Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/4111
DC FieldValueLanguage
dc.contributor.authorPereira, C.-
dc.contributor.authorHenriques, J.-
dc.contributor.authorDourado, A.-
dc.date.accessioned2008-09-01T10:09:44Z-
dc.date.available2008-09-01T10:09:44Z-
dc.date.issued2000en_US
dc.identifier.citationControl Engineering Practice. 8:1 (2000) 3-12en_US
dc.identifier.urihttps://hdl.handle.net/10316/4111-
dc.description.abstractIn this work a practical study evaluates two parametric modelling approaches -- linear and non-linear (neural) -- for automatic adaptive control. The neural adaptive control is based on a developed hybrid learning technique using an adaptive (on-line) learning rate for a Gaussian radial basis function neural network. The linear approach is used for a self-tuning pole-placement controller. A selective forgetting factor method is applied to both control schemes: in the neural case to estimate on-line the second-layer weights and in the linear case to estimate the parameters of the linear process model. These two techniques are applied to a laboratory-scaled bench plant with the possibility of dynamic changes and different types of disturbances. Experimental results show the superior performance of the neural approach particularly when there are dynamic changes in the process.en_US
dc.description.urihttp://www.sciencedirect.com/science/article/B6V2H-3Y51H01-2/1/50fbcda6652e0853352a54ab0d31ca2aen_US
dc.format.mimetypeaplication/PDFen
dc.language.isoengeng
dc.rightsopenAccesseng
dc.subjectAdaptive controlen_US
dc.subjectPole-placementen_US
dc.subjectNon-linear controlen_US
dc.subjectNeural networksen_US
dc.titleAdaptive RBFNN versus conventional self-tuning: comparison of two parametric model approaches for non-linear controlen_US
dc.typearticleen_US
dc.identifier.doi10.1016/s0967-0661(99)00130-6-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextCom Texto completo-
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
Appears in Collections:FCTUC Eng.Informática - Artigos em Revistas Internacionais
Files in This Item:
File Description SizeFormat
file26a60e346d7e4a88b574a1136d2346be.pdf345.67 kBAdobe PDFView/Open
Show simple item record

SCOPUSTM   
Citations

31
checked on Oct 28, 2024

WEB OF SCIENCETM
Citations

35
checked on Oct 2, 2024

Page view(s) 50

545
checked on Oct 29, 2024

Download(s)

267
checked on Oct 29, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.