Utilize este identificador para referenciar este registo: https://hdl.handle.net/10316/101192
Campo DCValorIdioma
dc.contributor.authorMagalhães, P. L.-
dc.contributor.authorAntunes, C. H.-
dc.date.accessioned2022-08-16T13:45:30Z-
dc.date.available2022-08-16T13:45:30Z-
dc.date.issued2021-
dc.identifier.issn2032-944Xpt
dc.identifier.urihttps://hdl.handle.net/10316/101192-
dc.description.abstractINTRODUCTION: Demand response (DR) has been proposed as a mechanism to induce electricity cost reductions and is typically assumed to require the adoption of time-differentiated electricity prices. Making the most of these requires using automated energy management systems to produce optimised DR plans. Mixed-integer linear programming (MILP) has been used for this purpose, including by modelling dynamic systems (DS). OBJECTIVES: In this paper, we compare the computational performance of MILP approaches for modelling state spaces and multi-level discrete control (MLDC) in DR problems involving DSs. METHODS: A state-of-the-art MILP solver was used to compute solutions and compare approaches. RESULTS: Modelling state spaces using decision variables proved to be the most efficient option in over 80% of cases. In turn, the new MLDC approaches outperformed the standard one in about 60% of cases despite performing in the same range. CONCLUSION: We conclude that using state variables is generally the better option and that all MLDC variants perform similarly.pt
dc.language.isoengpt
dc.relationFCT - UIDB/00308/2020pt
dc.relationproject ESGRIDS (POCI-01-0145-FEDER-016434),pt
dc.relationproject MAnAGER (POCI-01-0145-FEDER-028040)pt
dc.relationproject SUSpENsE (CENTRO-01-0145-FEDER-000006).pt
dc.rightsopenAccesspt
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt
dc.subjectcomputational performancept
dc.subjectstate spacept
dc.subjectdiscrete controlpt
dc.subjectmixed-integer linear programmingpt
dc.subjectmultiple-choice programmingpt
dc.titleModelling state spaces and discrete control using MILP: computational cost considerations for demand responsept
dc.typearticle-
degois.publication.firstPage167787pt
degois.publication.issue34pt
degois.publication.titleEAI Endorsed Transactions on Energy Webpt
dc.peerreviewedyespt
dc.identifier.doi10.4108/eai.23-12-2020.167787pt
degois.publication.volume8pt
dc.date.embargo2021-01-01*
uc.date.periodoEmbargo0pt
item.languageiso639-1en-
item.fulltextCom Texto completo-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypearticle-
item.cerifentitytypePublications-
crisitem.project.grantnoInstitute for Systems Engineering and Computers at Coimbra - INESC Coimbra-
crisitem.author.researchunitINESC Coimbra – Institute for Systems Engineering and Computers at Coimbra-
crisitem.author.researchunitINESC Coimbra – Institute for Systems Engineering and Computers at Coimbra-
crisitem.author.orcid0000-0002-6065-3543-
crisitem.author.orcid0000-0003-4754-2168-
Aparece nas coleções:I&D INESCC - Artigos em Revistas Internacionais
Mostrar registo em formato simples

Citações SCOPUSTM   

1
Visto em 4/nov/2024

Visualizações de página

100
Visto em 5/nov/2024

Downloads

73
Visto em 5/nov/2024

Google ScholarTM

Verificar

Altmetric

Altmetric


Este registo está protegido por Licença Creative Commons Creative Commons