Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/112992
DC FieldValueLanguage
dc.contributor.authorWeis, Stephan Wilhelm-
dc.contributor.authorGouveia, João-
dc.date.accessioned2024-02-05T09:32:12Z-
dc.date.available2024-02-05T09:32:12Z-
dc.date.issued2023-
dc.identifier.issn2511-2481pt
dc.identifier.issn2511-249Xpt
dc.identifier.urihttps://hdl.handle.net/10316/112992-
dc.description.abstractThe lattice of faces of the convex set of reduced density matrices is essential for the construction of the information projection to a hierarchical model. The lattice of faces is also important in quantum state tomography. Yet, the description and computation of these faces is elusive in the simplest examples. Here, we study the face lattice of the set of two-body reduced density matrices: We show that the three-qubit lattice has no elements of rank seven and that it has a family of coatoms of rank five. This contrasts with the three-bit lattice, where every coatom has rank six. We discovered the coatoms of rank five using a novel experimental method, which employs convex duality, semidefinite programming, and algebra. We also discuss nonexposed points for three and six qubits. Using frustration-free Hamiltonians, we provide a new characterization of probability distributions that factor.pt
dc.language.isoengpt
dc.publisherSpringer Naturept
dc.rightsopenAccesspt
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt
dc.subjectInformation projectionpt
dc.subjectReduced density matricespt
dc.subjectFace latticept
dc.subjectExposed facept
dc.subjectJoint numerical rangept
dc.subjectSpectrahedronpt
dc.subjectSemidefinite programmingpt
dc.subjectLocal Hamiltonianpt
dc.subjectFrustration-freept
dc.titleThe face lattice of the set of reduced density matrices and its coatomspt
dc.typearticle-
degois.publication.firstPage293pt
degois.publication.lastPage326pt
degois.publication.issue1pt
degois.publication.titleInformation Geometrypt
dc.peerreviewedyespt
dc.identifier.doi10.1007/s41884-023-00103-2pt
degois.publication.volume6pt
dc.date.embargo2023-01-01*
uc.date.periodoEmbargo0pt
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextCom Texto completo-
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
crisitem.author.researchunitCMUC - Centre for Mathematics of the University of Coimbra-
crisitem.author.orcid0000-0001-8345-9754-
Appears in Collections:FCTUC Matemática - Artigos em Revistas Internacionais
Show simple item record

Page view(s)

89
checked on Oct 30, 2024

Download(s)

50
checked on Oct 30, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons