Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/104514
Title: Co-Exposure of Cardiomyocytes to IFN-γ and TNF-α Induces Mitochondrial Dysfunction and Nitro-Oxidative Stress: Implications for the Pathogenesis of Chronic Chagas Disease Cardiomyopathy
Authors: Nunes, João Paulo Silva
Andrieux, Pauline
Brochet, Pauline
Almeida, Rafael Ribeiro
Kitano, Eduardo
Honda, André Kenji
Iwai, Leo Kei
Andrade-Silva, Débora
Goudenège, David
Alcântara Silva, Karla Deysiree
Vieira, Raquel de Souza
Levy, Débora
Bydlowski, Sergio Paulo
Gallardo, Frédéric
Torres, Magali
Bocchi, Edimar Alcides
Mano, Miguel 
Santos, Ronaldo Honorato Barros
Bacal, Fernando
Pomerantzeff, Pablo
Laurindo, Francisco Rafael Martins
Teixeira, Priscila Camillo
Nakaya, Helder I
Kalil, Jorge
Procaccio, Vincent
Chevillard, Christophe
Cunha-Neto, Edecio
Keywords: mitochondrial dysfunction; chronic Chagas disease cardiomyopathy; interferon gamma; energy metabolism; mitochondria
Issue Date: 2021
Publisher: Frontiers Media S.A.
metadata.degois.publication.title: Frontiers in Immunology
metadata.degois.publication.volume: 12
Abstract: Infection by the protozoan Trypanosoma cruzi causes Chagas disease cardiomyopathy (CCC) and can lead to arrhythmia, heart failure and death. Chagas disease affects 8 million people worldwide, and chronic production of the cytokines IFN-γ and TNF-α by T cells together with mitochondrial dysfunction are important players for the poor prognosis of the disease. Mitochondria occupy 40% of the cardiomyocytes volume and produce 95% of cellular ATP that sustain the life-long cycles of heart contraction. As IFN-γ and TNF-α have been described to affect mitochondrial function, we hypothesized that IFN-γ and TNF-α are involved in the myocardial mitochondrial dysfunction observed in CCC patients. In this study, we quantified markers of mitochondrial dysfunction and nitro-oxidative stress in CCC heart tissue and in IFN-γ/TNF-α-stimulated AC-16 human cardiomyocytes. We found that CCC myocardium displayed increased levels of nitro-oxidative stress and reduced mitochondrial DNA as compared with myocardial tissue from patients with dilated cardiomyopathy (DCM). IFN-γ/TNF-α treatment of AC-16 cardiomyocytes induced increased nitro-oxidative stress and decreased the mitochondrial membrane potential (ΔΨm). We found that the STAT1/NF-κB/NOS2 axis is involved in the IFN-γ/TNF-α-induced decrease of ΔΨm in AC-16 cardiomyocytes. Furthermore, treatment with mitochondria-sparing agonists of AMPK, NRF2 and SIRT1 rescues ΔΨm in IFN-γ/TNF-α-stimulated cells. Proteomic and gene expression analyses revealed that IFN-γ/TNF-α-treated cells corroborate mitochondrial dysfunction, transmembrane potential of mitochondria, altered fatty acid metabolism and cardiac necrosis/cell death. Functional assays conducted on Seahorse respirometer showed that cytokine-stimulated cells display decreased glycolytic and mitochondrial ATP production, dependency of fatty acid oxidation as well as increased proton leak and non-mitochondrial oxygen consumption. Together, our results suggest that IFN-γ and TNF-α cause direct damage to cardiomyocytes' mitochondria by promoting oxidative and nitrosative stress and impairing energy production pathways. We hypothesize that treatment with agonists of AMPK, NRF2 and SIRT1 might be an approach to ameliorate the progression of Chagas disease cardiomyopathy.
URI: https://hdl.handle.net/10316/104514
ISSN: 1664-3224
DOI: 10.3389/fimmu.2021.755862
Rights: openAccess
Appears in Collections:I&D CNC - Artigos em Revistas Internacionais

Files in This Item:
File Description SizeFormat
fimmu-12-755862.pdf10.23 MBAdobe PDFView/Open
Show full item record

SCOPUSTM   
Citations

26
checked on Oct 14, 2024

WEB OF SCIENCETM
Citations

22
checked on Oct 2, 2024

Page view(s)

90
checked on Oct 29, 2024

Download(s)

49
checked on Oct 29, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons