Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/33675
DC FieldValueLanguage
dc.contributor.advisorMendes, Maria da Graça Santos Temido Neves-
dc.contributor.authorSequeira, Rui Jorge Nunes-
dc.date.accessioned2016-12-19T15:38:07Z-
dc.date.available2016-12-19T15:38:07Z-
dc.date.issued2014-09-22-
dc.identifier.urihttps://hdl.handle.net/10316/33675-
dc.descriptionDissertação de Mestrado em Matemática apresentada à Faculdade de Ciências e Tecnologia da Universidade de Coimbra.pt
dc.description.abstractExistem muitos fenómenos que podem ser descritos por séries temporais de valores inteiros não-negativos. Uma modelação adequada destes fenómenos exclui os modelos clássicos, baseados em processos reais, como os modelos ARMA. Há já uma larga classe de modelos de valores inteiros, entre os quais se encontram os modelos INARMA, construídos a partir de uma operação aleatória inteira que substitui a multiplicação escalar usual. Neste trabalho, estudamos dois modelos desta classe, os modelos médias móveis GINMA e INMA(q), principalmente no que diz respeito à caracterização da distribuição limite do máximo. Depois de estabelecida a estacionaridade forte do processo e admitindo que a função de distribuição marginal pertence à classe de Anderson, prova-se que a sucessão de máximos, de amostras com dimensão assintoticamente geométrica, converge em distribuição para uma variável aleatória com distribuição Gumbel discreta.pt
dc.description.abstractThere are many phenomena that should be described by positive integer-valued time series. To model this type of phenomena, the classical models based on real valued processes, for instance ARMA models, render inadequate. A large class of integer-valued models, including the INARMA models, have been developed with the usual scalar multiplication replaced by an integer-valued random operation. In this work, we study two models in this class, the GINMA and the INMA(q) models, mainly in what concerns the limiting distribution of the maximum. After proving that the underlying process is strict stationarity, assuming that its margins belong to the Anderson’s class we prove that the sequence of maxima converges in distribution to the discrete Gumbel, when a geometric growing dimension of the sample is considered.pt
dc.language.isoporpt
dc.rightsopenAccesspt
dc.subjectSéries temporaispt
dc.subjectclasse de Andersonpt
dc.subjectdistribuição assintótica de máximospt
dc.subjectTime seriespt
dc.subjectAnderson’s classpt
dc.subjectasymptotic distribution of maximapt
dc.titleModelos de variáveis inteiraspt
dc.typemasterThesispt
degois.publication.locationCoimbrapt
degois.publication.titleModelos de variáveis inteiraspor
dc.date.embargo2014-09-22*
dc.identifier.tid201386798pt
thesis.degree.grantor00500::Universidade de Coimbrapt
thesis.degree.nameMestrado em Matemáticapt
uc.rechabilitacaoestrangeiranopt
uc.date.periodoEmbargo0pt
uc.controloAutoridadeSim-
item.languageiso639-1pt-
item.fulltextCom Texto completo-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypemasterThesis-
item.cerifentitytypePublications-
crisitem.advisor.deptFaculty of Sciences and Technology-
crisitem.advisor.parentdeptUniversity of Coimbra-
crisitem.advisor.researchunitCMUC - Centre for Mathematics of the University of Coimbra-
crisitem.advisor.orcid0000-0002-5159-0528-
Appears in Collections:UC - Dissertações de Mestrado
FCTUC Matemática - Teses de Mestrado
Files in This Item:
File Description SizeFormat
Modelos de variaveis inteiras_RuiSequeira.pdf365.82 kBAdobe PDFView/Open
Show simple item record

Page view(s)

239
checked on Nov 5, 2024

Download(s)

217
checked on Nov 5, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.