Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/111160
Title: Higher Polynomial Identities for Mutations of Associative Algebras
Authors: Bremner, Murray R.
Brox, Jose 
Sánchez-Ortega, Juana
Keywords: Mutation algebras; Lie-admissible; Jordan-admissible; polynomial identities; algebraic operads; computer algebra; theoretical particlephysics
Issue Date: 2023
Publisher: Springer Nature
Project: info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB/00324/2020 
metadata.degois.publication.title: Results in Mathematics
metadata.degois.publication.volume: 78
metadata.degois.publication.issue: 6
Abstract: We study polynomial identities satisfied by the mutation product xpy-yqx on the underlying vector space of an associative algebra A, where p, q are fixed elements of A. We simplify known results for identities in degree 4, proving that only two identities are necessary and sufficient to generate them all; in degree 5, we show that adding one new identity suffices; in degree 6, we demonstrate the existence of a significant number of new identities, which induce us to conjecture that the variety generated by mutation algebras of associative algebras is not finitely based.
URI: https://hdl.handle.net/10316/111160
ISSN: 1422-6383
1420-9012
DOI: 10.1007/s00025-023-01986-4
Rights: openAccess
Appears in Collections:FCTUC Matemática - Artigos em Revistas Internacionais

Show full item record

Page view(s)

44
checked on Oct 30, 2024

Download(s)

46
checked on Oct 30, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons