Please use this identifier to cite or link to this item:
https://hdl.handle.net/10316/113391
Title: | Electricity, Transportation, and Water Provision of 100% Renewable Energy for Remote Areas | Authors: | Torabi, Roham Gomes, Álvaro Morgado-Dias, Fernando |
Keywords: | hybrid RES; sizing; isolated systems; heuristic algorithm | Issue Date: | 2023 | Publisher: | MDPI | Project: | M1420-01-0145-FEDER- 000002 info:eu-repo/grantAgreement/UIDB/00308/2020 UID/EEA/50009/2019 |
metadata.degois.publication.title: | Energies | metadata.degois.publication.volume: | 16 | metadata.degois.publication.issue: | 10 | Abstract: | The integration of variable renewable energy sources in islands has become crucial in reducing their dependency on imported fossil fuels. This study aimed to assess the energy transition of an island towards a 100% renewable energy system for power generation, inland transport, and potable water provision. Linking various fossil-fuel-consuming sectors, such as transport and potable water supply systems, may strongly assist in reducing the possible mismatch between renewable energy source production and demand and contribute to fulfilling other system requirements. The use of energy storage technologies is vital and unlike traditional power systems; as the number of components in the system increases, their proper capacity needs to be accurately determined. This work employs a multi-objective optimization assessment using a modified NSGA-II algorithm to depict the energy transition for Porto Santo Island. To evaluate the solutions, we considered the main criteria of energy cost, avoided environmental impacts (CO2-equivalent emissions) of the proposed system, and loss of power supply. The Pareto front contains various solutions under different system configurations. Results indicate that full inland transport electrification (introducing 3000 EVs) can account for 18% of the avoided CO2 emissions of the island while sharing 28–40% of the up-front cost of the system, depending on the proposed system’s components. The EV’s costs incorporate subsidies and their battery replacement. Another interesting finding from the optimization process is that the solution with the highest avoided CO2 emissions involves keeping a diesel generator for supplying 4% of the island’s total demand and using an underwater compressed air energy storage with a capacity of 280 MWh. This suggests that adding more installed wind turbines or PV panels may not necessarily contribute to reducing the emissions of the entire system. | URI: | https://hdl.handle.net/10316/113391 | ISSN: | 1996-1073 | DOI: | 10.3390/en16104146 | Rights: | openAccess |
Appears in Collections: | FCTUC Eng.Electrotécnica - Artigos em Revistas Internacionais |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Electricity-Transportation-and-Water-Provision-of-100-Renewable-Energy-for-Remote-AreasEnergies.pdf | 4.33 MB | Adobe PDF | View/Open |
Page view(s)
85
checked on Nov 5, 2024
Download(s)
44
checked on Nov 5, 2024
Google ScholarTM
Check
Altmetric
Altmetric
This item is licensed under a Creative Commons License