Please use this identifier to cite or link to this item:
https://hdl.handle.net/10316/4183
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chaparro, B. M. | - |
dc.contributor.author | Thuillier, S. | - |
dc.contributor.author | Menezes, L. F. | - |
dc.contributor.author | Manach, P. Y. | - |
dc.contributor.author | Fernandes, J. V. | - |
dc.date.accessioned | 2008-09-01T10:43:31Z | - |
dc.date.available | 2008-09-01T10:43:31Z | - |
dc.date.issued | 2008-09-01T10:43:31Z | - |
dc.identifier.citation | Computational Materials Science. In Press, Corrected Proof: | en_US |
dc.identifier.uri | https://hdl.handle.net/10316/4183 | - |
dc.description.abstract | This paper presents two procedures for the identification of material parameters, a genetic algorithm and a gradient-based algorithm. These algorithms enable both the yield criterion and the work hardening parameters to be identified. A hybrid algorithm is also used, which is a combination of the former two, in such a way that the result of the genetic algorithm is considered as the initial values for the gradient-based algorithm. The objective of this approach is to improve the performance of the gradient-based algorithm, which is strongly dependent on the initial set of results. The constitutive model used to compare the three different optimization schemes uses the Barlat'91 yield criterion, an isotropic Voce type law and a kinematic Lemaitre and Chaboche law, which is suitable for the case of aluminium alloys. In order to analyse the effectiveness of this optimization procedure, numerical and experimental results for an EN AW-5754 aluminium alloy are compared. | en_US |
dc.description.uri | http://www.sciencedirect.com/science/article/B6TWM-4SJGWMW-1/1/01e8be60ce61e8fc30473d85439fbe39 | en_US |
dc.format.mimetype | aplication/PDF | en |
dc.language.iso | eng | eng |
dc.rights | openAccess | eng |
dc.subject | Plasticity | en_US |
dc.subject | Anisotropy | en_US |
dc.subject | Parameter identification | en_US |
dc.subject | Stamping | en_US |
dc.subject | Optimization | en_US |
dc.subject | Yield criteria | en_US |
dc.subject | Work hardening | en_US |
dc.title | Material parameters identification: Gradient-based, genetic and hybrid optimization algorithms | en_US |
dc.type | article | en_US |
dc.identifier.doi | 10.1016/j.commatsci.2008.03.028 | - |
item.grantfulltext | open | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | Com Texto completo | - |
item.openairetype | article | - |
item.cerifentitytype | Publications | - |
item.languageiso639-1 | en | - |
Appears in Collections: | FCTUC Eng.Mecânica - Artigos em Revistas Internacionais |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
file884093a59c4f48d68d7a9adae70ff2ff.pdf | 851.81 kB | Adobe PDF | View/Open |
SCOPUSTM
Citations
208
checked on Oct 28, 2024
WEB OF SCIENCETM
Citations
181
checked on Oct 2, 2024
Page view(s)
400
checked on Oct 29, 2024
Download(s) 50
1,039
checked on Oct 29, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.