Please use this identifier to cite or link to this item:
https://hdl.handle.net/10316/27090
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Souza, Francisco A. A. | - |
dc.contributor.author | Araújo, Rui | - |
dc.date.accessioned | 2014-09-29T14:20:47Z | - |
dc.date.available | 2014-09-29T14:20:47Z | - |
dc.date.issued | 2014-01-15 | - |
dc.identifier.citation | SOUZA, Francisco A. A.; ARAÚJO, Rui - Mixture of partial least squares experts and application in prediction settings with multiple operating modes. "Chemometrics and Intelligent Laboratory Systems". ISSN 0169-7439. Vol. 130 (2014) p. 192-202 | por |
dc.identifier.issn | 0169-7439 | - |
dc.identifier.uri | https://hdl.handle.net/10316/27090 | - |
dc.description.abstract | This paper addresses the problem of online quality prediction in processes with multiple operating modes. The paper proposes a new method called mixture of partial least squares regression (Mix-PLS), where the solution of the mixture of experts regression is performed using the partial least squares (PLS) algorithm. The PLS is used to tune the model experts and the gate parameters. The solution of Mix-PLS is achieved using the expectation–maximization (EM) algorithm, and at each iteration of the EM algorithm the number of latent variables of the PLS for the gate and experts are determined using the Bayesian information criterion. The proposed method shows to be less prone to overfitting with respect to the number of mixture models, when compared to the standard mixture of linear regression experts (MLRE). The Mix-PLS was successfully applied on three real prediction problems. The results were compared with five other regression algorithms. In all the experiments, the proposed method always exhibits the best prediction performance. | por |
dc.language.iso | eng | por |
dc.publisher | Elsevier | por |
dc.rights | openAccess | por |
dc.subject | Soft sensors | por |
dc.subject | Mixture of experts | por |
dc.subject | Partial least squares | por |
dc.subject | Multiple modes | por |
dc.subject | Mix-pls | por |
dc.title | Mixture of partial least squares experts and application in prediction settings with multiple operating modes | por |
dc.type | article | por |
degois.publication.firstPage | 192 | por |
degois.publication.lastPage | 202 | por |
degois.publication.title | Chemometrics and Intelligent Laboratory Systems | por |
dc.relation.publisherversion | http://www.sciencedirect.com/science/article/pii/S0169743913002165 | por |
dc.peerreviewed | Yes | por |
dc.identifier.doi | 10.1016/j.chemolab.2013.11.006 | - |
degois.publication.volume | 130 | por |
uc.controloAutoridade | Sim | - |
item.grantfulltext | open | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | Com Texto completo | - |
item.openairetype | article | - |
item.cerifentitytype | Publications | - |
item.languageiso639-1 | en | - |
crisitem.author.researchunit | ISR - Institute of Systems and Robotics | - |
crisitem.author.parentresearchunit | University of Coimbra | - |
crisitem.author.orcid | 0000-0002-1007-8675 | - |
Appears in Collections: | I&D ISR - Artigos em Revistas Internacionais FCTUC Eng.Electrotécnica - Artigos em Revistas Internacionais |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Mixture of Partial Least Squares Experts and Application.pdf | 711.25 kB | Adobe PDF | View/Open |
SCOPUSTM
Citations
36
checked on Oct 28, 2024
WEB OF SCIENCETM
Citations
5
30
checked on Oct 2, 2024
Page view(s) 20
691
checked on Oct 29, 2024
Download(s) 50
787
checked on Oct 29, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.