Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/11437
DC FieldValueLanguage
dc.contributor.authorGouveia, João-
dc.contributor.authorSá, E. Marques de-
dc.date.accessioned2009-09-15T15:15:43Z-
dc.date.available2009-09-15T15:15:43Z-
dc.date.issued2003-
dc.identifier.citationPré-Publicações DMUC. 03-12 (2003)en_US
dc.identifier.urihttps://hdl.handle.net/10316/11437-
dc.description.abstractIn an election process, p parties compete for S seats in a parliament. After votes are cast, the electoral result may be thought of as an element x in Rp. Given x, the so-called largest remainders method determines the number ai of seats party i gets in the parliament. The electoral cell determined by (a1,...,ap) is the closure of the set of all results x that determine ai seats for party i, 1<= i<= p. The electoral cells are convex polytopes and tile a hyperplane of Rp. In this paper we give a description of the electoral cells. For a single cell we identify and classify the cell's faces, completely describe its face lattice, and determine its group of automorphisms. It turns out that each face of dimension d arises from a d-unit-cube by a co pression along a diagonal.en_US
dc.language.isoengen_US
dc.publisherCentro de Matemática da Universidade de Coimbraen_US
dc.rightsopenAccessen_US
dc.subjectPolytopesen_US
dc.subjectConvexityen_US
dc.subjectFacesen_US
dc.subjectTilingsen_US
dc.titleElectoral cells of largest remainders methoden_US
dc.typepreprinten_US
uc.controloAutoridadeSim-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_816b-
item.fulltextCom Texto completo-
item.openairetypepreprint-
item.cerifentitytypePublications-
item.languageiso639-1en-
crisitem.author.researchunitCMUC - Centre for Mathematics of the University of Coimbra-
crisitem.author.orcid0000-0001-8345-9754-
crisitem.author.orcid0000-0002-7145-5550-
Appears in Collections:FCTUC Matemática - Artigos em Revistas Nacionais
Files in This Item:
File Description SizeFormat
Electoral cells of largest remainders method.pdf277.67 kBAdobe PDFView/Open
Show simple item record

Page view(s)

209
checked on Oct 29, 2024

Download(s)

61
checked on Oct 29, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.