Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/111874
DC FieldValueLanguage
dc.contributor.authorSchlarb, Markus-
dc.contributor.authorHüper, Knut-
dc.contributor.authorMarkina, Irina-
dc.contributor.authorLeite, Fátima Silva-
dc.date.accessioned2024-01-15T08:54:29Z-
dc.date.available2024-01-15T08:54:29Z-
dc.date.issued2023-
dc.identifier.issn2227-7390pt
dc.identifier.urihttps://hdl.handle.net/10316/111874-
dc.description.abstractWe discuss the rolling, without slipping and without twisting, of Stiefel manifolds equipped with a-metrics, from an intrinsic and an extrinsic point of view. We, however, start with a more general perspective, namely, by investigating the intrinsic rolling of normal naturally reductive homogeneous spaces. This gives evidence as to why a seemingly straightforward generalization of the intrinsic rolling of symmetric spaces to normal naturally reductive homogeneous spaces is not possible, in general. For a given control curve, we derive a system of explicit time-variant ODEs whose solutions describe the desired rolling. These findings are applied to obtain the intrinsic rolling of Stiefel manifolds, which is then extended to an extrinsic one. Moreover, explicit solutions of the kinematic equations are obtained, provided that the development curve is the projection of a not necessarily horizontal one-parameter subgroup. In addition, our results are put into perspective with examples of the rolling Stiefel manifolds known from the literature.pt
dc.description.sponsorshipGerman Federal Ministry of Education and Research (BMBF-Projekt 05M20WWA: Verbundprojekt 05M2020 - DyCA) and project Pure Mathematics in Norway TMS2021TMT03, funded by Trond Mohn Foundation and Tromsø Research Foundation.pt
dc.language.isoengpt
dc.publisherMDPIpt
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP/00048/2020/PTpt
dc.rightsopenAccesspt
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt
dc.subjectintrinsic rollingpt
dc.subjectextrinsic rollingpt
dc.subjectStiefelmanifoldspt
dc.subjectnormal naturally reductive homogeneous spacespt
dc.subjectcovariant derivativespt
dc.subjectparallel vector fieldspt
dc.subjectkinematic equationspt
dc.titleRolling Stiefel Manifolds Equipped with α-Metricspt
dc.typearticle-
degois.publication.firstPage4540pt
degois.publication.issue21pt
degois.publication.titleMathematicspt
dc.peerreviewedyespt
dc.identifier.doi10.3390/math11214540pt
degois.publication.volume11pt
dc.date.embargo2023-01-01*
uc.date.periodoEmbargo0pt
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextCom Texto completo-
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
crisitem.author.orcid0000-0003-2227-4259-
crisitem.project.grantnoINSTITUTE OF SYSTEMS AND ROBOTICS - ISR - COIMBRA-
Appears in Collections:FCTUC Matemática - Artigos em Revistas Internacionais
I&D ISR - Artigos em Revistas Internacionais
Files in This Item:
Show simple item record

Page view(s)

75
checked on Oct 30, 2024

Download(s)

48
checked on Oct 30, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons