Utilize este identificador para referenciar este registo:
https://hdl.handle.net/10316/11177
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | Adámek, Jirí | - |
dc.contributor.author | Sousa, Lurdes | - |
dc.date.accessioned | 2009-08-26T14:35:01Z | - |
dc.date.available | 2009-08-26T14:35:01Z | - |
dc.date.issued | 2009 | - |
dc.identifier.citation | Pré-Publicações DMUC. 09-11 (2009) | en_US |
dc.identifier.uri | https://hdl.handle.net/10316/11177 | - |
dc.description.abstract | Quasi-equations given by parallel pairs of finitary morphisms represent properties of objects: an object satisfies the property if its contravariant homfunctor merges the parallel pair. Recently Ad´amek and H´ebert characterized subcategories of locally finitely presentable categories specified by quasi-equations. We now present a logic of quasi-equations close to Birkhoff’s classical equational logic. We prove that it is complete in all locally finitely presentable categories with effective equivalence relations. | en_US |
dc.description.sponsorship | Center of Mathematics of the University of Coimbra/FCT | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Centro de Matemática da Universidade de Coimbra | en_US |
dc.rights | openAccess | eng |
dc.title | On quasi-equations in locally presentable categories II: a logic | en_US |
dc.type | preprint | en_US |
item.languageiso639-1 | en | - |
item.fulltext | Com Texto completo | - |
item.grantfulltext | open | - |
item.openairecristype | http://purl.org/coar/resource_type/c_816b | - |
item.openairetype | preprint | - |
item.cerifentitytype | Publications | - |
crisitem.author.orcid | 0000-0003-0100-1673 | - |
Aparece nas coleções: | FCTUC Matemática - Vários |
Ficheiros deste registo:
Ficheiro | Descrição | Tamanho | Formato | |
---|---|---|---|---|
On quasi-equations in locally presentable categories II.pdf | 203.96 kB | Adobe PDF | Ver/Abrir |
Google ScholarTM
Verificar
Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.