Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/102073
Title: Human Behavior and Hand Gesture Classification for Smart Human-robot Interaction
Authors: Mendes, Nuno 
Ferrer, João 
Vitorino, João 
Safeea, Mohammad 
Neto, Pedro 
Keywords: Human Robot Interaction; Human Behavior Recognition; Gestures; Segmentation; Accelerometer
Issue Date: 2017
Project: Portugal 2020 project DM4Manufacturing POCI-01-0145-FEDER-016418 by UE/FEDER through the program COMPETE2020 
metadata.degois.publication.title: Procedia Manufacturing
metadata.degois.publication.volume: 11
Abstract: This paper presents an intuitive human-robot interaction (HRI) framework for gesture and human behavior recognition. It relies on a vision-based system as interaction technology to classify gestures and a 3-axis accelerometer for behavior classification (stand, walking, etc.). An intelligent system integrates static gesture recognition recurring to artificial neural networks (ANNs) and dynamic gesture recognition using hidden Markov models (HMM). Results show a recognition rate of 95% for a library of 22 gestures and 97% for a library of 6 behaviors. Experiments show a robot controlled using gestures in a HRI process.
URI: https://hdl.handle.net/10316/102073
ISSN: 23519789
DOI: 10.1016/j.promfg.2017.07.156
Rights: openAccess
Appears in Collections:FCTUC Eng.Mecânica - Artigos em Revistas Internacionais

Files in This Item:
File Description SizeFormat
1-s2.0-S2351978917303621-main.pdf1.5 MBAdobe PDFView/Open
Show full item record

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons