Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/108176
DC FieldValueLanguage
dc.contributor.authorSantos, S. P. Amor dos-
dc.contributor.authorFiolhais, M. C. N.-
dc.contributor.authorGalhardo, B.-
dc.contributor.authorVeloso, F.-
dc.contributor.authorWolters, H.-
dc.contributor.authorATLAS Collaboration-
dc.date.accessioned2023-08-14T10:23:02Z-
dc.date.available2023-08-14T10:23:02Z-
dc.date.issued2017-
dc.identifier.urihttps://hdl.handle.net/10316/108176-
dc.description.abstractThis paper presents a study of WWγ and WZγ triboson production using events from proton–proton collisions at a centre-of-mass energy of √ s = 8 TeV recorded with the ATLAS detector at the LHC and corresponding to an integrated luminosity of 20.2 fb−1. The WWγ production cross-section is determined using a final state containing an electron, a muon, a photon, and neutrinos (eνμνγ ). Upper limits on the production cross-section of the eνμνγ final state and theWWγ and WZγ final states containing an electron or a muon, two jets, a photon, and a neutrino (eν j jγ or μνj jγ ) are also derived. The results are compared to the cross-sections predicted by the Standard Model at next-toleading order in the strong-coupling constant. In addition, upper limits on the production cross-sections are derived in a fiducial region optimised for a search for newphysics beyond the Standard Model. The results are interpreted in the context of anomalous quartic gauge couplings using an effective field theory. Confidence intervals at 95% confidence level are derived for the 14 coupling coefficients to which WWγ and WZγ production are sensitive.pt
dc.description.sponsorshipWe thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFWandFWF,Austria;ANAS, Azerbaijan; SSTC, Belarus;CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; SRNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy;MEXTand JSPS, Japan;CNRST, Morocco;NWO,Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC andWallenberg Foundation, Sweden; SERI, SNSF andCantons of Bern andGeneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, RégionAuvergne and Fondation Partager le Savoir, France;DFGandAvHFoundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [81].pt
dc.language.isoengpt
dc.publisherSpringer Naturept
dc.rightsopenAccesspt
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt
dc.titleStudy of WWγ and WZγ production in pp collisions at √s=8TeV and search for anomalous quartic gauge couplings with the ATLAS experimentpt
dc.typearticle-
degois.publication.firstPage646pt
degois.publication.issue9pt
degois.publication.titleEuropean Physical Journal Cpt
dc.peerreviewedyespt
dc.identifier.doi10.1140/epjc/s10052-017-5180-3pt
degois.publication.volume77pt
dc.date.embargo2017-01-01*
uc.date.periodoEmbargo0pt
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextCom Texto completo-
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
crisitem.author.researchunitLIP – Laboratory of Instrumentation and Experimental Particle Physics-
crisitem.author.researchunitLIP – Laboratory of Instrumentation and Experimental Particle Physics-
crisitem.author.orcid0000-0002-9588-1773-
Appears in Collections:FCTUC Física - Artigos em Revistas Internacionais
Show simple item record

Page view(s)

84
checked on Oct 30, 2024

Download(s)

61
checked on Oct 30, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons