Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/44424
DC FieldValueLanguage
dc.contributor.authorGutiérrez García, Javier-
dc.contributor.authorMozo Carollo, Imanol-
dc.contributor.authorPicado, Jorge-
dc.date.accessioned2017-11-15T17:56:36Z-
dc.date.issued2016-
dc.identifier.urihttps://hdl.handle.net/10316/44424-
dc.description.abstractWe present the frame L(T) of the unit circle by generators and relations in two alternative ways. The first is the localic counterpart of the Alexandroff compactification of the real line while the other can be understood as a localic analogue of the quotient space R/Z. With an eye towards a prospective point-free description of Pontryagin duality, we then show how the usual group operations of the frame of reals can be lifted to the new frame L(T), endowing it with a canonical localic group structure.por
dc.language.isoengpor
dc.publisherElsevierpor
dc.relationinfo:eu-repo/grantAgreement/FCT/COMPETE/132981/PTpor
dc.rightsembargoedAccess-
dc.titlePresenting the frame of the unit circlepor
dc.typearticle-
degois.publication.firstPage976por
degois.publication.lastPage1001por
degois.publication.issue3por
degois.publication.titleJournal of Pure and Applied Algebrapor
dc.relation.publisherversionhttp://www.sciencedirect.com/science/article/pii/S002240491500211Xpor
dc.peerreviewedyespor
dc.identifier.doi10.1016/j.jpaa.2015.08.004por
dc.identifier.doi10.1016/j.jpaa.2015.08.004-
degois.publication.volume220por
dc.date.embargo2019-11-15T17:56:36Z-
uc.controloAutoridadeSim-
item.languageiso639-1en-
item.fulltextCom Texto completo-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypearticle-
item.cerifentitytypePublications-
crisitem.author.researchunitCMUC - Centre for Mathematics of the University of Coimbra-
crisitem.author.orcid0000-0001-7837-1221-
Appears in Collections:I&D CMUC - Artigos em Revistas Internacionais
Files in This Item:
File Description SizeFormat
Tucpt(Revised).pdf451.18 kBAdobe PDFView/Open
Show simple item record

SCOPUSTM   
Citations

2
checked on Oct 28, 2024

WEB OF SCIENCETM
Citations 10

2
checked on Nov 2, 2024

Page view(s) 20

639
checked on Nov 6, 2024

Download(s)

284
checked on Nov 6, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.