Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/27090
DC FieldValueLanguage
dc.contributor.authorSouza, Francisco A. A.-
dc.contributor.authorAraújo, Rui-
dc.date.accessioned2014-09-29T14:20:47Z-
dc.date.available2014-09-29T14:20:47Z-
dc.date.issued2014-01-15-
dc.identifier.citationSOUZA, Francisco A. A.; ARAÚJO, Rui - Mixture of partial least squares experts and application in prediction settings with multiple operating modes. "Chemometrics and Intelligent Laboratory Systems". ISSN 0169-7439. Vol. 130 (2014) p. 192-202por
dc.identifier.issn0169-7439-
dc.identifier.urihttps://hdl.handle.net/10316/27090-
dc.description.abstractThis paper addresses the problem of online quality prediction in processes with multiple operating modes. The paper proposes a new method called mixture of partial least squares regression (Mix-PLS), where the solution of the mixture of experts regression is performed using the partial least squares (PLS) algorithm. The PLS is used to tune the model experts and the gate parameters. The solution of Mix-PLS is achieved using the expectation–maximization (EM) algorithm, and at each iteration of the EM algorithm the number of latent variables of the PLS for the gate and experts are determined using the Bayesian information criterion. The proposed method shows to be less prone to overfitting with respect to the number of mixture models, when compared to the standard mixture of linear regression experts (MLRE). The Mix-PLS was successfully applied on three real prediction problems. The results were compared with five other regression algorithms. In all the experiments, the proposed method always exhibits the best prediction performance.por
dc.language.isoengpor
dc.publisherElsevierpor
dc.rightsopenAccesspor
dc.subjectSoft sensorspor
dc.subjectMixture of expertspor
dc.subjectPartial least squarespor
dc.subjectMultiple modespor
dc.subjectMix-plspor
dc.titleMixture of partial least squares experts and application in prediction settings with multiple operating modespor
dc.typearticlepor
degois.publication.firstPage192por
degois.publication.lastPage202por
degois.publication.titleChemometrics and Intelligent Laboratory Systemspor
dc.relation.publisherversionhttp://www.sciencedirect.com/science/article/pii/S0169743913002165por
dc.peerreviewedYespor
dc.identifier.doi10.1016/j.chemolab.2013.11.006-
degois.publication.volume130por
uc.controloAutoridadeSim-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextCom Texto completo-
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
crisitem.author.researchunitISR - Institute of Systems and Robotics-
crisitem.author.parentresearchunitUniversity of Coimbra-
crisitem.author.orcid0000-0002-1007-8675-
Appears in Collections:I&D ISR - Artigos em Revistas Internacionais
FCTUC Eng.Electrotécnica - Artigos em Revistas Internacionais
Files in This Item:
File Description SizeFormat
Mixture of Partial Least Squares Experts and Application.pdf711.25 kBAdobe PDFView/Open
Show simple item record

SCOPUSTM   
Citations

36
checked on Oct 28, 2024

WEB OF SCIENCETM
Citations 5

30
checked on Oct 2, 2024

Page view(s) 20

691
checked on Oct 29, 2024

Download(s) 50

787
checked on Oct 29, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.