Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/105182
DC FieldValueLanguage
dc.contributor.authorVaghela, Uddhav-
dc.contributor.authorRabinowicz, Simon-
dc.contributor.authorBratsos, Paris-
dc.contributor.authorMartin, Guy-
dc.contributor.authorFritzilas, Epameinondas-
dc.contributor.authorMarkar, Sheraz-
dc.contributor.authorPurkayastha, Sanjay-
dc.contributor.authorStringer, Karl-
dc.contributor.authorSingh, Harshdeep-
dc.contributor.authorLlewellyn, Charlie-
dc.contributor.authorDutta, Debabrata-
dc.contributor.authorClarke, Jonathan M.-
dc.contributor.authorHoward, Matthew-
dc.contributor.authorSerban, Ovidiu-
dc.contributor.authorKinross, James-
dc.contributor.authorSá-Marta, Eduarda-
dc.contributor.authoret al.-
dc.date.accessioned2023-02-08T09:23:49Z-
dc.date.available2023-02-08T09:23:49Z-
dc.date.issued2021-05-06-
dc.identifier.issn1438-8871pt
dc.identifier.urihttps://hdl.handle.net/10316/105182-
dc.description.abstractThe scale and quality of the global scientific response to the COVID-19 pandemic have unquestionably saved lives. However, the COVID-19 pandemic has also triggered an unprecedented "infodemic"; the velocity and volume of data production have overwhelmed many key stakeholders such as clinicians and policy makers, as they have been unable to process structured and unstructured data for evidence-based decision making. Solutions that aim to alleviate this data synthesis-related challenge are unable to capture heterogeneous web data in real time for the production of concomitant answers and are not based on the high-quality information in responses to a free-text query. Objective: The main objective of this project is to build a generic, real-time, continuously updating curation platform that can support the data synthesis and analysis of a scientific literature framework. Our secondary objective is to validate this platform and the curation methodology for COVID-19–related medical literature by expanding the COVID-19 Open Research Dataset via the addition of new, unstructured data. Methods: To create an infrastructure that addresses our objectives, the PanSurg Collaborative at Imperial College London has developed a unique data pipeline based on a web crawler extraction methodology. This data pipeline uses a novel curation methodology that adopts a human-in-the-loop approach for the characterization of quality, relevance, and key evidence across a range of scientific literature sources. Results: REDASA (Realtime Data Synthesis and Analysis) is now one of the world’s largest and most up-to-date sources of COVID-19–related evidence; it consists of 104,000 documents. By capturing curators’ critical appraisal methodologies through the discrete labeling and rating of information, REDASA rapidly developed a foundational, pooled, data science data set of over 1400 articles in under 2 weeks. These articles provide COVID-19–related information and represent around 10% of all papers about COVID-19. Conclusions: This data set can act as ground truth for the future implementation of a live, automated systematic review. The three benefits of REDASA’s design are as follows: (1) it adopts a user-friendly, human-in-the-loop methodology by embedding an efficient, user-friendly curation platform into a natural language processing search engine; (2) it provides a curated data set in the JavaScript Object Notation format for experienced academic reviewers’ critical appraisal choices and decision-making methodologies; and (3) due to the wide scope and depth of its web crawling method, REDASA has already captured one of the world’s largest COVID-19–related data corpora for searches and curation.pt
dc.description.sponsorshipThis work was supported by Defence and Security Accelerator (grant ACC2015551), the Digital Surgery Intelligent Operating Room Grant, the National Institute for Health Research Long-limb Gastric Bypass RCT Study, the Jon Moulton Charitable Trust Diabetes Bariatric Surgery Grant, the National Institute for Health Research (grant II-OL-1116-10027), the National Institutes of Health (grant R01-CA204403-01A1), Horizon H2020 (ITN GROWTH), and the Imperial Biomedical Research Centre.-
dc.language.isoengpt
dc.publisherJMIR Publications Inc.pt
dc.rightsopenAccesspt
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt
dc.subjectstructured data synthesispt
dc.subjectdata sciencept
dc.subjectcritical analysispt
dc.subjectweb crawl datapt
dc.subjectpipelinept
dc.subjectdatabasept
dc.subjectliteraturept
dc.subjectresearchpt
dc.subjectCOVID-19pt
dc.subjectinfodemicpt
dc.subjectdecision makingpt
dc.subjectdatapt
dc.subjectdata synthesispt
dc.subjectmisinformationpt
dc.subjectinfrastructurept
dc.subjectmethodologypt
dc.subject.meshCOVID-19pt
dc.subject.meshData Interpretation, Statisticalpt
dc.subject.meshDatasets as Topicpt
dc.subject.meshHumanspt
dc.subject.meshInternetpt
dc.subject.meshLongitudinal Studiespt
dc.subject.meshSARS-CoV-2pt
dc.subject.meshSearch Enginept
dc.subject.meshNatural Language Processingpt
dc.titleUsing a Secure, Continually Updating, Web Source Processing Pipeline to Support the Real-Time Data Synthesis and Analysis of Scientific Literature: Development and Validation Studypt
dc.typearticle-
degois.publication.firstPagee25714pt
degois.publication.issue5pt
degois.publication.titleJournal of Medical Internet Researchpt
dc.peerreviewedyespt
dc.identifier.doi10.2196/25714pt
degois.publication.volume23pt
dc.date.embargo2021-05-06*
uc.date.periodoEmbargo0pt
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextCom Texto completo-
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
Appears in Collections:FMUC Medicina - Artigos em Revistas Internacionais
Show simple item record

SCOPUSTM   
Citations

2
checked on Oct 28, 2024

WEB OF SCIENCETM
Citations

2
checked on Oct 2, 2024

Page view(s)

65
checked on Oct 29, 2024

Download(s)

57
checked on Oct 29, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons