Utilize este identificador para referenciar este registo:
https://hdl.handle.net/10316/101192
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | Magalhães, P. L. | - |
dc.contributor.author | Antunes, C. H. | - |
dc.date.accessioned | 2022-08-16T13:45:30Z | - |
dc.date.available | 2022-08-16T13:45:30Z | - |
dc.date.issued | 2021 | - |
dc.identifier.issn | 2032-944X | pt |
dc.identifier.uri | https://hdl.handle.net/10316/101192 | - |
dc.description.abstract | INTRODUCTION: Demand response (DR) has been proposed as a mechanism to induce electricity cost reductions and is typically assumed to require the adoption of time-differentiated electricity prices. Making the most of these requires using automated energy management systems to produce optimised DR plans. Mixed-integer linear programming (MILP) has been used for this purpose, including by modelling dynamic systems (DS). OBJECTIVES: In this paper, we compare the computational performance of MILP approaches for modelling state spaces and multi-level discrete control (MLDC) in DR problems involving DSs. METHODS: A state-of-the-art MILP solver was used to compute solutions and compare approaches. RESULTS: Modelling state spaces using decision variables proved to be the most efficient option in over 80% of cases. In turn, the new MLDC approaches outperformed the standard one in about 60% of cases despite performing in the same range. CONCLUSION: We conclude that using state variables is generally the better option and that all MLDC variants perform similarly. | pt |
dc.language.iso | eng | pt |
dc.relation | FCT - UIDB/00308/2020 | pt |
dc.relation | project ESGRIDS (POCI-01-0145-FEDER-016434), | pt |
dc.relation | project MAnAGER (POCI-01-0145-FEDER-028040) | pt |
dc.relation | project SUSpENsE (CENTRO-01-0145-FEDER-000006). | pt |
dc.rights | openAccess | pt |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | pt |
dc.subject | computational performance | pt |
dc.subject | state space | pt |
dc.subject | discrete control | pt |
dc.subject | mixed-integer linear programming | pt |
dc.subject | multiple-choice programming | pt |
dc.title | Modelling state spaces and discrete control using MILP: computational cost considerations for demand response | pt |
dc.type | article | - |
degois.publication.firstPage | 167787 | pt |
degois.publication.issue | 34 | pt |
degois.publication.title | EAI Endorsed Transactions on Energy Web | pt |
dc.peerreviewed | yes | pt |
dc.identifier.doi | 10.4108/eai.23-12-2020.167787 | pt |
degois.publication.volume | 8 | pt |
dc.date.embargo | 2021-01-01 | * |
uc.date.periodoEmbargo | 0 | pt |
item.languageiso639-1 | en | - |
item.fulltext | Com Texto completo | - |
item.grantfulltext | open | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | article | - |
item.cerifentitytype | Publications | - |
crisitem.project.grantno | Institute for Systems Engineering and Computers at Coimbra - INESC Coimbra | - |
crisitem.author.researchunit | INESC Coimbra – Institute for Systems Engineering and Computers at Coimbra | - |
crisitem.author.researchunit | INESC Coimbra – Institute for Systems Engineering and Computers at Coimbra | - |
crisitem.author.orcid | 0000-0002-6065-3543 | - |
crisitem.author.orcid | 0000-0003-4754-2168 | - |
Aparece nas coleções: | I&D INESCC - Artigos em Revistas Internacionais |
Ficheiros deste registo:
Ficheiro | Descrição | Tamanho | Formato | |
---|---|---|---|---|
Modelling-state-spaces-and-discrete-control-using-MILP-computational-cost-considerations-for-demand-responseEAI-Endorsed-Transactions-on-Energy-Web.pdf | 4.25 MB | Adobe PDF | Ver/Abrir |
Citações SCOPUSTM
1
Visto em 4/nov/2024
Visualizações de página
100
Visto em 5/nov/2024
Downloads
73
Visto em 5/nov/2024
Google ScholarTM
Verificar
Altmetric
Altmetric
Este registo está protegido por Licença Creative Commons