Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/27825
DC FieldValueLanguage
dc.contributor.authorMendes, N.-
dc.contributor.authorLoureiro, A.-
dc.contributor.authorMartins, C.-
dc.contributor.authorNeto, P.-
dc.contributor.authorPires, J. N.-
dc.date.accessioned2014-12-09T11:44:25Z-
dc.date.available2014-12-09T11:44:25Z-
dc.date.issued2014-12-
dc.identifier.citationMENDES, N. [et. al] - Morphology and strength of acrylonitrile butadiene styrene welds performed by robotic friction stir welding. "Materials & Design". ISSN 0261-3069. Vol. 64 (2014) p. 81–90por
dc.identifier.issn0261-3069-
dc.identifier.urihttps://hdl.handle.net/10316/27825-
dc.description.abstractThe aim of this study is to examine the main factors affecting friction stir welding (FSW) of acrylonitrile butadiene styrene (ABS) plates, performed by a robotic system developed to this purpose. Welds were carried out using a tool with stationary shoulder and an external heating system. The welding parameters studied were the axial force, rotational and traverse speeds and temperature of the tool. The major novelty is to perform FSW of a polymer in a robotic system and to study the influence of the axial force on weld quality. In a robotic solution the control of axial force allows to eliminate robot positional errors and guarantee the contact between the FSW tool and the work pieces. Strength and strain properties of the welds are evaluated and correlated with the morphology of the welded zone. A comparison between welds produced in the robotic FSW system and in a dedicated FSW machine is presented. It is shown the feasibility of robotic FSW of ABS without deteriorating the mechanical properties of the welds in relation to those produced in the dedicated FSW machine.por
dc.language.isoengpor
dc.publisherElsevierpor
dc.rightsopenAccesspor
dc.subjectRobotic friction stir weldingpor
dc.subjectAcrylonitrile butadiene styrenepor
dc.subjectStationary shoulder toolpor
dc.subjectWeld defectspor
dc.subjectMechanical propertiespor
dc.titleMorphology and strength of acrylonitrile butadiene styrene welds performed by robotic friction stir weldingpor
dc.typearticlepor
degois.publication.firstPage81por
degois.publication.lastPage90por
degois.publication.titleMaterials & Designpor
dc.relation.publisherversionhttp://www.sciencedirect.com/science/article/pii/S0261306914005792por
dc.peerreviewedYespor
dc.identifier.doi10.1016/j.matdes.2014.07.047-
degois.publication.volume64por
uc.controloAutoridadeSim-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextCom Texto completo-
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
crisitem.author.deptFaculty of Sciences and Technology-
crisitem.author.parentdeptUniversity of Coimbra-
crisitem.author.researchunitCEMMPRE - Centre for Mechanical Engineering, Materials and Processes-
crisitem.author.researchunitCEMMPRE - Centre for Mechanical Engineering, Materials and Processes-
crisitem.author.orcid0000-0001-9315-3177-
crisitem.author.orcid0000-0003-2177-5078-
crisitem.author.orcid0000-0002-2504-0645-
Appears in Collections:I&D CEMMPRE - Artigos em Revistas Internacionais
Files in This Item:
File Description SizeFormat
Morphology and strength of acrylonitrile.pdf4.38 MBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.