Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/43888
DC FieldValueLanguage
dc.contributor.authorGutiérrez García, Javier-
dc.contributor.authorKubiak, Tomasz-
dc.contributor.authorPicado, Jorge-
dc.date.accessioned2017-10-12T15:33:49Z-
dc.date.issued2017-
dc.identifier.urihttps://hdl.handle.net/10316/43888-
dc.description.abstractThis paper makes a comparison between two notions of perfectness for locales which come as direct reformulations of the two equivalent topological definitions of perfectness. These reformulations are no longer equivalent. It will be documented that a locale may appropriately be called perfect if each of its open sublocales is a join of countably many closed sublocales. Certain circumstances are exhibited in which both reformulations coincide. This paper also studies perfectness in mildly normal locales. It is shown that perfect and mildly normal locales coincide with the Oz locales extensively studied in the last decade.por
dc.language.isoengpor
dc.publisherTaylor & Francispor
dc.relationinfo:eu-repo/grantAgreement/FCT/5876/147205/PTpor
dc.rightsembargoedAccess-
dc.titlePerfectness in localespor
dc.typearticle-
degois.publication.firstPage507por
degois.publication.lastPage518por
degois.publication.issue4por
degois.publication.titleQuaestiones Mathematicaepor
dc.relation.publisherversionhttp://dx.doi.org/10.2989/16073606.2017.1299810por
dc.peerreviewedyespor
dc.identifier.doi10.2989/16073606.2017.1299810por
dc.identifier.doi10.2989/16073606.2017.1299810-
degois.publication.volume40por
dc.date.embargo2018-10-12T15:33:49Z-
uc.controloAutoridadeSim-
item.languageiso639-1en-
item.fulltextCom Texto completo-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypearticle-
item.cerifentitytypePublications-
crisitem.author.researchunitCMUC - Centre for Mathematics of the University of Coimbra-
crisitem.author.orcid0000-0001-7837-1221-
Appears in Collections:I&D CMUC - Artigos em Revistas Internacionais
Files in This Item:
File Description SizeFormat
Perfectness(10).pdf80.84 kBAdobe PDFView/Open
Show simple item record

SCOPUSTM   
Citations

6
checked on May 1, 2023

WEB OF SCIENCETM
Citations 10

8
checked on Nov 2, 2024

Page view(s) 50

545
checked on Nov 6, 2024

Download(s)

230
checked on Nov 6, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.