Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/44666
Title: Infinitely Divisible Distributions in Integer-Valued Garch Models
Authors: Gonçalves, Esmeralda 
Mendes-Lopes, Nazaré 
Silva, Filipa 
Issue Date: 2015
Publisher: Wiley
Project: PEst-C/MAT/UI0324/2011 
metadata.degois.publication.title: Journal of Time Series Analysis
metadata.degois.publication.volume: 36
metadata.degois.publication.issue: 4
Abstract: We propose an integer-valued stochastic process with conditional marginal distribution belonging to the class of infinitely divisible discrete probability laws. With this proposal, we introduce a wide class of models for count time series that includes the Poisson integer-valued generalized autoregressive conditional heteroscedastic (INGARCH) model (Ferland et al., 2006) and the negative binomial and generalized Poisson INGARCH models (Zhu, 2011, 2012a). The main probabilistic analysis of this process is developed stating, in particular, first-order and second-order stationarity conditions. The existence of a strictly stationary and ergodic solution is established in a subclass including the Poisson and generalized Poisson INGARCH models.
URI: https://hdl.handle.net/10316/44666
DOI: 10.1111/jtsa.12112
10.1111/jtsa.12112
Rights: embargoedAccess
Appears in Collections:I&D CMUC - Artigos em Revistas Internacionais

Files in This Item:
File Description SizeFormat
jtsa_2015.pdf354.57 kBAdobe PDFView/Open
Show full item record

SCOPUSTM   
Citations

33
checked on Oct 28, 2024

WEB OF SCIENCETM
Citations 5

28
checked on Jul 2, 2024

Page view(s) 50

616
checked on Oct 29, 2024

Download(s)

293
checked on Oct 29, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.