Determining an approximate solution to the Newton system is the goal of the inner iteration of the
method, where we apply the CG algorithm. Once the inner iteration ends, the approximate solution to
the system is used as a direction in the major iteration, where the next iterate is determined according
to a suitable stepsize. In the inner iterations, the sequence of search directions generated by the CG
method is denoted by {p j} and the sequence of iterates is referred to as {z j}.

The sequence z j converges to the Newton direction dN
k , which is the exact solution of the sys-

tem (2.38), when Hk is positive definite. To obtain superlinear convergence rate, we define the forcing
sequence to be ηk = min(0.5,

√
∥∇ f (xk)∥) at each major iteration (of course, other choices are also

acceptable). A tolerance εk is used to allow the CG method to terminate at an inexact solution. The
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resulting scheme is reported in Algorithm 3.

Algorithm 3: Line-Search Newton-CG
Let x0 be an initial point.
for k = 0,1,2, . . .

Define a tolerance εk = min(0.5,
√
∥∇ f (xk)∥)∥∇ f (xk)∥.

Set z0 = 0, r0 = ∇ f (xk), and p0 =−r0 =−∇ f (xk).

for j = 0,1,2, . . .
if p⊤j Hk p j ≤ 0

if j = 0
return dk =−∇ f (xk).

else
return dk = z j.

Set α j = r⊤j r j/p⊤j Hk p j.

Set z j+1 = z j +α j p j.

Set r j+1 = r j +α jHk p j.

if ∥r j+1∥< εk

return dk = z j+1.

Set β j+1 = r⊤j+1r j+1/r⊤j r j.

Set p j+1 =−r j+1 +β j+1 p j.

end (for)
Set xk+1 = xk +αkdk, where αk satisfies the Wolfe, Goldstein, or Armijo backtracking

conditions (using αk = 1 if possible).
end (for)

Note that if the negative curvature is detected at the first inner iteration j = 0, the steepest-descent
direction dk =−∇ f (xk) is returned. Moreover, it is important to point out that the explicit form of the
Hessian matrix Hk = ∇2 f (xk) is not necessary since it is sufficient to have Hessian-vector products
∇2 f (xk)p for any vector p, which allow significant savings in terms of computational resources. Thus,
Algorithm 3 is suited for large-scale problems. However, when the Hessian matrix is nearly singular,
the quality of the search direction obtained may be poor. This may result in many function evaluations
required by the line-search procedure and in a small decrease of the function value. One way to deal
with this problem is to use matrix preconditioning in the CG iterations. An alternative way is to
normalize the Newton step. Since it is difficult to define good rules for performing this normalization,
which may also affect the fast convergence of Newton’s method when the pure Newton step is
well-scaled, the trust-region Newton-CG is a preferable option when dealing with this problematic
situation.

2.4.2 Trust-region Newton-CG method

The idea underlying the trust-region Newton-CG method is to use a modified CG algorithm to find
an approximate solution of the trust-region subproblem (2.25) that achieves a larger reduction in mk



2.5 Quasi-Newton methods 19

than the Cauchy point. In particular, when Hk = ∇2 f (xk) for every k, this procedure is equivalent to
solving the system (2.38) by applying the CG method.

Let εk be a tolerance used to stop the method at an inexact solution. Given Hk = ∇2 f (xk), let p j

and z j be the sequences of search directions and iterates of the inner CG iteration, respectively. The
scheme of the resulting method, which is proposed in [61], is reported in Algorithm 4.

Algorithm 4: CG-Steihaug
Let εk > 0 be a given tolerance.
Set z0 = 0, r0 = ∇ f (xk), p0 =−r0 =−∇ f (xk).

if ∥r0∥< εk

return dk = z0 = 0.
for j = 0,1,2, . . .

if p⊤j Hk p j ≤ 0
Find τ such that dk = z j + τ p j minimizes mk(dk) in (2.25) and satisfies ∥dk∥= ∆k.
return dk.

Set α j = r⊤j r j/p⊤j Hk p j.
Set z j+1 = z j +α j p j.
if ∥z j+1∥ ≥ ∆k

Find τ ≥ 0 such that dk = z j + τ p j satisfies ∥dk∥= ∆k.
return dk.

Set r j+1 = r j +α jHk p j.
if ∥r j+1∥< εk

return dk = z j+1.
Set β j+1 = r⊤j+1r j+1/r⊤j r j.
Set p j+1 =−r j+1 +β j+1 p j.

end (for)

Note that the step dk is obtained by the intersection of the trust-region boundary with the current
search direction. The method stops when one of the three following stopping criteria is satisfied:
the search direction p j is a direction of nonpositive curvature along Hk; the size of z j is out of the
trust-region bound; the required accuracy in the solution of the system (2.38) has been achieved.

As discussed in Theorems 2.4.1 and 2.4.2, when the trust-region bound constraint becomes inactive
near the solution x∗, the trust-region Newton-CG method reduces to the inexact Newton method. To
keep the cost of the trust-region Newton-CG method low, it is very important to choose the tolerance
εk wisely at every iteration. If the tolerance εk is chosen similarly to Algorithm 3, we can obtain rapid
convergence as well. One can also prove that the decrease obtained by Algorithm 4 is at least half as
good as the optimal decrease [66].

2.5 Quasi-Newton methods

Quasi-Newton methods are approaches that use only the knowledge of the gradient of the objective
function at each iteration, without requiring the Hessian. The idea underlying these methods is to
construct a model of the objective function by using differences of the gradient at two successive
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iterates. If the search direction is an accurate approximation of the Newton direction, superlinear
convergence is attained. Although both quasi-Newton methods and steepest-descent method use
only the gradient of the objective function without relying on the Hessian, quasi-Newton methods
achieve a significant improvement compared to the steepest-descent method, especially on difficult
nonconvex problems. Moreover, since the knowledge of the second-order derivatives is not required,
quasi-Newton methods are sometimes more efficient than Newton’s method.

In every quasi-Newton method, the search direction is of the form

dk =−H−1
k ∇ f (xk), (2.39)

where Hk is a symmetric and positive definite matrix which is updated at every iteration. The new
iterate is given by

xk+1 = xk +αkdk. (2.40)

The following theorem states that to attain a superlinear convergence rate, Hk must be a sufficiently
accurate approximation of the true Hessian.

Theorem 2.5.1. Suppose that f : Rn→ R is twice continuously differentiable. Consider the iteration
xk+1 = xk +dk (i.e., the step length is uniformly 1), where the search direction dk is given by (2.39).
Let us assume also that {xk} converges to a point x∗ such that ∇ f (x∗) = 0 and ∇2 f (x∗) is positive
definite. Then {xk} converges superlinearly if and only if

lim
k→∞

∥∥(Hk−∇2 f (x∗)
)

dk
∥∥

∥dk∥
= 0. (2.41)

2.5.1 The BFGS method

One of the most popular quasi-Newton methods is BFGS, whose name is due to its discoverers
Broyden, Fletcher, Goldfarb, and Shanno. Consider the quadratic model of the objective function at
the current iteration xk

mk(d) = f (xk)+∇ f (xk)
T d +

1
2

dT Hkd, (2.42)

where Hk is an n×n symmetric and positive definite matrix which is updated at every iteration. We can
see that the quadratic model mk and its gradient ∇mk(d) match f (xk) and ∇ f (xk) at d = 0. Moreover,
the convex quadratic model mk achieves its minimum at dk, which can be expressed as follows

dk =−H−1
k ∇ f (xk). (2.43)

The new iteration is xk+1 = xk +αkdk, where the stepsize αk satisfies the Wolfe conditions (2.9). Note
that the key difference between the BFGS method and the line-search Newton’s method is that the
true Hessian ∇2 f (xk) is replaced by the approximate Hessian Hk.

To obtain the approximate Hessian without computing a completely new Hk at each iteration,
consider the new model at xk+1

mk+1(d) = f (xk+1)+∇ f (xk+1)
⊤d +

1
2

d⊤Hk+1d.
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We want to impose some conditions on the update. One reasonable requirement is that the gradient of
mk+1 at the iterates xk and xk+1 matches the gradient of the objective function, namely,

∇mk+1(−αkdk) = ∇ f (xk+1)−αkHk+1dk = ∇ f (xk),

∇mk+1(0) = ∇ f (xk+1).
(2.44)

The second equation in (2.44) automatically satisfies the requirement that the gradient of mk+1 matches
the gradient of the objective function at xk+1. By rearranging the first equality, we obtain

Hk+1sk = yk, wheresk = xk+1− xk = αkdk and yk = ∇ f (xk+1)−∇ f (xk). (2.45)

The formula (2.45) is referred to as the secant equation. Note that Hk+1 is symmetric and positive
definite only if the following curvature condition holds

s⊤k yk > 0. (2.46)

This can be seen by multiplying the secant equation by sT
k . To enforce this condition, the stepsize αk

is required to satisfy the Wolfe or strong Wolfe conditions.

To guarantee the uniqueness of the symmetric matrix Hk+1 satisfying the secant equation, addi-
tional conditions are needed to fix the remaining degrees of freedom. To this end, we select the matrix
that is closest to the current Hessian approximation Hk in some sense. That is to say, we obtain Hk+1

by solving the following problem
min

H
∥H−Hk∥

s.t H = HT ,

Hsk = yk,

(2.47)

where sk and yk satisfy (2.45) and Hk is symmetric and positive definite.

Since in (2.43) we need to compute the inverse of Hk, a significant improvement from the
computational point of view can be obtained by directly approximating the inverse of the Hessian. In
particular, let Gk be the inverse of Hk. The search direction dk can now be easily computed by using
only one matrix-vector product

dk =−Gk∇ f (xk).

By following the steps described in [52], one arrives at the following updating formula

Gk+1 = Gk−
GkykyT

k Gk

yT
k Gkyk

+
sksT

k

yT
k sk

. (2.48)

We can see that the last two terms in (2.48) are rank-one matrices, meaning that a rank-two modification
is performed in every iteration. We require the approximation Gk+1 to be symmetric, positive definite,
and satisfying the secant equation, which can be written as

Gk+1yk = sk. (2.49)
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By writing the problem in (2.47) in terms of G and Gk in place of H and Hk and choosing an
appropriate matrix norm, we can derive the BFGS formula

Gk+1 =
(
I−ρkskyT

k
)

Gk
(
I−ρkyksT

k
)
+ρksksT

k , and ρk =
1

yT
k sk

. (2.50)

The BFGS method is reported in Algorithm 5.

Algorithm 5: BFGS Method
Let x0 be a starting point, ε > 0 a convergence tolerance, and G0 an initial approximation
of the Hessian inverse.
Set k = 0.
while (∥∇ f (xk)∥> ε)

Compute the search direction dk =−Gk∇ f (xk).
Set xk+1 = xk +αkdk, where αk is a stepsize computed from a line search satisfying Wolfe

conditions.
Define sk = xk+1− xk and yk = ∇ f (xk+1)−∇ f (xk).
Compute ρk =

1
yT

k sk
and Gk+1 =

(
I−ρkskyT

k

)
Gk
(
I−ρkyksT

k

)
+ρksksT

k .

k = k+1.
end (while)

Note that from the updating formula (2.50), if ρk = 1/yT
k sk becomes a very large number, Gk+1

becomes large as well. Therefore, in this case Gk cannot be considered an accurate approximation to
the Hessian inverse. However, one can show that the BFGS method has a self correcting property (see
[22, 23]) which implies that the Hessian approximation will tend to correct itself within a few steps if
Gk cannot estimate the curvature of the function correctly or the estimation slows down the iteration.

The cost of BFGS method at each iteration is of O(n2) arithmetic operations plus the cost of
function evaluations and gradient evaluations. Therefore, the algorithm is robust and has superlinear
convergence rate. Although Newton’s method converges faster, its cost per iteration is higher since a
solution of a linear system is required. Moreover, BFGS does not require second-order derivatives.

The global convergence of the BFGS method, which was established by Powell in [54], requires
the following assumption on the objective function.

Assumption 2.5.1. (i) The objective function f is twice continuously differentiable.
(ii) The level set L = {x ∈ Rn| f (x)≤ f (x0)} is convex, and there exist positive constants m and M
such that

m∥z∥2 ≤ zT
∇

2 f (x)z≤M∥z∥2

for all z ∈ Rn and x ∈ L.

Now we are going to present the global convergence result for the BFGS method under the
Assumption 2.5.1.
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Theorem 2.5.2. Let H0 be any symmetric positive definite initial matrix, and let x0 be a starting point
such that Assumption 2.5.1 is satisfied. Then the sequence {xk} generated by Algorithm 5 (with ε = 0)
converges to the minimizer x∗ of f .

The following result shows that the BFGS method attains superlinear convergence rate under an
additional assumption.

Assumption 2.5.2. The Hessian matrix ∇2 f (x) is Lipschitz continuous at x∗, that is,

∥∇2 f (x)−∇
2 f (x∗)∥ ≤ L∥x− x∗∥,

for all x near x∗, where L is a positive constant.

Theorem 2.5.3. Suppose that f is twice continuously differentiable and that the iterates generated by
the BFGS algorithm converge to a minimizer x∗ such that Assumption 2.5.2 holds. Suppose also that

∑
∞
k=1 ∥xk− x∗∥< ∞. Then {xk} converges to x∗ at a superlinear rate.





Chapter 3

Review of interpolation models for
derivative-free optimization

In this chapter, interpolation-based DFO models are reviewed in order to provide useful insight into
the methodology proposed in this thesis. The definitions and methodologies in this chapter are based
on the book of Conn, Scheinberg and Vicente [17].

3.1 Generalities on interpolation models

The idea behind the interpolation models considered in this thesis is to fit a local polynomial model
on a set of sample points where the objective function has been previously evaluated. Therefore,
the value of the polynomial model at these points must be the same as the corresponding objective
function value. Sampling rules and type of functional models are among the properties that define the
accuracy of the interpolation process.

Surrogate modeling is a general term that is commonly adopted to refer to the analytical models
used to approximate the objective function by providing a surrogate to be used in place of the
true function. Surrogate models are particularly useful when the objective function evaluations are
computationally expensive, as is the case in DFO and black-box optimization. Although this term
is usually referred to special classes of models, such as radial basis functions, Kriging models, and
response surface methodologies, interpolation and regression models can be viewed as surrogates of the
true function and many papers in the DFO literature deal with these approaches [16, 17, 47, 53, 57, 65].

Throughout this chapter, two interpolation approaches are considered, namely, linear and quadratic
interpolation. Linear functions represent the simplest class of models used for interpolation. However,
since they are not able to capture the curvature of the objective function, quadratic functions are
the most adopted in practice. Although fully determined quadratic interpolation models require a
number of sample points that is approximately equal to the square of the dimension, when dealing
with computationally expensive functions it is often more convenient to consider underdetermined
quadratic models, which allow reducing the cardinality of the sample set (at the cost of the accuracy
of the approximation).

25
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Given a set of sample points Y = {y0,y1, · · · ,yp} ⊂ Rn, referred to as the sample set, a function
m : Rn→R is said to be an interpolation model if the following interpolating conditions are satisfied:

m(y) = f (y), for all y ∈ Y, (3.1)

where f is the real-valued function of interest. Although m can be any nonlinear function (e.g., radial
basis functions have been successfully applied in DFO), the focus of this chapter is on polynomial
models, which are commonly adopted in practice. In particular, m is assumed to be a polynomial of
degree less than or equal to d. Note that the sample set Y contains p1 = |Y |= p+1 points. Typically,
p1 is selected to be the dimension of the space of polynomials of degree less than or equal to d in Rn,
denoted by Pd

n . Specifically, we have that

p1 = p+1 =

(
n+d

n

)
,

which translates to p1 = n+1 in the case of linear interpolation, where d = 1, and p1 = (1/2)(n+
1)(n+2) when quadratic interpolation is considered, where d = 2.

To ensure global convergence properties when using interpolation models within DFO algorithms,
an accurate approximation of the true objective function must be guaranteed. When the polynomial
interpolation model is a truncated Taylor series expansion of first or second order, bounds on the
approximation error can be established by exploiting the results derived for the Taylor expansion error
bounds. In the DFO literature, one of the most popular results is obtained from [8, Theorem 1], which
states that the error bound on the gradient approximation is

∥∇ f (x)−∇m(x)∥ ≤ 1
(d +1)!

GΛY

p

∑
i=0

∥∥yi− x
∥∥d+1

,

where x is a point in the convex hull of Y , while G and ΛY are constants depending on the function
f and on the interpolation set Y , respectively. The previous error bound provides useful insight into
the convergence properties of a DFO method that uses interpolation models. In particular, we can
see that the approximation error decreases as the sample points become closer to the point where the
gradient is computed. Note that to guarantee the previous result and ensure that the approximation
error decreases at the same rate as the sample points approaching x, ΛY must be uniformly bounded.

3.2 Linear interpolation

The small number of sample points required for linear interpolation models is the most appealing
feature of this kind of models. Despite the low ability in capturing the curvature of the function to
interpolate, linear interpolation models have been successfully used in DFO algorithms (see, e.g.,
[55]).

Given the sample set Y = {y0,y1, · · · ,yp} ⊂ Rn, with p = n, linear functions are the simplest
models that can be considered for interpolating the sample points in Y . In particular, let m(x) denote
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the polynomial of degree d = 1 interpolating f at the sample points, i.e.,

m(yi) = f (yi), i = 0, · · · ,n. (3.2)

By using the natural basis φ̄ = {1,x1,x2, · · · ,xn} (the basis of polynomials as they appear in the
Taylor expansion) as a basis for the space P1

n of linear polynomials of degree at most 1, the linear
interpolating model m of f can be written in the form

m(x) = α0 +α1x1 + · · ·+αnxn. (3.3)

Note that the natural basis φ̄ is adopted for the sake of simplicity, but other bases φ may be also
used, e.g., {1,1+ x1,1+ x1 + x2, · · · ,1+ x1 + x2 + · · ·+ xn}. By plugging (3.3) into the interpolating
conditions in (3.1) and rewriting in matrix form, we obtain

1 y0
1 y0

2 · · · y0
n

1 y1
1 y1

2 · · · y1
n

...
...

...
1 yn

1 yn
2 · · · yn

n




α0

α1
...

αn

=


f (y0)

f (y1)
...

f (yn)

 . (3.4)

Therefore, the coefficients α0, · · · ,αn of the linear interpolating m can be determined by solving the
linear system associated with (3.4). If we define

M = M(φ̄ ,Y ) =


1 y0

1 y0
2 · · · y0

n

1 y1
1 y1

2 · · · y1
n

...
...

...
1 yn

1 yn
2 · · · yn

n

 , αφ̄ =


α0

α1
...

αn

 , and F(Y ) =


f (y0)

f (y1)
...

f (yn)

 ,

the linear system (3.4) can be written as

M(φ̄ ,Y )αφ̄ = F(Y ). (3.5)

To ensure that the system (3.5) can be solved, we introduce the definition of poised set for linear
interpolation (it is worth pointing out that some authors refer to a poised set for linear interpolation as
a d-unisolvent set [9]).

Definition 3.2.1. Y = {y0,y1, · · · ,yn} is a poised set for linear interpolation in Rn if the corresponding
matrix M(φ̄ ,Y ) is nonsingular.

Note that the definition of poisedness does not depend on the basis chosen. This means that if
Y is a poised set for the basis φ̄ , it is also a poised set for any other basis φ in P1

n . Furthermore,
m(x) is independent of the basis chosen as well. Hence, we conclude that Y is a poised set for linear
interpolation if and only if the linear interpolating polynomial m(x) can be uniquely defined. We point
out that in the linear case, the notion of poisedness is the same as the notion of affine independence.

After establishing that the existence of solutions to the system (3.5) is related to the poisedness
of the interpolation set Y , it is important to investigate the conditions that characterize a well-poised
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interpolation set. Given a basis φ , since the poisedness of Y is defined by the nonsingularity of M(φ ,Y ),
a natural question is whether the condition number of M(φ ,Y ) can be considered an appropriate
indicator of a well-poised set. To give an answer to this question, two facts are considered. On the
one hand, since the condition number of M(φ ,Y ) depends on the choice of φ , a different basis φ̃ can
be chosen so that the condition number of M(φ̃ ,Y ) varies from 1 to +∞ (Y is assumed to be a poised
interpolation set). On the other hand, the condition number of M(φ ,Y ) also depends on the scaling
of Y . Therefore, in general, the condition number of M(φ ,Y ) is not a good indicator of poisedness
of a sample set Y . However, we can show that the condition number of M(φ ,Y ) can be considered
a measure of poisedness when the basis is the natural one, i.e., φ = φ̄ , and the interpolation set Y is
scaled.

3.2.1 Error bounds in linear interpolation

Suppose that the points in the sample set Y = {y0,y1, · · · ,yn} ⊂ Rn are in a ball centered at y0 with
radius ∆, where the radius is defined as

∆ = ∆(Y ) = max
1≤i≤n

∥yi− y0∥.

We aim to assess the quality of the approximation of f in the ball of radius ∆ centered at y0 when m(x)
is the interpolating function considered. In particular, we assess the quality of the gradient ∇m(y) of
the model when used to approximate ∇ f (y). Let us first write the linear interpolating polynomial (3.3)
in the form

m(y) = c+g⊤y, where c = α0 and g = [α1,α2, · · · ,αn]
⊤.

After performing one step of Gaussian elimination to the matrix M = M(φ̄ ,Y ) in (3.4), we have


1 y0

1 y0
2 · · · y0

n

0 y1
1− y0

1 y1
2− y0

2 · · · y1
n− y0

n
...

...
...

...
...

0 yn
1− y0

1 yn
2− y0

2 · · · yn
n− y0

n

 .
We can rewrite this matrix by using 4 blocks, i.e.,[

1 (y0)⊤

0 L

]
,

where

L = [y1− y0 y2− y0 · · ·yn− y0]⊤ =


(y1− y0)⊤

(y2− y0)⊤

...
(yn− y0)⊤

=


y1

1− y0
1 y1

2− y0
2 · · · y1

n− y0
n

...
...

...
...

yn
1− y0

1 yn
2− y0

2 · · · yn
n− y0

n

 .
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Note that the matrix M is nonsingular if and only if L is nonsingular since det(M) = det(L). To prove
the results on the quality of the linear interpolation, let us now consider the scaled matrix of L, i.e.,

L̂ =
1
∆

L =
1
∆
[y1− y0 y2− y0 · · ·yn− y0]⊤ =


y1

1−y0
1

∆

y1
2−y0

2
∆

· · · y1
n−y0

n
∆

...
...

...
...

yn
1−y0

1
∆

yn
2−y0

2
∆

· · · yn
n−y0

n
∆

 . (3.6)

The scaled matrix L̂ is associated with a scaled sample set Ŷ whose points are inside a ball centered at
y0/∆ with radius 1, i.e.,

Ŷ = {y0/∆,y1/∆, · · · ,yn/∆} ⊂ B(y0/∆;1).

The next theorems state the error bounds for linear interpolation. In particular, once we assume a
uniform bound on ∥L̂−1∥ independent of ∆, Theorem 3.2.1 shows that the error in the approximation of
the gradient of function f is linear in ∆, while Theorem 3.2.2 proves that the error in the approximation
of function f is quadratic in ∆.

Theorem 3.2.1. Assume that Y = {y0,y1, · · · ,yn} ⊂ Rn is a poised set for linear interpolation con-
tained in the ball B(y0;∆), the function f is continuously differentiable in an open domain Ω containing
B(y0;∆), and ∇ f is Lipschitz continuous in Ω with constant νL > 0. Then, the gradient of the linear
interpolation model satisfies, for all points y in B(y0;∆), an error bound of the form

∥∇ f (y)−∇m(y)∥ ≤ κeg∆, (3.7)

where κeg = νL(1+n
1
2 ∥L̂−1∥/2) and L̂ is given by (3.6).

Theorem 3.2.2. Consider the assumptions of Theorem 3.2.1 hold, then, the interpolation model
satisfies, for all points y in B(y0;∆), an error bound of the form

| f (y)−m(y)| ≤ κe f ∆
2, (3.8)

where κe f = κeg +νL/2 and κeg is given in Theorem 3.2.1.

3.3 Quadratic interpolation

Quadratic polynomial models are the simplest nonlinear models that can be considered for the
interpolation of a set of points. The theory developed in this section could be extended to the general
polynomial interpolation, but it is here presented with respect to quadratic interpolation since this is
the type of interpolation used in the next chapters of the thesis.

Let us consider the space of polynomials P2
n with degree less than or equal to 2 in Rn. A basis

φ = {φ0(x),φ1(x), . . . ,φp(x)} of P2
n is a set of polynomials in P2

n with dimension equal to p1 =

(1/2)(n+1)(n+2). Hence, any polynomial m(x) ∈P2
n can be represented as m(x) = ∑

p
j=0 α jφ j(x),

where α ′js are real coefficients. In particular, the natural basis of P2
n can be written as follows

φ̄ = {1,x1,x2, · · · ,xn,
1
2

x2
1,x1x2, · · · ,x1xn,

1
2

x2
2,x2x3, · · · ,xn−1xn,

1
2

x2
n}. (3.9)
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Assume that we are given a set of interpolation points Y = {y0,y1, · · · ,yp} ⊂ Rn, and let m(x) denote
the quadratic interpolating model that interpolates the given function f at the points in Y . By plugging
m(x) = ∑

p
j=0 α jφ j(x) into the interpolating conditions in (3.1), we obtain

p

∑
j=0

α jφ j(yi) = f (yi), i = 0,1, ..., p. (3.10)

Rewriting (3.10) in matrix form, we have
φ0
(
y0
)

φ1
(
y0
)
· · · φp

(
y0
)

φ0
(
y1
)

φ1
(
y1
)
· · · φp

(
y1
)

...
...

...
...

φ0 (yp) φ1 (yp) · · · φp (yp)




α0

α1
...

αp

=


f (y0)

f (y1)
...

f (yp)

 . (3.11)

Therefore, the coefficients α0, · · · ,αp of the quadratic interpolating model m can be determined by
solving the linear system associated with (3.11). If we define

M = M(φ ,Y ) =


φ0
(
y0
)

φ1
(
y0
)
· · · φp

(
y0
)

φ0
(
y1
)

φ1
(
y1
)
· · · φp

(
y1
)

...
...

...
...

φ0 (yp) φ1 (yp) · · · φp (yp)

 , αφ =


α0

α1
...

αp

 , and F(Y ) =


f (y0)

f (y1)
...

f (yp)

 ,

the linear system (3.11) can be written as

M(φ ,Y )αφ = F(Y ). (3.12)

If we use the natural basis φ̄ of P2
n to construct a quadratic model, then

M(φ̄ ,Y ) =


1 y0

1 y0
2 · · · y0

n
1
2 (y

0
1)

2 y0
1y0

2 · · · y0
1y0

n
1
2 (y

0
2)

2 y0
2y0

3 · · · y0
n−1y0

n
1
2 (y

0
n)

2

1 y1
1 y1

2 · · · y1
n

1
2 (y

1
1)

2 y1
1y1

2 · · · y1
1y1

n
1
2 (y

1
2)

2 y1
2y1

3 · · · y1
n−1y1

n
1
2 (y

1
n)

2

...
...

...
...

...
...

...
...

...
...

...
1 yp

1 yp
2 · · · yp

n
1
2 (y

p
1)

2 yp
1yp

2 · · · yp
1yp

n
1
2 (y

p
2)

2 yp
2yp

3 · · · yp
n−1yp

n
1
2 (y

p
n)

2

 .

For example, suppose that n = 2 and the number of interpolation points is p = 4. The previous matrix
can be written as

M(φ̄ ,Y ) =


1 y0

1 y0
2

1
2(y

0
1)

2 y0
1y0

2
1
2(y

0
2)

2

1 y1
1 y1

2
1
2(y

1
1)

2 y1
1y1

2
1
2(y

1
2)

2

1 y2
1 y2

2
1
2(y

2
1)

2 y2
1y2

2
1
2(y

2
2)

2

1 y3
1 y3

2
1
2(y

3
1)

2 y3
1y3

2
1
2(y

3
2)

2

1 y4
1 y4

2
1
2(y

4
1)

2 y4
1y4

2
1
2(y

4
2)

2

 .

We point out that if the linear system in (3.12) is fully determined, then the number of sample points
in Y is equal to p1 =

1
2(n+1)(n+2).

We can now introduce for quadratic interpolation models a definition similar to Definition 3.2.1.
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Definition 3.3.1. Y = {y0,y1, ...,yp} is a poised set for quadratic interpolation in Rn if the corre-
sponding matrix M(φ ,Y ) is nonsingular for some basis φ in P2

n .

If the matrix M(φ ,Y ) is nonsingular, the following lemma shows that there exists a unique
quadratic interpolating model m such that (3.12) holds.

Lemma 3.3.1. Given a function f : Rn→ R and a poised set Y ∈ Rn, the quadratic interpolating
polynomial m(x) exists and is unique.

Note that the poisedness of Y and the uniqueness of the interpolating model depend neither on f
nor on the basis φ . Moreover, we point out that the discussion on the condition number of M(φ ,Y )
reported in Section 3.2 applies to the case of quadratic interpolation as well.

3.3.1 Error bounds in quadratic interpolation

In order to derive bounds on the approximation error, assume that the interpolation set Y = {y0,y1, · · · ,yp}
is poised for quadratic interpolation, it is contained in the ball B(y0;∆) of radius ∆, and the number
of interpolation points is p1 = p+ 1 = (n+ 1)(n+ 2)/2. Furthermore, assume that the function f
is twice continuously differentiable in an open domain Ω containing B(y0;∆) and ∇2 f is Lipschitz
continuous in Ω with constant νQ > 0.

Suppose that the quadratic interpolation model can be represented in the following form

m(x) = c+g⊤x+
1
2

x⊤Hx = c+ ∑
1≤k≤n

gkxk +
1
2 ∑

1≤k,ℓ≤n
hkℓxkxℓ, (3.13)

where H is a symmetric matrix of order n. We are interested in estimating the error bounds of the
quadratic interpolation. Given a point x, we use e f (x), eg(x), and EH(x) to denote the error in the
function value, gradient, and Hessian when the quadratic interpolation model is used to approximate
the true function. Recalling (3.13), we can write

e f (x) = m(x)− f (x),

eg(x) = ∇m(x)−∇ f (x) = Hx+g−∇ f (x),

EH(x) = ∇
2m(x)−∇

2 f (x) = H−∇
2 f (x).

If for all the interpolation points in Y we subtract m(x) = f (x)+ e f (x) from (3.1), we have

m(yi)−m(x) = f (yi)− f (x)− e f (x),

and, recalling (3.13), we obtain

c+g⊤(yi)+
1
2
(yi)⊤Hyi− (c+g⊤x+

1
2

x⊤Hx) = f (yi)− f (x)− e f (x), i = 0, . . . , p.

Therefore, rearranging the terms, we have

g⊤(yi− x)+
1
2
(yi− x)⊤H(yi− x)+(yi− x)⊤Hx = f (yi)− f (x)− e f (x), i = 0, . . . , p.
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Applying the second-order Taylor expansion to f around x, we obtain for all i = 0, . . . , p

g⊤(yi− x)+
1
2
(yi− x)⊤H(yi− x)+(yi− x)⊤Hx =∇ f (x)⊤(yi− x)+

1
2
(yi− x)⊤∇

2 f (x)(yi− x)

− e f (x)+O(∆3).

Therefore,

(Hx+g−∇ f (x))⊤(yi− x)+
1
2
(yi− x)⊤(H−∇

2 f (x))(yi− x) = O(∆3)− e f (x), i = 0, . . . , p,

and

(eg(x))⊤(yi− x)+
1
2
(yi− x)⊤(H−∇

2 f (x))(yi− x) = O(∆3)− e f (x), i = 0, . . . , p.

To cancel e f (x), we subtract the equation associated with i = 0 from all the other equations (note that
y0 = 0), obtaining

(
yi− y0)⊤ (eg(x)−EH(x)x

)
+

1
2
(
yi− y0)⊤ [H−∇

2 f (x)
](

yi− y0)= O
(
∆

3) , i = 1, . . . , p.

We can write the previous equation in the following form

∑
1≤k≤n

(yi
k− y0

k)tk(x)+
1
2 ∑

1≤k≤n

(
yi

k− y0
k
)2

EH
kk(x)+ ∑

1≤ℓ<k≤n

[
(yi

k− y0
k)(y

i
ℓ− y0

k)
]

EH
kℓ(x)

= O
(
∆

3) , i = 1, . . . , p,

which is a linear system. Equivalently, we can use the matrix form as follows

Qp×p

[
t(x)

eH(x)

]
= O

(
∆

3) , (3.14)

where t(x) = eg(x)−EH(x)x = eg(x)−
[
H−∇2 f (x)

]
x and eH(x) is a vector of dimension n+n(n−

1)/2 storing the diagonal elements EH
kk, k = 1, . . . ,n, and EH

kℓ, with 1≤ ℓ < k ≤ n.

Remark 3.3.1. The matrix Qp×p in linear system (3.14) does not depend on the point x.

We now want to find an upper bound on the right hand side of (3.14). Note that each element
of this vector is the difference of two terms which can be bounded by νQ∥yi− x∥3/6 and νQ∥x∥3/6,
respectively, where νQ is the Lipschitz constant of ∇2 f (x) in Ω. Since all the interpolation points are
in a ball of radius ∆, we have ∥yi− x∥ ≤ 2∆ and ∥x∥ ≤ ∆. As a result, the aforementioned difference
can be bounded by 3∆3/2. Therefore, a bound on the ℓ2 norm of the right hand side can be expressed
as ∥∥∥∥∥Qp×p

[
t(x)

eH(x)

]∥∥∥∥∥≤ 3
2

p
1
2 νQ∆

3. (3.15)
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Now let us consider the scaled matrix of Qp×p,

Q̂p×p = Qp×p

[
D−1

∆
0

0 D−1
∆2

]
, (3.16)

where D∆ is a diagonal matrix of dimension n whose diagonal entries are ∆ and D∆2 is a diagonal
matrix of dimension p− n whose diagonal entries are ∆2. Note that the scaled matrix Q̂p×p is the
same as the the matrix Qp×p corresponding to the scaled interpolation set Ŷ = Y/∆.

The following theorem states the error bound for the quadratic interpolation case. For the proof of
this theorem, we refer the reader to [17].

Theorem 3.3.1. Let Y = {y0,y1, · · · ,yp} ⊂ Rn, with p1 = p+1 = (1/2)(n+1)(n+2), be a poised
set for quadratic interpolation whose points are contained in the ball B(y0;∆). Let the function f be
twice continuously differentiable in an open domain Ω containing B(y0;∆) and assume that ∇2 f is
Lipschitz continuous in Ω with constant νQ > 0.
Then, for all points y in B(y0;∆), we have that

• the error between the Hessian of the quadratic interpolation model and the Hessian of the
function f satisfies

∥EH∥ ≤ κeh∆, (3.17)

• the error between the gradient of the quadratic interpolation model and the gradient of the
function satisfies

∥eg∥ ≤ κeg∆
2, (3.18)

• the error between the quadratic interpolation model and the function satisfies

|e f | ≤ κe f ∆
3, (3.19)

where
κeh =

(
α

H
Q p

1
2 νQ

∥∥Q̂−1
p×p

∥∥) ,
κeg =

(
α

g
Q p

1
2 νQ

∥∥Q̂−1
p×p

∥∥) ,
κe f =

(
α

f
Q p

1
2 νQ

∥∥Q̂−1
p×p

∥∥+β
f

QνQ

)
,

and

α
H
Q =

3
√

2
2

, α
g
Q =

3(1+
√

2)
2

, α
f

Q =
6+9

√
2

4
, β

f
Q =

1
6
.

3.4 Minimum Frobenius norm quadratic models

In many DFO applications, computing the function value may be time-consuming and using a
determined quadratic interpolation model may be impracticable due to the large number of sample
points to evaluate. For instance, assume we have to solve a three-dimensional problem. In this case,
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building a determined quadratic interpolation model requires 10 function evaluations per iteration. If
each function evaluation takes 2 seconds, then it would be reasonable to build an accurate quadratic
interpolation model at each iteration. Instead, if each function evaluation takes 1 hour, then it would
take 10 hours to build a complete quadratic interpolation model at each iteration. Now, assume we
have to solve a problem with 100 variables. In this case, building an accurate quadratic interpolation
model requires 5151 function evaluations per iteration. Even if each function evaluation takes only 2
seconds, a complete model would require hours of CPU time.

The previous examples show common issues in DFO and highlight the possible inadequacy of de-
termined models in practice, despite the remarkable quality of the approximation they guarantee. The
adoption of underdetermined quadratic interpolation models allows overcoming the aforementioned
issue since the number of sample points required is fewer than the number needed by fully determined
models. Moreover, ensuring a number of points larger than the number required in linear interpolation
enables the adopted optimization algorithm to benefit from capturing some of the curvature of the
function f , thus leading to an improved local convergence rate. Additional advantage can be obtained
when the sparsity pattern of the Hessian matrix of the function f is known. However, such a topic
is out of the scope of this thesis and we refer the reader to [12] and [13] for interpolation-based
trust-region algorithms exploiting partial separability of functions.

Now, consider the case where the number of interpolation points p in Y is smaller than the number
of elements q in the polynomial basis φ = {φ0(x),φ1(x), . . . ,φp(x)}, i.e., p < q. Let M(φ ,Y ) be the
matrix defined by the interpolation conditions

m(yi) =
q

∑
k=0

αkφk(yi) = f (yi), i = 0, · · · , p. (3.20)

We can see that M(φ ,Y ) has now more columns than rows. Thus, the coefficients α0,α1, · · · ,αq are
no longer unique.

Let us consider the quadratic interpolation model associated with the natural basis φ̄ . To properly
introduce the underdetermined models, we split the natural basis into linear and quadratic parts,
namely, φ̄L = {1,x1,x2, · · · ,xn} and φ̄Q = { 1

2 x2
1,x1x2, · · · ,x1xn,

1
2 x2

2,x2x3, · · · ,xn−1xn,
1
2 x2

n}. Therefore,
the interpolation model can be written as

m(x) = α
⊤
L φ̄L(x)+α

⊤
Q φ̄Q(x),

where αL and αQ are the corresponding parts of the cofficients α . Recalling that the Frobenius norm
of a squared matrix A is ∥A∥2

F = ∑1≤i, j≤n a2
i j (equivalently, ∥A∥2

F = tr(A⊤A), where the trace is the
sum of the diagonal entries), the minimum Frobenius norm solution αmfn can be defined as a solution
to the following optimization problem in αL and αQ

min
1
2
∥αQ∥2

s.t. M(φ̄L,Y )αL +M(φ̄Q,Y )αQ = F(Y ).
(3.21)

Due to the choice of the basis φ̄(x) and to the separation of the coefficients α = (αL,αQ)
⊤, minimizing

the norm αQ is equivalent to minimizing the Frobenius norm of the Hessian of m(x). If ∥Y∥ =
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(1/2)(n+ 1)(n+ 2) and M(φ̄ ,Y ) is nonsingular, it reduces to determined quadratic interpolation.
Problem (3.21) is a constrained quadratic program with a closed form solution. To guarantee that
there exists a unique a solution for this problem, the matrix F(φ̄ ,Y ) must be nonsingular.

F(φ̄ ,Y ) =

[
M
(
φ̄Q,Y

)
M
(
φ̄Q,Y

)⊤ M
(
φ̄L,Y

)
M
(
φ̄L,Y

)⊤ 0

]
. (3.22)

Hence, the poisedness of the sample set Y in the minimum Frobenius norm sense is defined as the
nonsingularity of matrix F(φ̄ ,Y ), which in turn implies poisedness in the linear interpolation sense
and poisedness for quadratic underdetermined interpolation in the minimum-norm sense.

Remark 3.4.1. Matrix F(φ̄ ,Y ) is nonsingular if and only if M(φ̄L,Y ) has full column rank and
M(φ̄Q,Y )M(φ̄L,Y )⊤ is positive definite in the null space of M(φ̄L,Y )⊤.

3.4.1 Least Frobenius norm updating of quadratic models

Powell [56] suggests that we can choose the solution to the underdetermined interpolation system (3.10)
in the Frobenius norm sense by minimizing the change of the second order derivative matrix to the
previously calculated one. That is to say, α is the solution of the system

min
1
2

∥∥∥αQ−α
pre
Q

∥∥∥2

s.t. M
(
φ̄L,Y

)
αL +M

(
φ̄Q,Y

)
αQ = F(Y ).

(3.23)

In [56], Powell suggests that one can solve a shifted problem on α
di f
Q = αQ−α

pre
Q instead of solving

(3.23) directly. Then, we can obtain αQ as the sum of α
di f
Q and α

pre
Q . The shifted problem can be

stated as
min

1
2

∥∥∥α
di f
Q

∥∥∥2

s.t. M
(
φ̄L,Y

)
α

di f
L +M

(
φ̄Q,Y

)
α

di f
Q = Fdi f (Y ),

(3.24)

where Fdi f (Y ) = F(Y )−mpre(Y ). Moreover, in [56] Powell shows that when f is quadratic, we have

∥H−∇
2 f∥ ≤ ∥H pre−∇

2 f∥. (3.25)

In other words, the absolute error in the optimal solution H∗ (relatively to ∇2 f ) is decreasing. This
result indicates that Powell’s least Frobenius update can achieve good performance.





Chapter 4

Existing Hessian approximation attempts
in nonlinear optimization

The knowledge of the Hessian matrix is particularly valuable in nonlinear optimization since algo-
rithms may significantly benefit from the availability of this information. In particular, second-order
derivatives may allow the algorithms to achieve faster convergence rates, as is the case of Newton’s
method, which shows a quadratic local convergence rate. However, two main difficulties prevent
using the Hessian in optimization algorithms. On the one hand, when the dimension of the problem is
large, calculating the Hessian is impractical due to either limits in computational resources or long
computing time required. On the other hand, even if the dimension is small, computing the Hessian
for the function of interest may be challenging. Therefore, several methods have been proposed to
approximate the Hessian matrix of a function. This chapter reviews the main approaches adopted in
nonlinear optimization to achieve this goal.

4.1 Overview of Hessian approximation attempts

Among the many approaches proposed in the literature, techniques from numerical analysis and
computer science play an important role. Finite difference methods [33, 52] aim to approximate the
derivatives of a function by using finite differences of function values computed at sufficiently close
points. The accuracy of the approximation depends on the distance between the points used to evaluate
the function. Moreover, when higher-order derivatives are required, as is the case for the second-order
partial derivatives of the Hessian matrix, round-off errors may prevent using numerical techniques. In
such cases, automatic differentiation methods [4, 7, 38] are preferable. In particular, they are based on
techniques allowing the numerical evaluation of the derivatives of a function specified by a computer
program. The idea is to repeatedly apply the chain rule to every elementary operation and function
executed by the computer program.

Instead of directly approximating the Hessian, a different approach consists in resorting to an
iterative method that starts from a first matrix representing a rough estimate of the Hessian and then
refines the approximation by updating the matrix at each iteration. For example, the so-called secant
equation ∇ f (xk+1)−∇ f (xk) = ∇2 f (xk+1)(xk+1− xk) plays an important role in the BFGS method,
which is the most popular method based on the iterative update of an Hessian approximation (see

37
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Section 2.5 in Chapter 2). By ensuring the positive definiteness of the new Hessian estimation Hk+1,
BFGS allows the Hessian inverse to be computed at a reasonable computational cost. Nocedal and
Wright prove that this method asymptotically converges to a local minimum at a superlinear rate [52].
A step forward is represented by L-BFGS, which is the state of the art method for unconstrained
optimization when second-order derivatives are not available [51].

Powell [58] estimates the Hessian matrix using finite differences of the gradient by first dividing
the Hessian columns into groups. It is possible to find approximations to different Hessian columns
at once by using the symmetry and known sparsity pattern of the Hessian. This method is cheap
in computer arithmetic and provides better results when compared to [20], which is devoted to the
estimation of sparse Jacobian matrices (we recall that the Hessian matrix of a function can be viewed
as the Jacobian matrix of the gradient).

If the Hessian matrix is sparse and its sparsity pattern is known, the approach in [30] enforces
multiple secant equations in a least squares sense, solving a positive semi-definite system of equations
in the nonzero Hessian components. Their approach does not show a significant improvement
compared to the L-BFGS or trust-region Newton-CG method.

A more recent approach [34] imposes the secant equations componentwise, leading to fewer
equations when taking into account the available sparsity pattern. The numerical results show that the
algorithm can find the Hessian approximation fast and accurately when the number of nonzero entries
per row is relatively low.

4.2 Approximating the Hessian matrix by finite differences

In this section, we show how to use Taylor’s theorem to approximate first-order and second-order
derivatives of a function by using the finite-difference approach. Since derivatives are a measure of
the sensitivity of a function to infinitesimal changes in the values of the variables, the idea is to obtain
a suitable approximation by taking small and finite perturbations in the variables and then calculating
the differences in the function values. In case of gradient approximation, we use finite differences of
the function of interest f , while in case of Hessian approximation, we can use either finite differences
of f or of the gradient function ∇ f .

4.2.1 Approximating the gradient

Given a point x ∈Rn and a continuously differentiable function f : Rn→R, the gradient vector ∇ f (x)
can be approximated by calculating proper function values and then performing some elementary
arithmetic. One way to approximate the partial derivative ∂ f

∂xi
with respect to the i-th variable at the

given point x is to use the forward-difference formula, which is given by

∂ f
∂xi

(x)≈ f (x+ εei)− f (x)
ε

, for all i = 1, . . . ,n, (4.1)
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where ε > 0 is a small positive scalar and ei ∈ Rn is the i-th canonical vector. An alternative way is to
use the central-difference formula, which is given by

∂ f
∂xi

(x)≈ f (x+ εei)− f (x− εei)

2ε
, for all i = 1, . . . ,n. (4.2)

Both finite-difference methods approximate the objective function in a neighborhood of x with a
linear function m : Rn → R of the form m(y) = m(x) + g(x)⊤(y− x), where g(x) is the gradient
approximation whose components are given by the right-hand side of either (4.1) or (4.2). Note that
the forward-difference formula requires the evaluation of f at (n+1) points, namely, the point x as
well as the n perturbed points x+ εei, i = 1, · · · ,n. Instead, the central-difference formula is about
twice as expensive as the forward-difference one since f needs to be evaluated at 2n points, namely,
the points x± εei, i = 1,2, · · · ,n. The following theorems show that the central-difference formula
allows achieving a more accurate and stable approximation than the forward-difference formula [5].

Theorem 4.2.1. Suppose that the gradient of the function f (x) is L-Lipschitz continuous. Let g(x)
denote the forward-difference approximation to the gradient ∇ f (x). Then, for all x ∈ Rn,

∥g(x)−∇ f (x)∥ ≤
√

nLε

2
. (4.3)

Theorem 4.2.2. Suppose that the Hessian of function f (x) is M-Lipschitz continuous. Let g(x) denote
the central-difference approximation to the gradient ∇ f (x). Then, for all x ∈ Rn,

∥g(x)−∇ f (x)∥ ≤
√

nMε2

6
. (4.4)

4.2.2 Approximating the Hessian

To approximate the Hessian matrix of a twice continuously differentiable function f by using finite-
difference approximation, approaches based on either the gradients or the function values computed at
specific points can be used. The choice of the approach depends on the availability of the gradient.
In particular, when the user is not able or is not willing to provide the gradient, it is necessary to
approximate the Hessian by using only function values. We start by showing the approach using
only function values at specific points and, afterward, we derive a formula that requires only gradient
evaluations. It is important to point out that both techniques are based on the application of the
Taylor’s theorem and that the latter approach allows estimating Hessian-vector products in place of
the full Hessian. We assume that the second-order derivatives of f exist and are Lipschitz continuous.

By using the Taylor’s theorem, we can write for some t ∈ (0,1)

f (x+ p) = f (x)+∇ f (x)T p+
1
2

pT
∇

2 f (x+ t p)p

= f (x)+∇ f (x)T p+
1
2

pT
∇

2 f (x)p+O
(
∥p∥3) , (4.5)
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where p is referred to as the perturbation vector. If we plug the scaled unit vectors p = εei, p = εe j,
and p = ε(ei + e j) into (4.5), we obtain three different equations. Combining the results, we have

∂ 2 f
∂xi∂x j

(x) =
f (x+ εei + εe j)− f (x+ εei)− f (x+ εe j)+ f (x)

ε2 +O(ε). (4.6)

Equation (4.6) provides a way to approximate each element of the Hessian matrix by using only
function values. However, notice that by using (4.6) to approximate the Hessian, which is a symmetric
matrix, we need to calculate the function values at x + εei + εe j for all i, j = 1, . . . ,n such that
i < j, resulting in n(n+ 1)/2 points, as well as at the n points x+ εei, i = 1, · · · ,n. The resulting
computational cost can be significantly decreased when the Hessian is sparse and the sparsity pattern
is known, as it will be shown in the next paragraphs. In this case, the elements equal to zero can be
skipped, thus obtaining remarkable savings in the total computational cost.

In some circumstances, given a point x ∈ Rn, even if the Hessian ∇2 f (x) of the function f is not
available, the gradient ∇ f (x) may be known. By applying Taylor’s theorem, we have

∇ f (x+ ε p) = ∇ f (x)+ ε∇
2 f (x)p+O

(
ε

2) .
Thus,

∇
2 f (x)p≈ ∇ f (x+ ε p)−∇ f (x)

ε
. (4.7)

Notice that (4.7) provides the forward-difference approximation of the Hessian-vector product
∇2 f (x)p, where p is a given vector in Rn. Approximating such a product is required in some
algorithms, such as the Newton-CG, which are based on the knowledge of the Hessian-vector products
along given directions p. Even though computing Hessian-vector products is affordable and cheap in
some applications, (4.7) may be a useful tool in DFO contexts. Note that one gradient evaluation is
required at the point x+ ε p. The error in the approximation given by (4.7) is proved to be O(ε). To
increase the accuracy of the Hessian-vector product approximation, a central-difference formula can
be used. However, in this case also the evaluation of ∇ f (x− ε p) is required (see, e.g., [24, Section
5.6]).

If in (4.7) p is taken to be ei, where ei ∈ Rn is the i-th canonical vector, we can resort to the
finite-difference approach to approximate the whole Hessian matrix ∇2 f (x) by estimating one column
at a time. For instance, the i-th column of the Hessian can be approximated by using

∇
2 f (x)ei ≈

∇ f (x+ εiei)−∇ f (x)
εi

,

where εi is an appropriate small positive scalar. Note that to determine the full Hessian approximation,
n+1 gradient evaluations are required.

Now, let us assume that the sparsity pattern of the Hessian matrix is known. We know that
the Hessian matrix can be estimated by computing differences of gradients according to (4.7). In
general, when the Hessian is sparse, the number of gradients to compute may be small compared to
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the dimension of the problem because of the sparsity and symmetry of the Hessian matrix, namely,

∇
2 fi j(x) = 0, for some i, j = 1, · · · ,n,

∇
2 fi j(x) =

∂ 2 f (x)
∂xi∂x j

= ∇
2 f j i(x), for all i, j = 1, · · · ,n.

Since estimating a sparse Hessian by using finite-difference approximation of the gradients is an
attractive tool, many works have addressed this topic. For example, Coleman and Moré [11] use graph
theory to develop algorithms for estimating sparse Hessian matrices by resorting to graph coloring.
We illustrate the idea with a simple example that is provided also in [52]. Although the example can
be interpreted also in terms of graph coloring, we omit this interpretation and refer the reader to [11]
for further details.

Example 4.2.1. Let f (x) = x1 ∑
n
i=1 i2x2

i . In this case, we know the sparsity pattern of the Hessian
matrix ∇2 f (x), whose structure is "arrowhead". For instance, when n = 6, the Hessian can be written
as follows 

× × × × × ×
× ×
× ×
× ×
× ×
× ×


, (4.8)

where × denotes a nonzero element. We can approximate the first column of ∇2 f (x) by setting the
perturbation vector p = e1 and using (4.7). Note that the symmetry of the Hessian implies that the first
column of ∇2 f (x) is equal to its first row. Therefore, the only elements of the Hessian that we need to
approximate are the diagonal entries ∇2 f22(x),∇2 f33(x), · · · ,∇2 f66(x). Let us focus on the section
of the Hessian that we obtain by leaving out the first column and row. We want to simultaneously
estimate as many diagonal entries of the Hessian section as possible by choosing the perturbation
vector p in (4.7) in a smart way. In particular, observe that the i-th component of ∇ f (x) depends only
on x1 and xi, thus implying that

∇ f (x+ ε(e2 + e3 + · · ·+ e6))i = ∇ f (x+ εei)i, for all i = 1, . . . ,n.

Therefore, the perturbation vector

p = e2 + e3 + · · ·+ e6 = (0,1,1,1,1,1)⊤

allows us to approximate the diagonal entries by evaluating the gradient ∇ f at the point x +
ε (e2 + e3 + · · ·+ e6). Indeed, by applying the forward-difference formula to each component, we
obtain

∂ 2 f
∂x2

i
(x)≈

∇ f (x+ εei)i−∇ f (x)i

ε
=

∇ f (x+ ε p)i−∇ f (x)i

ε
, i = 2,3, . . . ,6. (4.9)
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As a result, the full Hessian matrix can be approximated by evaluating the gradient at just three points:
x, x+ εe1, and x+ ε (e2 + e3 + · · ·+ e6).

In general, suppose that the sparsity pattern of the Hessian is known. We can partition the index
set of the components, i.e., N = {1, · · · ,n}, into m subsets I j such that N =

⋃m
j=1 I j and Ih

⋂
Is = ∅

for all h,s = 1, . . . ,m. The rule to choose the subsets is to include in each I j all the indexes that are
associated with orthogonal rows of the Hessian. For any j = 1, . . . ,m, we can write

∇
2 f (x)∑

i∈I j

ei ≈

[
∇ f
(

x+ ε ∑i∈I j ei

)
−∇ f (x)

]
ε

.

Note that only m+1 gradients are required. Since m≤ n, a significant saving compared to a non-sparse
Hessian may be achieved. Moreover, this result can be improved by taking into account the symmetry
of the Hessian [11, 30].

It is important to remark that any differentiable function with a sparse Hessian is partially separable
[39]. If f is a partially separable function, then the function f can be expressed as f (x) = ∑

ℓ
i=1 fi(x).

In this case, the approximation of the Hessian ∇2 f (x) at a given point x is given by

∇
2 f (x) =

ℓ

∑
i=1

∇
2 fi(x),

where each ∇2 fi(x) can be approximated by its own secant equation

∇
2 fi(x)p≈ ∇ fi(x+ p)−∇ fi(x).

Since each secant equation involves only a few variables, a computationally cheap sparse approxima-
tion can be obtained. This approach has been generalized to group-partial separability and forms the
basis of the approximations used in LANCELOT [14].

Effective schemes to approximate a sparse Hessian without resorting to graph coloring are
addressed in [58]. From the algorithmic point of view, software for approximating a sparse Hessian
has been developed in [10] and [31]. Finally, the application of graph coloring to finite differencing
has been also discussed in [32].

4.3 Approximating a sparse Hessian matrix with optimal hereditary
properties

This section briefly reviews the method proposed in [30], which addresses nonlinear optimization
problems with objective function characterized by a large sparse Hessian matrix and known sparsity
pattern. The goal of the proposed approach is to approximate the sparse Hessian matrix of the
objective function by taking advantage of the Hessian sparsity. To this end, a least squares problem
with quasi-Newton constraints is solved.

Given a function f : Rn→ R, let

Ω(∇2 f ) def
= {(i, j) : ∇

2 fi j(x) = 0 for all x ∈ Rn}
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be the sparsity pattern of the Hessian matrix ∇2 f (x). We introduce the matrices containing the m most
recent differences of points and gradients yielded by the optimization algorithm, namely,

∆ = [sk+m−1, · · · ,sk] and Γ = [yk+m−1, · · · ,yk],

where sℓ = xℓ− xℓ−1 and yℓ = ∇ f (xℓ)−∇ f (xℓ−1) for all ℓ = k, . . . ,k+m− 1. Suppose that H is
an approximation to the Hessian matrix ∇2 f (x). Our goal is to determine H by ensuring that it is
symmetric and with the same sparsity pattern as ∇2 f (x). That is to say,

H = H⊤,

Hi, j = 0, if (i, j) ∈Ω(∇2 f ).

Moreover, H is required to satisfy m quasi-Newton conditions simultaneously, i.e.,

H∆ = Γ. (4.10)

When f is a quadratic function, there always exists a matrix H such that (4.10) is satisfied and the
exact Hessian can be recovered from (4.10) by requiring proper linear independence assumptions.
When f is non-quadratic, one cannot expect to find a matrix H such that (4.10) is solved exactly with
the same sparsity pattern as ∇2 f (x). Thus, we attempt to find a least squares solution to the matrix
equation (4.10) by solving the following problem

(CPP)


min

H
∥H∆−Γ∥2

F

s.t H⊤ = H
Hi j = 0, for all (i, j) ∈Ω(∇2 f ),

where ∥A∥2
F = trace(AA⊤) = trace(A⊤A) is the squared Frobenius norm of A. This problem is often

referred to as the Constrained Procrustes Problem (CPP) (see, e.g., [42] and [2]). Note that the CPP
is a convex quadratic programming problem, the objective function is convex and bounded below
by zero, and the constraints of the CPP are linear and consistent with the symmetry of ∇2 f (x) (i.e.,
(i, j) ∈Ω(∇2 f ) if and only if ( j, i) ∈Ω(∇2 f )). Hence, there always exists a solution for this problem.

In [30], the authors prove that the approximate Hessian H can always be computed by solving
a positive semi-definite system of equations in the nonzero elements of H. Moreover, the simple
structure of the CPP allows a straightforward generalization to the case where some elements of the
Hessian are known. It can be also shown that the solution of the CPP can be found by solving a sparse
system of equations. By means of the constraints of the CPP, the Hessian approximation is symmetric
and the sparsity is preserved. Instead, the positive-definiteness is not guaranteed. Hence, the approach
proposed in this paper may be applied inside a trust region method, where positive-definiteness of the
Hessian is not required. Necessary and sufficient conditions of the problem have been investigated for
the case with positive definite Hessian.
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4.4 Approximating a sparse Hessian matrix by solving componentwise
secant equations

Drawing inspiration from the work by Fletcher, Grothey, and Leyffer [30], reviewed in Section 4.3,
Gould has developed a more appealing approach [34], which is the focus of this section. The idea
is to directly approximate the Hessian matrix by using both its sparsity pattern and the data pairs
{sℓ}k+m−1

ℓ=k and {yℓ}k+m−1
ℓ=k accumulated in the last m iterations. For the sake of simplicity and without

loss of generality, assume that ℓ starts from the first iteration so that we can redefine the previous
sequences as {sℓ}m

ℓ=1 and {yℓ}m
ℓ=1. Instead of solving all the m conditions (4.10) used in [30], we want

to consider as many conditions as possible. Let us focus on the i-th equation of the ℓ-th condition
in (4.10), namely,

e⊤i Hsℓ = e⊤i yℓ, (4.11)

where ei is the i-th unit vector in Rm. Let sql and yql denote the q-th component of the vectors sℓ and
yℓ. Equation (4.11) can be written in terms of the nonzero elements of H as follows

∑
j∈Ii

Hi js jℓ = yiℓ, where Ii = { j : Hi j ̸= 0}. (4.12)

To approximate the i-th row of the Hessian by solving a determined linear system, we need as many
equations (4.12) as the number of unknown elements in the row i. Therefore, the number of conditions
selected from the m conditions in (4.10) depends on |Ii|. If we do not take into account the symmetry
of H, the unknown elements can be calculated in any order according to Algorithm 6.

Algorithm 6: Approximating a Sparse Hessian without Symmetry
for i = 1, · · · ,n

Calculate the unknown elements in the i-th row of H by solving the system composed of the
equations given by (4.12) for all ℓ= m,m−1, · · · ,m−|Ii|+1.

end (for)

Note that the non-diagonal elements are calculated twice in Algorithm 6. When taking the
symmetry of H into account, (4.12) can be rewritten as

∑
j∈I−i

Hi js jℓ = yiℓ− ∑
j∈I+i

Hi js jℓ, (4.13)

where
I+i =

{
j : j ∈ Ii and Hi j is already known

}
and I−i = Ii\I+i .

Hence, it is important to decide the order of the rows we are going to consider, as it will be shown in
Example 4.4.1. In practice, it is more convenient to access the rows in decreasing order starting from
the row having the smallest number of non-zero elements.
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Example 4.4.1. Assume m = n. Consider the two following Hessian matrices characterized by an
“arrowhead” structure

H1 =


× ×
×

.
...

× ×
× × ·· · × ×

 and H2 =


× × ·· · × ×
× ×
... .

× ×
× ×

 . (4.14)

Note that H1 and H2 are structurally symmetric permutations of one another. As regards H1, each of
the first n−1 rows requires two entries to be calculated, namely, the diagonal element and the element
in the n-th column, while the last row requires n elements. If we take the symmetry into account,
the elements in the last row do not need to be computed since they are equal to the elements in the
n-th column. Therefore, the two nonzero elements in each row i = 1, . . . ,n−1 of the Hessian matrix
can be recovered by using only two conditions (the ones associated with the latest pairs (sn,yn) and
(sn−1,yn−1)). On the contrary, in H2 there are n unknown elements in the first row. Hence, n pairs
(sℓ,yℓ), ℓ = 1, · · · ,n, are required to compute such elements. In total, recovering H1 starting from
the first row requires solving n−1 systems with two equations each and one equation with only one
variable, while the same strategy applied to H2 requires solving one system with n equations and also
n−1 equations with one variable (since one of the two elements is known from the solution of the
system).

Hessian sparsity can be also analyzed in terms of the adjacency graph G of the Hessian matrix
[11], which is a graph with n nodes, each associated with one of the n variables, such that two nodes i
and j are joined by an arc if and only if ∇2 fi j(x) = ∂ 2 f (x)/∂xi∂x j ̸= 0 for some x in Rn. The degree
of node i is the number of unknown nonzero entries in the i-th row minus one, namely, |I−i∗ |−1. Let
L be a list of nodes that is updated across the iterations. Algorithm 7 provides a way to approximate
the sparse Hessian matrix by using ordering and symmetry.

Algorithm 7: Approximating a Sparse Hessian with Symmetry

Calculate the adjacency graph G of ∇2 f (x), compute the degree of each node, and initialize
L with the set of nodes in G .
while L ̸=∅

Find the node i∗ with minimum degree among the nodes in L .
Calculate the unknown elements in the row i∗ by applying (4.13) with i = i∗ for all
ℓ= m,m−1, · · · ,m−|I−i∗ |+1.
Update L = L \{i∗} and update the degree of each node.

end (while)

Algorithm 7 requires finding the node with the smallest degree at each iteration so that we can
keep the number of required pairs (sℓ,yℓ) small at each iteration. The nodes could be initially ordered
using a bucket sort algorithm [19], which has a linear cost O(n) in terms of operations and memory
locations.
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It is important to note that at each iteration Algorithm 7 requires fewer floating-point operations
than its previous iterations. However, there are two disadvantages. On the one hand, while the steps in
Algorithm 6 could be performed in parallel, Algorithm 7 is to a large extent sequential; only when the
nodes i and j of minimum degree satisfy I+i ∩ I+j = ∅ (i.e., the i-th and j-th do not share the same
unknown elements), the steps can be processed in parallel. The second drawback is that inaccurate
estimates of components of H obtained from previous iterations lead to increasing errors when solving
(4.13), even if the Hessian is a constant matrix (∇2 f (x) = ∇2 f (x̄) for all (x, x̄) ∈Rn×Rn). Especially
for large Hessian matrices, if errors occur in early iterations, in the last iterations the error may be
significant. Since Algorithm 6 is immune to this second drawback because the entries in each row are
calculated independently, one way to solve the aforementioned issue is to combine Algorithm 6 with
Algorithm 7.

Assume that most of the rows of the Hessian are very sparse and the remaining rows are relatively
dense. In particular, after performing a symmetric permutation, we can write the Hessian matrix in the
following form [

H11 H12

H⊤12 H22

]
, (4.15)

where H11 and H12 are relatively sparse and H22 is relatively dense. The idea is to find the entries
in [H11 H12] row-by-row by applying Algorithm 6, and then seek the elements in H22 by using
Algorithm 7 with the symmetric property. Assume that H11 is an n1×n1 matrix, while H22 is n2×n2.
The resulting method is reported in Algorithm 8.

Algorithm 8: Approximating a Sparse Hessian (combined version)
for i = 1, · · · ,n1

Calculate the unknown elements in the i-th row of [H11 H12] by solving the system
composed of the equations given by (4.12) for all ℓ= m,m−1, · · · ,m−|Ii|+1.

end (for)
Calculate the adjacency graph G of H22, compute the degree of each node i,
for all i = n1 +1, . . . ,n1 +n2, and initialize L with the set of nodes in G .
while L ̸=∅

Find the node i∗ with minimum degree.
Calculate the unknown elements in the row i∗ by applying (4.13) with i = i∗ for all
ℓ= m,m−1, · · · ,m−|I−i∗ |+1.
Update L = L \{i∗} and update the degree of each node.

end (while)

Note that we could introduce a threshold η such that the i-th row is treated as dense if |Ii|> η ,
sparse otherwise. If in Algorithm 8 we apply Algorithm 7 recursively to the block [H⊤12 H22], inaccu-
rate estimates of components of H22 obtained from previous iterations may lead to significant errors
in the last iterations. However, recursion is unnecessary and can be avoided. In order to reduce the
instability of Algorithm 8 and, at the same time, keep its benefits, a systematic algorithm is proposed
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in Algorithm 9, where N is a list of nodes updated across the iterations.

Algorithm 9: Approximating Sparse Hessian (reducing instability)

Calculate the adjacency graph G of ∇2 f (x), initialize N with the set of nodes of G , and set
L =∅.
while (N ̸=∅)

Find the node i∗ with minimum degree.
if (m≥ |Ii∗ |)

Calculate the unknown elements in the i∗-th row of H by solving the system composed
of the equations given by (4.12) for all ℓ= m,m−1, · · · ,m−|Ii∗ |+1.

else if (|I−i∗ | ≤ m < |Ii∗ |)
Calculate the unknown elements in the row i∗ by applying (4.13) for all
ℓ= m,m−1, · · · ,m−|I−i∗ |+1.

else
Skip the i∗-th row and update L = L ∪{i∗}.

end (if)
Update N = N \{i∗} and the degree of the remaining nodes.

end (for)
while (L ̸=∅ and the size of L is decreased with respect to the previous iteration)

Extract node q from L .
Attempt to calculate the unknown elements in the q-th row of H by solving the system
composed of the equations given by (4.12) for all ℓ= m,m−1, · · · ,m−|Iq|+1.
If successful, update L = L \{q}.

end (while)
return H = (H +H⊤)/2.

In order to reduce the instability, Algorithm 9 exploits the symmetry of H only when it is necessary.
In particular, in the for loop the algorithm determines the i∗-th row of H by solving (4.12) if m≥ |Ii∗ |.
When m < |Ii∗ | but m≥ |I−i∗ |, the algorithm calculates the row by solving (4.13), which exploits the
symmetry. If m < |I−i∗ |, the row cannot be uniquely determined since there are not enough conditions.
However, since more elements in the considered row of H may become known at some later iteration
because of the symmetry, at the end the algorithm attempts to determine the unknown elements in
all the rows that have been skipped. Note that, thanks to the symmetry, this framework uses the
smallest number of pairs (sℓ,yℓ) required to uniquely determine each row of H. Finally, the symmetry
is enforced also by setting H = (H +H⊤)/2, which is effective for reducing the Frobenius norm error
∥H−∇2 f∥F .

The last algorithm described in this section uses all the available information to determine the
rows of H and it is not limited to the amount of information required for the unique determination.
The idea is to create an over-determined system with a unique solution by using all m pairs (sℓ,yℓ)
rather than determining the elements in the i-th row of H by using only |Ii| pairs or less. In particular,
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the i-th row of H is recovered by determining the least squares solution of the linear system

(H⊤)i = argmin
b
∥∆⊤b− (Γ⊤)i∥2

2, (4.16)

where H∆ = Γ, ∆ = [sk+m−1, · · · ,sk], and Γ = [yk+m−1, · · · ,yk]. A situation suitable for applying this
technique is when we want to minimize a non-quadratic function with non-constant Hessian within
a trust-region method. Indeed, since there is a strong possibility that the vector pairs ∆, Γ are not
consistent, the over-determined system may not have a unique solution.

It is important to point out that the least-squares approach is beneficial especially if the data in the
matrices ∆ and Γ are noisy, which may occur when the objective function or its gradient cannot be
evaluated exactly. The scheme of the resulting method is reported in Algorithm 10.

Algorithm 10: Approximating Sparse Hessian (using all available information)
Apply Algorithm 9 replacing the statement by solving (4.12) with by solving the least squares
problem (4.16).

Numerical experiments show that Algorithm 6 can recover the elements of a sparse Hessian fast
and accurately provided that the maximum number of entries per row is relatively small. However, if
the number of dense rows is one or more, the performance of Algorithm 6 deteriorates. In contrast,
Algorithm 7 runs faster since it takes advantage of the symmetry of the Hessian. However, since
the accuracy tends to decrease when the entries recovered in the first iterations are affected by non-
negligible errors, this approach is not recommended. The combined version, which is shown in
Algorithm 8, resolves the main issues of these first two algorithms and, therefore, performs well.
However, it is outperformed by both Algorithms 9 and 10 in terms of accuracy. Finally, Algorithm
10 guarantees a smaller approximation error than Algorithm 9 but requires solving a least-squares
problem, which is more computationally intensive than finding unique solutions to the linear systems
considered in Algorithm 9. Moreover, Algorithms 9 and 10 require the same number of pairs (sℓ,yℓ),
which is the smallest one among all the considered algorithms.



Chapter 5

Hessian recovery from Hessian-vector
products

In this chapter, we introduce a new approach to recover the Hessian of a function by using Hessian-
vector products.

5.1 Hessian recovery

Let x be a given point. Suppose also that we have calculated f and ∇ f at x as well as f at a number of
points y1, . . . ,yp. We can then use quadratic interpolation to fit the data by determining a symmetric
matrix H such that

f (x)+∇ f (x)⊤(yℓ− x)+
1
2
(yℓ− x)⊤H(yℓ− x) = f (yℓ), ℓ= 1, . . . , p. (5.1)

Furthermore, given a set of vectors v1, . . . ,vm, with m possibly much smaller than n, suppose that
we have calculated w j = ∇2 f (x)v j, j = 1, . . . ,q. Hence we could then ask our symmetric Hessian
model H to satisfy Hv j = w j, j = 1, . . . ,q. However it is important to notice two immediate facts,
reported in Remarks 5.1.1 and 5.1.2.

Remark 5.1.1. First we cannot have q > 1. Any use of a pair v1,v2 would make the conditions
Hv1 = w1 and Hv2 = w2 degenerate in H, in the sense that the matrix multiplying the component
variables of H would be rank deficient. This fact can be easily confirmed from multiplying each by
the other vector, i.e., by looking at (v2)⊤Hv1 = (v2)⊤w1 and (v1)⊤Hv2 = (v1)⊤w2. For illustration,
suppose that n = 2. These two equations would be

(v2)1(v1)1h11 +[(v2)2(v1)1 +(v2)1(v1)2]h12 +(v2)2(v1)2h22 = (v2)⊤w1,

(v1)1(v2)1h11 +[(v1)2(v2)1 +(v1)1(v2)2]h12 +(v1)2(v2)2h22 = (v1)⊤w2,

and one can see that the two rows multiplying the H components are the same.

49
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Remark 5.1.2. Secondly, even when taking q = 1, one cannot consider v1 = yℓ− x, for any ℓ, for the
exact same reason. In fact, multiplying H(yℓ− x) = w1 on the left by (1/2)(yℓ− x)⊤ would lead us to

1
2
(yℓ− x)⊤H(yℓ− x) =

1
2
(yℓ− x)⊤w1,

which has the same term in H as of the corresponding interpolating condition in (5.1),

1
2
(yℓ− x)⊤H(yℓ− x) = f (yℓ)− f (x)−∇ f (x)⊤(yℓ− x).

Therefore, we would have two linearly dependent equations in the H components.

From Remark 5.1.1, we know that we can only consider one vector v for the Hessian multiplication
w = ∇2 f (x)v, and from Remark 5.1.2, we know that this vector cannot be any of the interpolation
vectors yℓ−x. Then, in the same vein as it was done in [18, Section 5.3] for derivative-free optimization,
a model Hessian H could then be calculated from the solution of the recovery problem

min
H

norm(H) s.t. (5.1) and Hv = w. (5.2)

The norm(H) could be taken in a certain ℓ1 sense, leading to a linear program (see [3]). It could
also be set as the Frobenius norm, namely, norm(H) = ∥H∥F , leading to a quadratic program.
Alternatively, one can recover a model Hessian in a least secant fashion (as done in [56] for derivative-
free optimization using the Frobenius norm)

min
H

norm(H−H prev) s.t. (5.1) and Hv = w, (5.3)

where H prev is a previously computed model Hessian (say, from a previous iteration of an optimization
scheme).

5.2 Theoretical motivation

Error decrease

We will now see that when f is quadratic the error in the difference between the optimal solution H∗

of (5.3) and the true Hessian decreases relatively to the previous estimate H prev. To prove such a result
it is convenient to use the Frobenius norm in (5.3) and consider

min
H

1
2
∥H−H prev∥2

F s.t. (5.1) and Hv = w. (5.4)

Let us first write the quadratic f centered at x

f (y) = a+b⊤(y− x)+
1
2
(y− x)⊤C(y− x), (5.5)

where a = f (x), b = ∇ f (x), and C is a symmetric matrix. The non-quadratic case will be analyzed
after the theorem.
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Theorem 5.2.1. Let f be given by (5.5) and assume that the system of linear equations defined by (5.1)
and Hv = w is feasible and underdetermined in H. Let H∗ be the optimal solution of problem (5.4).
Then

∥H∗−C∥2
F ≤ ∥H prev−C∥2

F .

Proof. The proof follows the arguments in [56] that lead to [56, Equation (1.8)]. From (5.1), we
have (yℓ− x)⊤(C−H∗)(yℓ− x) = 0, ℓ= 1, . . . , p. We also have (C−H∗)v = 0. Hence, C−H∗ is a
feasible direction for the affine space in H defined by (5.1) and Hv = w. It then turns out that the
function

m(θ) =
1
2
∥(H∗−H prev)+θ(C−H∗)∥2

F

has a minimum at θ = 0. From the trace definition of the Frobenius norm

m′(θ) = [(H∗−H prev)+θ(C−H∗)]⊤ (C−H∗).

Hence,
(H∗−H prev)⊤(C−H∗) = 0,

which then implies (given the symmetry of the matrices and considering only the diagonal entries of
the above matrix product)

n

∑
i=1

n

∑
j=1

(H∗i j−H prev
i j )(Ci j−H∗i j) = 0.

The rest of the proof requires the following calculations:

∥H prev−C∥2
F −∥H∗−H prev∥2

F −∥H∗−C∥2
F

=
n

∑
i=1

n

∑
j=1

[(H prev
i j −Ci j)

2− (H∗i j−H prev
i j )2− (H∗i j−Ci j)

2]

=
n

∑
i=1

n

∑
j=1

[(H prev
i j −Ci j +H∗i j−H prev

i j )(H prev
i j −Ci j−H∗i j +H prev

i j )− (H∗i j−Ci j)
2]

=
n

∑
i=1

n

∑
j=1

[(H∗i j−Ci j)(2H prev
i j −Ci j−H∗i j−H∗i j +Ci j)]

= 2
n

∑
i=1

n

∑
j=1

[(H∗i j−Ci j)(H
prev
i j −H∗i j)] = 0.

Hence we have established that

∥H∗−C∥2
F = ∥H prev−C∥2

F −∥H∗−H prev∥2
F

≤ ∥H prev−C∥2
F .

When f is not quadratic, a similar result can be obtained under the price of more Hessian-
vector products. We will obtain the result by considering the quadratic function that results from a
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second-order Taylor expansion of f centered at x:

f̃ (y) = f (x)+∇ f (x)⊤(y− x)+
1
2
(y− x)⊤∇

2 f (x)(y− x). (5.6)

The values of f and f̃ coincide at x up to second-order derivatives: f̃ (x) = f (x), ∇ f̃ (x) = ∇ f (x),
and ∇2 f̃ (x) = ∇2 f (x). That is not the case for the function values at yℓ, but if we are willing to pay
the price of computing p more Hessian-vector products ∇2 f (x)(yℓ− x), ℓ= 1, . . . , p, then one can
indeed calculate f̃ (yℓ) using (5.6). The new interpolating conditions for H are then given by

f̃ (x)+∇ f̃ (x)⊤(yℓ− x)+
1
2
(yℓ− x)⊤H(yℓ− x) = f̃ (yℓ), ℓ= 1, . . . , p. (5.7)

Then, H can be calculated like in (5.4) but with (5.1) replaced by (5.7):

min
H

1
2
∥H−H prev∥2

F s.t. (5.7) and Hv = w. (5.8)

Corollary 5.2.1. Assume that the system of linear equations defined by (5.7) and Hv = w is feasible
and underdetermined in H. Let H∗ be the optimal solution of problem (5.8). Then

∥H∗−∇
2 f (x)∥2

F ≤ ∥H prev−∇
2 f (x)∥2

F = ∥H prev−∇
2 f̃ (xprev)∥2

F . (5.9)

Proof. By applying Theorem 5.2.1 when f̃ is the quadratic function considered, we obtain

∥H∗−∇
2 f̃ (x)∥2

F ≤ ∥H prev−∇
2 f̃ (x)∥2

F .

The result of the proof follows by considering ∇2 f̃ (x) = ∇2 f̃ (xprev) = ∇2 f (x).

Further improving the bound of Corollary 5.2.1, in the sense of having H prev−∇2 f (xprev) in the
right-hand side of (5.9), seems out of reach because it would require incorporating ∇2 f (xprev) in the
objective function of the recovery subproblem (5.8).

Error bound

Let α represent the coefficients of H in (1/2)w⊤Hw in terms of the monomial basis. The quadratic
components of this basis are of the form (1/2)w2

i , i = 1, . . . ,n and wiw j, 1 ≤ i < j ≤ n. So, we
have (1/2)h11w2

1 = (1/2)α1w2
1, . . . , h1nw1wn = αnw1wn, (1/2)h22w2

2 = (1/2)αn+1w2
2 and so on. The

recovery problem (5.4) can then be formulated approximately1 as

min
α

1
2
∥α−α

prev∥2 s.t. Mα = δ , (5.10)

where

M =

[
M1

M2

]
, δ =

[
δ 1

δ 2

]
,

1The norm used in (5.10) for α is a minor variation of the Frobenius norm of H.
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M1
α =


1
2(y

1− x)⊤H(y1− x)
...

1
2(y

p− x)⊤H(yp− x)

 , M2
α = Hv,

δ
1 =


f (y1)− f (x)−∇ f (x)⊤(y1− x)

...
f (yp)− f (x)−∇ f (x)⊤(yp− x)

 , δ
2 = w.

Another piece of motivation for this approach comes from the fact that the enriched interpolating
conditions defined by (5.1) and Hv = w, once determined (i.e., with as many equations as variables),
may produce a model Hessian H that used together with ∇ f (x) can give rise to a fully quadratic
model. Such a model has the same orders of accuracy as a Taylor-based model [17] (see also [18]).

Theorem 5.2.2. If p is chosen such that p+ n = n2+n
2 and if M is nonsingular, then the model

Hessian H resulting from Mα = δ in (5.10) can give rise to a fully quadratic model, in other words,
one has

∥H−∇
2 f (x)∥ = O(∆y),

where ∆y = max1≤ℓ≤p
∥∥yℓ− x

∥∥ and the constant multiplying ∆y depends on the inverse of an appro-
priate scaled version of M.

Proof. Consider that x is at the origin, without any lost of generality. One can start by making a Taylor
expansion of f around x along all the displacements yℓ− x, ℓ= 1, . . . , p, leading to

δ
1−M1

α
x = O(∆3

y), (5.11)

where αx stores the components of ∇2 f (x) and each component of the right-hand side is bounded by
(1/6)L∇2 f ∥yℓ− x∥3, with L∇2 f the Lipschitz constant of ∇2 f . From (5.11) and M1α = δ 1, we obtain

M1(α−α
x) = O(∆3

y). (5.12)

On the other hand, one also has
M2(α−α

x) = 0.

Now we divide each row of (5.12) by ∆2
y . The proof is concluded by considering [M1/∆2

y ;M2] as
the scaled version of M alluded in the statement of the result.

5.3 Numerical results for the determined case

As we have discussed in Theorem 5.2.2, if p is chosen such that p+n = n2+n
2 and if the matrix M is

nonsingular and well conditioned, the model Hessian H resulting from Mα = δ in (5.10) becomes
fully quadratic. The error between the Hessian model H and ∇2 f (x) is then of the O(∆y), where
∆y = max1≤ℓ≤p ∥yℓ− x∥.

In this section we will report some illustrative numerical results to confirm that an approach
built on such a Hessian model can lead to an economy of Hessian-vector products. Our term of
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comparison will be the inexact Newton method (as described in [52, Section 7.1]), where the system
∇2 f (x)dIN = −∇ f (x) is solved by applying a truncated linear conjugate gradient (CG) method
(stopping once a direction of negative curvature is found or a relative error criterion is met). In our
case, after computing H from solving Mα = δ in (5.10), to compute our search direction dMH , we
apply the exact same truncated CG method to HdMH = −∇ f (x) as in the inexact Newton method.
The computed directions dIN or dMH are necessarily descent in the sense of making an acute angle
with −∇ f (x).

For both the inexact Newton method and our model Hessian approach, a new iterate is of the form
x+αd, where d is given by dIN or dMH respectively. The same cubic interpolation line search [62,
Section 2.4.2] is used to compute the stepsize α IN and αMH . In this line search, the objective function
is approximated by a cubic polynomial with function values at three points and a derivative value
at one point (see Section 2.2.2 for further details). The line search starts with a unit stepsize and
terminates either successfully with a value α satisfying a sufficient decrease condition for the function
(of the form f (x+αd) ≤ f (x)+ c1α∇ f (x)⊤d, with c1 = 10−4) or unsuccessfully with a stepsize
smaller than 10−10.

To form the model described in (5.2) one needs p interpolation points y1, . . . ,yp and one vector v
for Hessian multiplication. We have used the following scheme: before the initial iteration, we have
randomly generated a set of p points, {y1, . . . ,yp}, and a vector v, in the unit ball B(0;1) centered
at the origin. Then, at each iteration xk, the interpolation points Yk = {y1

k , . . . ,y
p
k} used were of the

form xk +rkyℓ, ℓ= 1, . . . , p, and the vector vk of the form rk v, where rk = min{10−2,max{10−4,∥xk−
xk−1∥}}, k = 1,2, . . ..

For the purpose of this numerical illustration, we selected 48 unconstrained (smooth and nonlinear)
very small problems from the CUTEst collection (see Appendix B.1), also used in the papers [34, 37].
Both methods were stopped when an iterate xk was found such that ∥∇ f (xk)∥ < 10−5. We built
performance profiles (see Appendix A.1) using as performance metric the numbers of Hessian-vector
products and iterations (Figure 5.1) and the number of function evaluations and CPU time (Figure
5.2). One can see that our approach can effectively lead to a significant reduction on the number
of Hessian-vector products. Both approaches take on average 2CG inner iterations to compute a
direction, and the number of main iterations is comparable. Hence, we estimate that this reduction is
approximately 50% as we only do one Hessian-vector product per main iteration. Of course, one has
to pay a significant cost in the number of function evaluations, which is of the order of n2 per main
iteration.

Note that the interpolation points around the current iterate x are of the form x+ rkyℓ, where yℓ,
ℓ = 1, . . . , p, are randomly generated in the unit ball B(0;1) at the very beginning. The idea is to
consider an equivalent scaled version of the system in (5.10). Recalling the definition of δ in (5.10)
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and given the matrix M,

M =

[
M1

M2

]

=



1
2 (y

1
k − xk)

2
1 (y1

k − xk)1(y1
k − xk)2 · · · (y1

k − xk)1(y1
k − xk)n

1
2 (y

1
k − xk)

2
2 · · · 1

2 (y
1
k − xk)

2
n

...
...

...
...

...
...

1
2 (y

p
k − xk)

2
1 (yp

k − xk)1(y
p
k − xk)2 · · · (yp

k − xk)1(y
p
k − xk)n

1
2 (y

p
k − xk)

2
2 · · · 1

2 (y
p
k − xk)

2
n

−−−− −−−−−−− −− −−−−−− −−−−− −−− −−−−−
(vk)1 (vk)2 · · · (vk)n 0 · · · 0

0 (vk)1 · · · 0 (vk)2 · · · (vk)n
...

...
...

...
...

...
0 0 · · · (vk)1 0 · · · (vk)n


,

(5.13)

consider the scaled version of M and δ , namely,

M̃ =

[
M̃1

M̃2

]
=

[
M1/(rk)

2

M2/rk

]

=



1
2 (y

1)2
1 (y1)1(y1)2 · · · (y1)1(y1)n

1
2 (y

1)2
2 · · · 1

2 (y
1)2

n
...

...
...

...
...

...
1
2 (y

p)2
1 (yp)1(yp)2 · · · (yp)1(yp)n

1
2 (y

p)2
2 · · · 1

2 (y
p)2

n
−−−− −−−−−−− −− −−−−−− −−−−− −−− −−−−−
(v)1 (v)2 · · · (v)n 0 · · · 0

0 (v)1 · · · 0 (v)2 · · · (v)n
...

...
...

...
...

...
0 0 · · · (v)1 0 · · · (v)n


,

(5.14)

δ̃ =

[
δ̃ 1

δ̃ 2

]
=

[
δ 1/(rk)

2

δ 2/rk

]
. (5.15)

Note that the scaled matrix M̃ is independent of xk and rk. Solving problem (5.10) is then equivalent
to solving the following problem

min
α

1
2
∥α−α

prev∥2 s.t. M̃α = δ̃ . (5.16)

It is important to point out that once the p interpolation points y1, · · · ,yp are generated, the matrix M̃
can be determined and it is not required to be updated at each iteration.
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Fig. 5.1 Testing the Hessian recovery within a line-search algorithm. Performance profiles for the
numbers of Hessian-vector products and iterations, for the set of very small problems of Appendix
B.1. The value of p was set to n2+n

2 −n.
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Fig. 5.2 Testing the Hessian recovery within a line-search algorithm. Performance profiles for number
of function evaluations and CPU time, for the set of very small problems of Appendix B.1. The value
of p was set to n2+n

2 −n.

5.4 Numerical results for the determined case when the Hessian spar-
sity is known

In many optimization problems, the Hessian matrix of the objective function is sparse and the
corresponding sparsity pattern is known in advance. This is the case for problems governed by
partial differential equations [1, 6, 41, 43], and, in general, for all problems involving partially
separable functions of the form f (x) = ∑

m
i=1 fi(x), where each of the element functions fi depends

on only a few components of x (see [13, 64]). The CUTEst [36] collection lists many constrained
and unconstrained sparse problems, and tools for accessing the sparsity pattern of the Hessian of
the objective functions are made available. CUTEst problems for which the sparsity pattern of the
Hessian of the objective function is accessible arise from interconnected markets, power network,
circuit simulation, computational fluid dynamics, chemical process simulation, among many other
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applications. Taking advantage of the Hessian sparsity pattern to approximate Hessian values has thus
been the subject of research [29, 30, 58, 63].

Let Ω(∇2 f ) = {(i, j) : i ≤ j, ∇2 fi j(x) = 0 for all x} be the sparsity pattern of ∇2 f . When
|Ω(∇2 f )| ≪ n(n+1)/2, it is then beneficial and often necessary to use specialized algorithms and
data structures that take advantage of the known sparsity pattern. One can tailor our model Hessian
approach to problems with sparse Hessian matrices when the sparsity patterns are known. We require
the Hessian model to share the same sparsity pattern of the true Hessian, recovering only the nonzero
elements. In fact, instead of solving problem (5.10) with respect to the whole Hessian matrix, we
solve problem

min
αΩ

1
2
∥αΩ−α

prev
Ω
∥2 s.t. MΩαΩ = δ , (5.17)

where the elements in the rows of MΩ and in the vector αΩ correspond now only to nonzero entries.

We have tested our sparse Hessian recovery approach using the same algorithmic environment of
Section 5.3, the only difference being in the usage of the model equation MΩαΩ = δ in (5.17) and
a smaller value of p (now given by the difference between the number of nonzeros of the Hessian
and n, so that the matrix MΩ is squared). The sparse problems used are listed in Appendix B.2. The
experiments are reported in Figures 5.3 and 5.4 in the form of performance profiles. The conclusions
are similar to those in Section 5.3.
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Fig. 5.3 Testing the Hessian recovery within a line-search algorithm. Performance profiles for the
numbers of Hessian-vector products and iterations, for the set of small sparse problems of Appendix
B.2. The value of p was set to number of nonzeros minus n.
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Fig. 5.4 Testing the Hessian recovery within a line-search algorithm. Performance profiles for number
of function evaluations and CPU time, for the set of small sparse problems of Appendix B.2. The
value of p was set to number of nonzeros minus n.

5.5 Recovery cost in the general case

The necessary and sufficient optimality conditions for the convex QP (5.10) can be stated as

α−α
prev−M⊤λ = 0,

Mα = δ ,
(5.18)

where λ denotes the vector of Lagrange multipliers. Such multipliers can then be recovered by solving

MM⊤λ = δ −Mα
prev. (5.19)

The system (5.19) can either be solved directly or iteratively. If solved directly the cost is of the
order of (p+n)2n2 to form MM⊤ and of (p+n)3 to factorize it, and the overall storage of the order
of (p+ n)2. If the conjugate gradient (CG) method is applied, the overall cost is of the order of
cg(p+n)n2, where cg is the number of CG iterations. In fact, each matrix vector multiplication with
either M⊤ or M costs O((p+n)n2). Solving the KKT system (5.18) using an indefinite factorization
is even less viable given that the storage space would be of the order of (n2 + p)2.



Chapter 6

Newton direction recovery from
Hessian-vector products

In this chapter, we introduce a new approach to recover the Newton direction from Hessian-vector
products without requiring an explicit recovery of the Hessian matrix.

6.1 Newton direction recovery

Let us first consider a quadratic Taylor expansion of the form

f (x)+∇ f (x)⊤(yℓ− x)+
1
2
(yℓ− x)⊤∇

2 f (x)(yℓ− x) ≃ f (yℓ), ℓ= 1, . . . , p, (6.1)

made using a sample set {y1, . . . ,yp}. We will synchronize expansion (6.1) with Hessian-vector
products along yℓ− x, ℓ= 1, . . . , p. In fact, we require the calculation of

zℓ = ∇
2 f (x)(yℓ− x), ℓ= 1, . . . , p. (6.2)

Since our interest relies specifically on the calculation of the Newton direction, assuming that the
model Hessian ∇2 f (x) is nonsingular, we obtain from (6.1) and (6.2)

f (x)+(∇2 f (x)−1
∇ f (x))⊤∇

2 f (x)(yℓ− x)+
1
2
(yℓ− x)⊤zℓ ≃ f (yℓ), ℓ= 1, . . . , p. (6.3)

Then, introducing the model vector d ≃ −∇2 f (x)−1∇ f (x), one arrives at a new set of enriched
interpolating conditions

(zℓ)⊤d = − f (yℓ)+ f (x)+
1
2
(yℓ− x)⊤zℓ, ℓ= 1, . . . , p. (6.4)

Equations (6.4) lead then to a new recovery problem

min
d

norm(d−dprev) s.t. (6.4). (6.5)

59
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When dprev is the previously recovered Newton direction, we are following the spirit of a quasi-Newton
least secant approach. One could also consider the case dprev = 0 as it was done in some derivative-free
approaches for Hessian recovery. Let us now give two arguments to motivate this approach.

6.2 Theoretical motivation

Error decrease

First, as we did in Section 5.2 for the Hessian recovery approach, we can provide motivation for the
Newton direction recovery approach when f is assumed quadratic (5.5), this time with a nonsingular
Hessian C. Here we need to consider the square of the ℓ2-norm in (6.5)

min
d

1
2
∥d−dprev∥2 s.t. (6.4). (6.6)

We will show that in the quadratic case the error in the approximation of the Newton direction is
monotonically non increasing. The non-quadratic case will be discussed at the end of this section.

Let us consider the following quadratic f centered at x

f (y) = a+b⊤(y− x)+
1
2
(y− x)⊤C(y− x), (6.7)

where a = f (x), b = ∇ f (x), and C is a symmetric matrix.

Theorem 6.2.1. Let f be given by (6.7) with C nonsingular and assume that the system of linear
equations (6.4) is feasible and underdetermined in d. Let d∗ be the optimal solution of problem (6.6).
Then

∥d∗− (−C−1b)∥2 ≤ ∥dprev− (−C−1b)∥2. (6.8)

Proof. From the expression of f , one has

f (yℓ) = a+(C−1b)⊤C(yℓ− x)+
1
2
(yℓ− x)⊤C(yℓ− x), ℓ= 1, . . . , p,

and hence, using zℓ =C(yℓ− x), ℓ= 1, . . . , p, and (6.4), one arrives at (zℓ)⊤(d∗− (−C−1b)) = 0. The
conclusion is that d∗− (−C−1b) is a feasible direction for the affine space in d defined by (6.4).

The rest of the proof follows the same lines as in the proof of Theorem 5.2.1. The function

m(θ) =
1
2
∥(d∗−dprev)+θ(−C−1b−d∗)∥2

has a minimum at θ = 0, from which we conclude that (d∗−dprev)⊤(−C−1b−d∗) = 0. From here
we obtain

∥d∗− (−C−1b)∥2 = ∥dprev− (−C−1b)∥2−∥d∗−dprev∥2

≤ ∥dprev− (−C−1b)∥2.
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This result does not measure, however, the decrease in the absolute error occurred in the current
approximate Newton direction because the gradient of f at xprev is not b, but rather b+C(xprev− x).
Hence, what we would like to have in the right-hand side of the bound (6.8) of Theorem 6.2.1 is

dprev− (−C−1
∇ f (xprev)) = dprev− (−C−1(b+C(xprev− x))).

To achieve such a result we need to change (6.6) to

min
d

1
2
∥d− (dprev + xprev− x)∥2 s.t. (6.4), (6.9)

and the next corollary states it rigorously.

Corollary 6.2.1. Let f be given by (6.7) with C nonsingular and assume that the system of linear
equations (6.4) is feasible and underdetermined in d. Let d∗ be the optimal solution of problem (6.9).
Then

∥d∗− (−C−1
∇ f (x))∥2 ≤ ∥dprev− (−C−1

∇ f (xprev))∥2. (6.10)

Proof. All we need to do is to apply Theorem 6.2.1 to problem (6.9) instead, which leads to

∥d∗− (−C−1b)∥2 ≤ ∥(dprev + xprev− x)− (−C−1b)∥2. (6.11)

Finally, notice that dprev + xprev− x− (−C−1b) = dprev− (−C−1(b+C(xprev− x))).

As we did in Corollary 5.2.1 for the Hessian recovery approach of Chapter 5, we can also shed
some light on what happens when f is non-quadratic. Consider the quadratic function in (5.6) that
results from the second-order Taylor expansion of f centered at x. Again, the values of f and f̃
coincide at x up to second-order derivatives ( f̃ (x) = f (x), ∇ f̃ (x) = ∇ f (x), and ∇2 f̃ (x) = ∇2 f (x)),
but that is not the case for the function values at yℓ. However, we can calculate f̃ (yℓ) using (5.6) and
the Hessian-vector products (6.2). The new set of enriched interpolating conditions is then given by

(zℓ)⊤d = − f̃ (yℓ)+ f̃ (x)+
1
2
(yℓ− x)⊤zℓ, ℓ= 1, . . . , p, (6.12)

and a new recovery problem is formulated as

min
d

1
2
∥d− (dprev + xprev− x)∥2 s.t. (6.12). (6.13)

Corollary 6.2.2. Assume that ∇2 f (x) is non-singular and the system of linear equations (6.12) is
feasible and underdetermined in d. Let d∗ be the optimal solution of problem (6.13). Then

∥d∗− (−∇
2 f (x)−1

∇ f (x))∥2 ≤ ∥dprev− (−∇
2 f̃ (xprev)−1

∇ f̃ (xprev))∥2. (6.14)

Proof. The proof is a combination of the proofs of Corollaries 5.2.1 and 6.2.1.
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Note that ∇2 f̃ (xprev) is equal to ∇2 f (x), not to ∇2 f (xprev). Note also that ∇ f̃ (xprev) is not the
same as ∇ f (xprev). Having the Hessian and the gradient of f at xprev in the right-hand side of the
bound (6.14) would require the knowledge of the true Hessian or true Newton direction at xprev.

Error bound

The second argument establishes the accuracy of the recovery under the assumption that p≥ n (see
the end of this section for a discussion about this assumption and how to circumvent it practice). We
will establish a bound on the norm of the absolute error of the recovered Newton direction dN based
on ∆y = max1≤ℓ≤p ∥yℓ− x∥, ∆z = max1≤ℓ≤p ∥zℓ∥, and the conditioning of the matrix Mz

L, whose rows
are (1/∆z)(zℓ)⊤, ℓ= 1, . . . , p, in other words,

Mz
L =

1
∆z


(z1)⊤

...
(zp)⊤

 .
Theorem 6.2.2. Suppose that p ≥ n, the matrix Mz

L is full column rank, and ∇2 f (x) is invertible.
Then, if dN satisfies (6.4), in a least squares sense when p > n, one has

∥∥−∇
2 f (x)−1

∇ f (x)−dN
∥∥ ≤ ΛzO

(
∆3

y

∆z

)
,

where Λz is a bound on the norm of the left inverse of Mz
L and the multiplicative constant in O depends

on the Lipschitz constant of ∇2 f at x.

Proof. Expanding f at yℓ around x in (6.4) yields

(zℓ)⊤dN =−∇ f (x)⊤(yℓ− x)+O(∆3
y)

= (zℓ)⊤(−∇
2 f (x)−1

∇ f (x))+O(∆3
y), ℓ= 1, . . . , p,

where the constant in O(∆3
y) depends on the Lipschitz constant of ∇2 f at x. Multiplying both terms by

the left inverse of Mz
L,

∆z
(
−∇

2 f (x)−1
∇ f (x)−dN) = −(Mz

L)
†O(∆3

y).

Hence, the result follows by dividing both terms by ∆z and then taking norms.

One can derive an estimate solely dependent on ∆y and on the conditioning of the matrix My
L

formed by the rows (1/∆y)(yℓ− x)⊤, ℓ= 1, . . . , p,

My
L =

1
∆y


(y1− x)⊤

...
(yp− x)⊤

 .
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In fact, from
∆yMy

L∇
2 f (x) = ∆zMz

L,

one has ∥∥∥(Mz
L)

†
∥∥∥ =

∆z

∆y
∥Ry∥,

with
Ry =

(
∇

2 f (x)(My
L)
⊤(My

L)∇
2 f (x)

)−1
∇

2 f (x)(My
L)
⊤. (6.15)

Corollary 6.2.3. Suppose that p ≥ n, the matrix Mz
L is full column rank, and ∇2 f (x) is invertible.

Then, if dN satisfies (6.4), one has∥∥−∇
2 f (x)−1

∇ f (x)−dN
∥∥ ≤ ∥Ry∥O(∆2

y),

where the multiplicative constant in O depends on the Lipschitz constant of ∇2 f at x.

Hence by controlling the geometry of the points yℓ, ℓ = 1, . . . , p, around x one can provide an
accurate bound when the Hessian of f is invertible and p≥ n. In general, we can attempt to control the
conditioning of Mz

L, replacing some of the points yℓ if necessary. Such a conditioning must eventually
become adequate if the vectors yℓ− x are sufficiently linearly independent and lie in eigenspaces of
∇2 f (x) corresponding to eigenvalues not too close to zero. (See Chapter 7 for a modified Newton
direction recovery approach where the curvature values (zℓ)⊤(yℓ− x), ℓ = 1, . . . , p, are taken into
consideration.)

Using p = n Hessian-vector products at each iteration is certainly not a desirable strategy as that
would be equivalent to access the entire Hessian matrix. It is however possible to use p≪ n and
still obtain an accurate Newton direction model. The possibility we have in mind is to build upon a
previously computed Newton direction model calculated using p = n. Let xprev be such an iterate,
y1

prev, . . . ,y
n
prev be the corresponding sample points and z1

prev, . . . ,z
n
prev be the corresponding Hessian-

vector products. Suppose we are now at a new iterate x and we would like to reuse f (y1
prev), . . . , f (yn

prev)

and z1
prev = ∇2 f (xprev)(y1

prev− xprev), . . . ,zn
prev = ∇2 f (xprev)(yn

prev− xprev). In such a case what we
will have in (6.4) is

zℓprev = ∇
2 f (xprev)(yℓprev− xprev) ≃ ∇ f (yℓprev)−∇ f (xprev), ℓ= 1, . . . , p,

but what we wish we would have is

zℓ = ∇
2 f (x)(yℓprev− x) ≃ ∇ f (yℓprev)−∇ f (x), ℓ= 1, . . . , p,

So, one can obtain an approximation to zℓ from

zℓprev +∇ f (xprev)−∇ f (x), ℓ= 1, . . . , p. (6.16)

The error in such an approximation is of O(max{∥yℓprev− xprev∥2, ∥yℓprev− x∥2}), which would then
has to be divided by ∆z in the context of Theorem 6.2.2. Of course, if we then keep applying this
strategy the error will accumulate over the iterations, but there are certainly remedies such as bringing
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a few new, fresh z’s at each iteration and applying restarts with p = n whenever the conditioning of
Mz

L becomes large.

6.3 Numerical results for the determined case using a correction

To use as few Hessian-vector products as possible, we start by using p = n products at iteration zero,
to then replace only one interpolation point at each iteration. We choose to replace the point farthest
away from the current iterate x. (A perhaps more sound approach would have been to choose the zℓ that
has contributed the most to the conditioning of Mz

L.) A new point is then added, generated in the ball
B(x; r), where r = min{10−2, max{10−4, ∥x− xprev∥}}. Therefore, only one more Hessian-vector
product and one more function evaluation is required at each iteration. We then replace all other zℓprev’s
by (6.16). We monitor the condition number of Mz

L, and apply a restart (with p = n as in iteration 0)
whenever cond(Mz

L)≥ 108.

A Newton direction model dN is then calculated by solving (6.4) directly. To guarantee that
we have a descent direction d, meaning that −∇ f (x)⊤d > 0, we modify the dN from (6.4) so that
d = dN−β∇ f (x) where β is such that cos(d,−∇ f (x)) = η , and η was set to 0.95.

The modified Newton direction model was then used in a line search algorithm using the same
cubic line search procedure of Section 5.3. The comparison is again against the inexact Newton
method (as described in [52, Section 7.1]). First we tested the very small problems of Appendix B.1.
Again, we plot performance profiles (see Appendix A.1) using as performance metric the numbers
of Hessian-vector products and iterations (Figure 6.1) and the number of function evaluations and
CPU time (Figure 6.2). The results are quite encouraging. We then selected a benchmark of 26
unconstrained nonlinear small problems from the CUTEst collection [36], listed in Appendix B.3.
The experiments are reported in Figures 6.3 and 6.4 in the form of the same performance profiles. The
results are similar and again promising.
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Fig. 6.1 Testing the Newton direction recovery within a line-search algorithm. Performance profiles
for the numbers of Hessian-vector products and iterations, for the set of very small problems of
Appendix B.1.
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Fig. 6.2 Testing the Newton direction recovery within a line-search algorithm. Performance profiles
for the numbers of function evaluations and CPU time, for the set of very small problems of Appendix
B.1.
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Fig. 6.3 Testing the Newton direction recovery within a line-search algorithm. Performance profiles
for the numbers of Hessian-vector products and iterations, for the set of small problems of Appendix
B.3.
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Fig. 6.4 Testing the Newton direction recovery within a line-search algorithm. Performance profiles
for the numbers of function evaluations and CPU time, for the set of small problems of Appendix B.3.





Chapter 7

Exploring other ideas

In this chapter, we explore some ideas that improve or extend the methodology described in Chapters 5
and 6, such as concurrent determination of both Newton direction and Hessian inverse, use of an
iterative solver to compute the Newton direction model, and recovery of a modified Newton direction.

7.1 Inverse Hessian recovery from Hessian-vector products

In this section, we describe an approach to implicitly recover the Newton direction by determining an
approximation to the inverse of the Hessian. Theoretical support for this recovery is developed by
proving that the absolute error is decreasing, in case f is quadratic, and by showing that, in general, the
error in the enriched interpolating conditions can be expressed as a function of the distance between
the Hessian inverse of the model and the previous Hessian inverse approximation. The cost of the
Newton direction recovery is analyzed in terms of floating point operations and storage space.

Suppose to be in the same context considered in Chapters 5 and 6. Therefore, let x be a given
point and assume that we have calculated f and ∇ f at x as well as f at a number of points y1, . . . ,yp.
Consider the quadratic interpolation model at the current point x, which is given by

f (x)+∇ f (x)⊤(yℓ− x)+
1
2
(yℓ− x)⊤H(yℓ− x) = f (yℓ), ℓ= 1, . . . , p. (7.1)

Moreover, suppose that we have calculated the Hessian-vector products

zℓ = ∇
2 f (x)(yℓ− x), l = 1, . . . , p. (7.2)

Our goal is to determine the symmetric Hessian model H that satisfies the system of enriched
interpolating conditions given by (7.1) and

zℓ = H(yℓ− x), ℓ= 1, . . . , p. (7.3)

Since our interest relies specifically on the calculation of the Newton direction, one can focus
on the action of the inverse of the Hessian on the negative gradient. For the moment, suppose that
one can afford to recover the whole inverse of the Hessian. Assuming that the model Hessian H is

67
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invertible and setting G = H−1, (7.1) can be written as

f (x)+(G∇ f (x))⊤H(yℓ− x)+
1
2
(H(yℓ− x))⊤G(H(yℓ− x)) = f (yℓ), ℓ= 1, . . . , p. (7.4)

Then, using (7.3), one arrives at a new set of interpolating conditions in G

f (x)+(G∇ f (x))⊤ zℓ+
1
2
(zℓ)⊤Gzℓ = f (yℓ), ℓ= 1, . . . , p. (7.5)

Note that the determination of G allows recovering the Newton direction dN =−G∇ f (x).

Conditions (7.5) lead then to a new recovery problem

min
G

norm(G−Gprev) s.t. (7.5). (7.6)

When Gprev is the previously recovered inverse of the Hessian, we are following the spirit of a quasi-
Newton least secant approach. One could also consider the case Gprev = 0 as it was done in some
derivative-free approaches for Hessian recovery.

Similarly to Chapters 5 and 6, let us now give two arguments to motivate the minimization of the
norm of G−Gprev.

7.1.1 Theoretical motivation

Error decrease

We will now focus on the case when f is quadratic (with nonsingular Hessian) to show that the error in
the difference between the optimal solution G∗ of (7.6) and the true inverse of the Hessian decreases
relatively to the previous estimate Gprev. To prove such a result, it is convenient to use the Frobenius
norm in (7.6) and consider

min
G

1
2
∥G−Gprev∥2

F s.t. (7.5). (7.7)

Let us first write f centered at x as follows

f (y) = a+b⊤(y− x)+
1
2
(y− x)⊤C(y− x), (7.8)

where a = f (x), b = ∇ f (x), and C is the symmetric nonsingular Hessian matrix ∇2 f (x). We want to
write f (yℓ) in (7.5) in terms of zℓ. By applying the change of variables z = C (y− x) in (7.8), we can
define g(z) as

g(z) = f (C−1z+ x) = f (x)+(C−1
∇ f (x))⊤ z+

1
2

z⊤C−1z.

Therefore, to calculate f (yℓ), we can compute

g(zℓ) = f (x)+(C−1
∇ f (x))⊤ zℓ+

1
2
(zℓ)⊤C−1 zℓ, ℓ= 1, . . . , p. (7.9)
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Theorem 7.1.1. Let f be given by (7.8) and assume that the system of linear equations (7.5) is feasible
and underdetermined in G. Let G∗ be the optimal solution of problem (7.7). Then

∥G∗−C−1∥2
F ≤ ∥Gprev−C−1∥2

F . (7.10)

Proof. Similarly to the proof of Theorem 5.2.1, we follow the arguments in [56]. From (7.5) and (7.9),
we obtain ∇ f (x)⊤(C−1−G∗)zℓ+ 1

2(z
ℓ)⊤(C−1−G∗)zℓ = 0. Thus, C−1−G∗ is a feasible direction

for the affine space in G defined by (7.5).

It then turns out that the function

m(θ) =
1
2
∥(G∗−Gprev)+θ(C−1−G∗)∥2

F

has a minimum at θ = 0. From the trace definition of the Frobenius norm

m′(θ) =
[
(G∗−Gprev)+θ(C−1−G∗)

]⊤
(C−1−G∗).

Hence,
(G∗−Gprev)⊤(C−1−G∗) = 0,

which then implies (given the symmetry of the matrices and considering only the diagonal entries of
the above matrix product)

n

∑
i=1

n

∑
j=1

(G∗i j−Gprev
i j )(C−1

i j −G∗i j) = 0.

The rest of the proof follows the same steps as the proof of Theorem 5.2.1.

Error bound

The second argument is similar to the one used in [18] for the motivation of minimum Frobenius norm
models. Let us expand f at yℓ around x in (7.5)

(G∇ f (x))⊤ zℓ+
1
2
(zℓ)⊤Gzℓ = ∇ f (x)⊤(yℓ− x)+O(∆2

y), ℓ= 1, . . . , p, (7.11)

where ∆y = max1≤ℓ≤p ∥yℓ− x∥ and the constant in O(∆2
y) depends on a bound of ∇2 f in the neighbor-

hood of the expansion. Now, rearranging the terms, we have

(G∇ f (x))⊤ zℓ−∇ f (x)⊤(yℓ− x) = −1
2
(zℓ)⊤Gzℓ+O(∆2

y), ℓ= 1, . . . , p. (7.12)

Using (7.2), we obtain

[
−∇

2 f (x)−1
∇ f (x)− (dN)

]⊤
(zℓ) =−1

2
(zℓ)⊤Gzℓ+O(∆2

y), ℓ= 1, . . . , p, (7.13)

where dN =−G∇ f (x) is the recovered Newton direction. By exploiting the previous equation, we can
establish a bound on the norm of the absolute error of the recovered Newton direction. The bound is
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based on ∆z = max1≤ℓ≤p ∥zℓ∥ and on the conditioning of the matrix Mz
L, whose rows are (1/∆z)(zℓ)⊤,

ℓ= 1, . . . , p (this matrix has been already introduced in Chapter 6 to prove Theorem 6.2.2).

Theorem 7.1.2. Suppose that p ≥ n, the matrix Mz
L is full column rank, and ∇2 f (x) is invertible.

Then, if G satisfies (7.5), one has

∥∥−∇
2 f (x)−1

∇ f (x)−dN
∥∥ ≤ Λz

[
O(∥G−Gprev∥∆z)+O(∆z)+O

(
∆2

y

∆z

)]
,

where dN = −G∇ f (x) and Λz is a bound on the norm of the left inverse of Mz
L. Moreover, the

multiplicative constant in the second O depends on the norm of Gprev and the multiplicative constant
in the third O depends on the norm of ∇2 f in a neighborhood of x.

Proof. If in (7.13) we add and subtract (1/2)(zℓ)⊤Gprevzℓ, we obtain

[
−∇

2 f (x)−1
∇ f (x)− (dN)

]⊤
(zℓ) =−1

2
(zℓ)⊤Gzℓ+

1
2
(zℓ)⊤Gprevzℓ− 1

2
(zℓ)⊤Gprevzℓ+O(∆2

y), ℓ= 1, . . . , p.

(zℓ)⊤
[
−∇

2 f (x)−1
∇ f (x)− (dN)

]
=

1
2
(zℓ)⊤(Gprev−G)zℓ− 1

2
(zℓ)⊤Gprevzℓ+O(∆2

y), ℓ= 1, . . . , p.

Multiplying both terms by the left inverse of Mz
L,

∆z
[
−∇

2 f (x)−1
∇ f (x)− (dN)

]
=

1
2
(Mz

L)
†(zℓ)⊤(Gprev−G)zℓ− 1

2
(Mz

L)
†(zℓ)⊤Gprevzℓ+O(∆2

y), ℓ= 1, . . . , p.

We concludes the proof dividing both terms by ∆z and taking the norm.

This result motivates the recovery of the Newton direction based on the minimization of ∥G−
Gprev∥ when Gprev is itself bounded. It also motivates the recovery of the Newton direction based on
the minimization of ∥G∥ when Gprev = 0.

One can derive a similar estimate dependent only on ∆y and on the conditioning of the matrix My
L

formed by the rows (1/∆y)(yℓ− x)⊤, ℓ= 1, . . . , p. In fact, from

∆yMy
L∇

2 f (x) = ∆zMz
L

one has ∥∥∥(Mz
L)

†
∥∥∥ =

∆z

∆y
∥Ry∥,

with
Ry =

(
∇

2 f (x)(My
L)
⊤(My

L)∇
2 f (x)

)−1
∇

2 f (x)(My
L)
⊤. (7.14)

The desired result uses also
∆z ≤ ∥∇2 f (x)∥∆y.

Corollary 7.1.1. Suppose that p ≥ n, the matrix Mz
L is full column rank, and ∇2 f (x) is invertible.

Then, if G satisfies (7.5), one has∥∥−∇
2 f (x)−1

∇ f (x)−dN
∥∥ ≤ ∥Ry∥ [O(∥G−Gprev∥∆y)+O(∆y)] ,
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where Ry is given in (7.14). The multiplicative constant in the first O depends on ∥∇2 f (x)∥2, while
the multiplicative constant in the second O depends on both the norm of Gprev and the norm of ∇2 f in
a neighborhood of x.

Hence, by controlling the geometry of the points yℓ, ℓ= 1, . . . , p, around x, one can obtain an
accurate bound when the Hessian of f is invertible and p≥ n. This provides us with an algorithmic
tool for accurately using Hessian-vectors products. Furthermore, one can still control the quality of
the bound by monitoring the conditioning of Mz

L and replacing some of the points yℓ if necessary.
Such a conditioning must eventually become adequate if the vectors yℓ− x are sufficiently linearly
independent and lie in eigenspaces of ∇2 f (x) corresponding to eigenvalues not too close to zero.

7.1.2 Re-using previous Hessian-vector products

Now, let us suppose that we want to take advantage of previous Hessian-vector products. For this
purpose, consider

z̄ℓ = ∇
2 f (x̄)(ȳℓ− x̄),

where x̄ is a previous iterate and ȳℓ are corresponding sample points.

If we now use z̄ℓ in place of zℓ in the recovery problem (7.6), the analysis based on (7.5) is no
longer valid. Instead, we need to use zℓ = ∇2 f (x)(ȳℓ− x). But

z̄ℓ = zℓ+
(
∇

2 f (x̄)−∇
2 f (x)

)
(ȳℓ− x̄)+∇

2 f (x)(x− x̄),

and assuming Lipschitz continuity of ∇2 f , we see that the error in zℓ is of the order of ∥x̄− x∥. The
error in the approximate Newton direction will thus contain a term involving ∥x̄− x∥/∆z.

7.1.3 Recovery cost of the Newton direction

Let αQ represent the coefficients of G in (1/2)w⊤Gw in terms of the monomial basis. The quadratic
components of this basis are of the form (1/2)w2

i , i = 1, . . . ,n and wiw j, 1≤ i < j ≤ n. The recovery
problem can then be formulated approximately1 as

min
αQ

1
2
∥αQ−α

prev
Q ∥2 s.t. MQαQ = δ (Y,x), (7.15)

where

(MQαQ)ℓ = ∇ f (x)⊤Gzℓ+
1
2
(zℓ)⊤Gzℓ, ℓ= 1, . . . , p,

δ (Y,x)ℓ = f (yℓ)− f (x), ℓ= 1, . . . , p,

1The norm used in (7.6) for αQ is a minor variation of the Frobenius norm of G.
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and α
prev
Q represents the coefficients of Gprev. The necessary and sufficient optimality conditions for

the convex QP (7.15) can be stated as

αQ−α
prev
Q −M⊤Q λ = 0

MQαQ = δ (Y,x),

where λ denotes the vector of Lagrange multipliers, which can be recovered by solving

MQM⊤Q λ = δ (Y,z)−MQα
prev
Q .

This system can be solved by applying, e.g., the CG method.

We now aim to assess the cost of each matrix-vector product MQM⊤Q λ in terms of both floating
point operations and storage space. While the matrix MQ requires a storage space of the order of
pn2, the matrix M ≡ MQM⊤Q requires an overall cost of the order of (2p)2 and the overall effort
is O(pn2). The calculation of αQ is only necessary to compute the approximate Newton direction
dN = −G∇ f (x). One should not store αQ as it costs O(n2). Suppose that α

prev
Q = 0. Then, the

calculation of αQ = M⊤Q λ should be done using vertical blocks of the matrix M⊤Q with n− i+1 lines,
i = 1, . . . ,n, after which we can immediately calculate the contribution of the respective elements of
αQ in the product −G∇ f (x). The overall effort here is again O(pn2), but the storage requires a single
auxiliary vector with n components. Therefore, the final effort is O(cg pn2), where cg is the number
of CG iterations. The storage required is O(pn), corresponding to the storage of the y’s and the z’s
which dominate all other auxiliary storage.

A problem arises when the α
prev
Q from the previous iteration is stored explicitly since it would

cost O(n2) elements. Here the fix requires a limited memory approach where the previous Hessian
inverses are stored by keeping track of the previous sets of z’s and previous Lagrange multipliers λ

(thus allowing the evaluation of the previous M⊤Q λ products). Of course, such a procedure must return
an iterate where the corresponding αQ admits a storage linear in n like, for instance, an identity or
a diagonal matrix. Let us explain such a procedure in more detail. For this purpose, we introduce a
notation dependent on an iteration counter k. Assume one has

α
k
Q−α

k−1
Q − (Mk

Q)
⊤

λ
k = 0.

Then, for a k̄ < k,

α
k
Q =

k

∑
i=k̄+1

(Mi
Q)
⊤

λ
i +α

k̄
Q.

Storing the previous sets of z points {zℓi , i = k̄+ 1, . . . ,k− 1} and previous multipliers {λ i, i = k̄+
1, . . . ,k−1} allows us to compute the matrix inner products (Mi

Q)
⊤λ i in a storage space linear in n.

Of course, α k̄
Q must also have a storage space linear in n (as it would be the case of a diagonal Hessian

inverse approximation).
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7.2 On the numerical linear algebra of the Newton direction recovery

Among the iterative algorithms used to determine a solution of a large-scale linear system, Newton’s
method shows remarkable convergence properties due to its quadratic local convergence rate [44].
However, at each iteration the exact solution of the Newton system is required, which strongly affects
the overall cost. As shown in Chapter 2, inexact Newton methods have been developed to solve this
issue. When the problem is large, several options can be considered to determine an approximate
solution of the system. In this section, we focus on an iterative method named Generalized Minimal
Residual Method (GMRES), which was developed by Saad and Schultz in 1986 [60]. The GMRES
method approximates the exact solution of a linear system by the vector with minimal residual norm
in a Krylov subspace. Our goal is to use the GMRES iterative method to approximately determine
the Newton step when Newton’s method is applied to solve system (6.4). In this section we focus on
the idea behind the GMRES method. Our preliminary results have not been conclusive, and we have
decided not to report them here.

Let ∥ · ∥ denote the Euclidean norm. We consider the system of linear equation given by Ax = b,
where A ∈ Rn×n is assumed to be invertible and not necessarily symmetric. The corresponding Krylov
subspace of order m generated by a vector v ∈ Rn is

Km(A;v) = span
{

v,Av, . . . ,Am−1v
}
.

For a fixed m, an orthonormal basis for Km(A;v) can be computed by the Arnoldi algorithm, which is
described in Algorithm 11.

Algorithm 11: The Arnoldi Algorithm
Set v1 = v/∥v∥ and generate an orthonormal basis {v1, · · · ,vm} for Km(A;v) by using the
Gram-Schmidt procedure.
for k = 1, · · · ,m

Compute hik = vT
i Avk, i = 1,2, · · · ,k,

wk = Avk−∑
k
i=1 hikvi, hk+1,k = ∥wk∥ .

if (wk = 0)
Stop and return {v1, . . . ,vk}.

else
Compute vk+1 = wk/∥wk∥ and set k = k+1.

end (if)
end (for)

It is possible to show (see, e.g., [59]) that if the algorithm terminates at the m-th step, then the set
of vectors {v1, · · · ,vm} represents an orthonormal basis of Km(A;v). If we introduce the matrix Vm

whose columns are the vectors vi, we have

V T
m AVm = Hm and V T

m+1AVm = Ĥm, (7.16)
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where Ĥm ∈ R(m+1)×m is the upper Hessenberg matrix

Ĥm =


h11 . . . h1m

h21 h22
. . . . . .

...
hm,m−1 hmm

hm+1,m

 ,

whose entries hi j are given by hi j = vT
i Av j, with i = 1, . . . ,m and j = 1, . . . ,m, and hm+1,m = ∥wm∥,

and Hm ∈ Rm×m is the restriction of Ĥm to the first m rows and m columns.

The Arnoldi algorithm can also be used to solve the given system of linear equations Ax = b.
The resulting algorithm is referred to as the GMRES method, which aims to compute a point
xk ∈Wk = {v = x0+y, y ∈ Kk(A;b−Ax0)} to minimize the Euclidean norm of the residual ∥b−Axk∥,
i.e.,

∥b−Axk∥= min
v∈Wk
∥b−Av∥.

Suppose that after k steps the Arnoldi algorithm yields an orthonormal basis for Kk(A;b−Ax0), which
is then stored into the columns of the matrix Vk. The solution at the k-th step can be computed through

xk = x0 +Vkzk, (7.17)

and the residual is

rk = b−Axk = r0 +AVkzk, where r0 = v1/∥b−Ax0∥. (7.18)

Recalling (7.16), notice that (7.18) can be expressed as

rk =Vk+1

(
∥r0∥e1− Ĥkzk

)
, (7.19)

where e1 is the first unit vector in Rk+1. Hence, the GMRES method at the k-th iteration can be viewed
as the following minimization problem

min
zk

∥∥∥∥r0∥e1− Ĥkzk

∥∥∥ . (7.20)

This is because Vk+1 is orthogonal and thus ∥Vk+1∥2 in (7.19) does not change. The GMRES method
will terminate at most after n iterations where an exact solution can be obtained. Premature termination
is due to a breakdown in the orthonormalization of Arnoldi algorithm (see Algorithm 11). In particular,
we can state that a breakdown occurs for the GMRES method at the m-th step (with m < n) if and
only if the computed solution xm coincides with the exact solution to the system.

As regards the convergence results, it is possible to prove that the sequence of residuals obtained
by the application of the GMRES method is monotonically decreasing and converges after at most
n steps, namely, ∥rk+1∥ ≤ ∥rk∥ , and ∥rn∥= 0. We point out that ∥rk∥ is the smallest residual in the
space Kk. GMRES converges monotonically if enlarging Kk to the space Kk+1, the norm of the residual
can only decrease. Since at the n-th step, the space Kn is Rn, we have ∥rn∥= 0.
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7.3 Modified Newton direction recovery from Hessian-vector products

Another open question is how to incorporate the concept of a modified Newton method in the approach
for recovering the Newton direction, described in Chapter 6. We recall that in Chapter 6 we built a
Newton direction model based on f (x), ∇ f (x), f (yℓ), ℓ= 1, . . . , p, and the Hessian-vector products
(6.2), namely, zℓ = ∇2 f (x)(yℓ−x), ℓ= 1, . . . , p. We developed the approach by introducing ∇2 f (x)−1

in the quadratic Taylor expansion (6.1), resulting in (6.3). In the spirit of a modified Newton method,
we add to the Hessian of f at x a multiple τ ≥ 0 of the identity, and consider instead

f (x)+((∇2 f (x)+ τ I)−1
∇ f (x))⊤(∇2 f (x)+ τ I)(yℓ− x)+

1
2
(yℓ− x)⊤zℓ ≃ f (yℓ), ℓ= 1, . . . , p.

Now d ≃−(∇2 f (x)+ τI)−1∇ f (x) is a vector that models the modified Newton direction. Using the
Hessian-vector products (6.2), the new set of enriched interpolating conditions is given by

(zℓ+ τ (yℓ− x))⊤d = − f (yℓ)+ f (x)+
1
2
(yℓ− x)⊤zℓ, ℓ= 1, . . . , p.

The matrix of this linear system is now
(z1 + τ(y1− x))⊤

...
(zp + τ(yp− x))⊤

 .
How to initialize and update τ will be certainly crucial for the performance of this modified approach.
Setting τ to positive values would depend on the sign and magnitude of the curvature values (zℓ)⊤(yℓ−
x). Notice also that the geometry of the points yℓ, ℓ= 1, . . . , p, around x has a more direct impact on
the conditioning of the linear system of the recovery.





Chapter 8

Conclusions

In this dissertation, we showed how to use interpolation techniques from derivative-free optimization
to model Hessian-vector products. We aimed at presenting new, refreshing ideas, laying down the
theoretical groundwork for future more elaborated algorithmic developments. In particular, two
main approaches were proposed for recovering the Hessian and the Newton direction by using the
knowledge of Hessian-vector products. The idea of the underlying methodology is to interpolate the
objective function using a quadratic on a set of points around the current one and concurrently using
the curvature information from products of the Hessian times appropriate vectors, possibly defined
by the interpolating points. The resulting enriched interpolating conditions form an affine space of
model Hessians or model Newton directions, from which a particular one can be computed once
an equilibrium or least secant principle is defined. These approaches provide algorithmic tools for
accurately using the Hessian-vectors products by controlling the geometry of the interpolating points.

In the first approach, one aims at recovering a model of the Hessian matrix, possibly sparse if the
true Hessian sparsity pattern is known. When f is quadratic, the error in the difference between the
approximate and the true Hessian is proved to be decreasing relatively to the previous estimate. A
similar result can be obtained under the price of more Hessian-vector products when f is non-quadratic.
A drawback of this approach is that at most one Hessian-vector product can be used in the recovery.

The second approach aims at directly recovering the Newton direction itself from Hessian-vector
products without requiring an explicit recovery of the Hessian matrix. It may incorporate several
Hessian-vector products at the same time. However, a dense system of linear equations needs to be
solved. Similarly to the approach for Hessian recovery, we prove that the error in the approximation
of the Newton direction is monotonously non-increasing when f is quadratic. To achieve a similar
result when f is non-quadratic, additional knowledge of the true Hessian or true Newton direction at
the previous iterate is required.

Numerical experiments were performed for small smooth nonlinear problems to assess the
effectiveness and efficiency achievable with our methodology. To this end, we embedded both
approaches in a line-search algorithm that was compared with the inexact Newton method. The results
show that both the proposed recovery strategies can effectively lead to a substantial reduction in the
number of Hessian-vector products. However, a larger cost in terms of number of function evaluations
(of the order of n2 per main iteration) and CPU time must be paid when using the first approach.
Conversely, the promising results for the second approach demonstrate that the Newton direction
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recovery is highly competitive in terms of robustness. In general, if Hessian-vector products are
expensive and function evaluations are relatively cheap, the approaches proposed in this dissertation
are advantageous.

The two approaches lead to three ideas which were explored and analyzed as extensions or
improvements of the main methodology. In particular, two additional recovery approaches can be
developed by using the same techniques of the first two. One is related to the determination of both
Newton direction and Hessian inverse (possibly never storing the whole inverse, rather forming its
product times the gradient), while the other aims to recover a modified Newton direction. Furthermore,
the development of competitive versions was addressed by proposing the use of an iterative solver for
the calculation of a Newton direction model. Being at an early stage of research, these ideas were
discussed leaving the numerical experiments for future work.
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Appendix A

A.1 Performance profiles

Performance profiles [25] are used to compare the performance of several solvers on a set of problems.
Let S be a set of solvers and P a set of problems. Let tp,s be the performance metric of the solver
s ∈ S on the problem p ∈ P. Then the performance profile of solver s ∈ S is defined as the fraction of
problems where the performance ratio is at most τ ,

ρs(τ) =
1
|P|

∣∣∣∣∣
{

p ∈ P :
tp,s

min
{

tp,s′ : s′ ∈ S
} ≤ τ

}∣∣∣∣∣ ,
where |P| denotes the cardinality of P. The value of ρs(1) expresses the percentage of problems on
which solver s performed the best. The values of ρs(τ) for large τ indicate the percentage of problems
successfully solved by solver s. Hence, ρs(1) and ρs(τ) for large τ are, respectively, measures of the
efficiency and robustness of a given solver s. Solvers with profiles above others are naturally preferred.
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B.1 Very small test problems

Table B.1 List of 48 very small CUTEst test problems

Name Dimension Name Dimension Name Dimension
ALLINITU 4 ARGLINA 10 ARWHEAD 10

BEALE 2 BIGGS6 6 BOX3 3
BROWNAL 10 BRYBND 10 CHNROSNB 10

COSINE 10 CUBE 2 DIXMAANA 15
DIXMAANB 15 DIXMAAND 15 DIXMAANE 15
DIXMAANF 15 DIXMAANG 15 DIXMAANH 15
DIXMAANI 15 DIXMAANJ 15 DIXMAANK 15
DIXMAANL 15 DIXON3DQ 10 DQDRTIC 10
EDENSCH10 10 ENGVAL2 3 EXPFIT 2
FMINSURF 15 GROWTHLS 3 HAIRY 2
HATFLDD 3 HATFLDE 3 HEART8LS 8

HELIX 3 HILBERTA 10 HILBERTB 10
HIMMELBG 2 HUMPS 2 KOWOSB 4
MANCINO 30 MSQRTALS 4 MSQRTBLS 9

POWER 10 SINEVAL 2 SNAIL 2
SPARSINE 10 SPMSRTLS 28 TRIDIA 10

B.2 Small sparse test problems

Table B.2 List of 12 sparse small CUTEst test problems

Name Dimension Name Dimension Name Dimension
BDQRTIC 10 BROYDN7D 50 COSINE 200
DQRTIC 10 EDENSCH 200 ENGVAL1 200

LIARWHD 100 NONSCOMP 50 PENTDI 100
SROSENBR 50 TOINTGSS 50 TRIDIA 200
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B.3 Small test problems

Table B.3 List of 26 small CUTEst test problems

Name Dimension Name Dimension Name Dimension
BOX 200 BOXPOWER 200 BRYBND 100

CHNROSNB 50 DIXON3DQ 200 DQDRTIC 100
EDENSCH 200 ENGVAL1 200 EXTROSNB 100

GENHUMPS 100 HILBERTA 200 HILBERTB 200
INTEQNELS 100 LIARWHD 200 MOREBV 200

PENTDI 100 PENALTY1 100 POWELLSG 36
SPARSINE 100 SROSENBR 50 SROSENBR 100

TESTQUAD 100 TOINTGSS 50 TQUARTIC 100
TRIDIA 200 VAREIGVL 100

B.4 Average CPU times

Table B.4 Average CPU times (s).

Approaches
Problems

Very small problems Small problems Sparse problems

MH(D) 1.89 – –
SMH(D) – – 1.12
ND(C) 0.16 4.79 –

IN 0.34 7.67 0.10

All methods tested were coded in Matlab R2016b. The experiments were run on a single processor of
a system comprising Intel Core i5 CPU clocked at 1.6GHz, with 8 GB of RAM, running the macOS
High Sierra operating system.
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