Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/4669
DC FieldValueLanguage
dc.contributor.authorTenreiro, Carlos-
dc.date.accessioned2008-09-01T11:36:13Z-
dc.date.available2008-09-01T11:36:13Z-
dc.date.issued1998en_US
dc.identifier.citationTENREIRO, Carlos - Asymptotic distribution for a discrete version of integrated square error of multivariate density kernel estimators. "Journal of Statistical Planning and Inference". 69:1 (1998) 133-151.en_US
dc.identifier.urihttps://hdl.handle.net/10316/4669-
dc.description.abstractIn this paper we consider the weighted average square error An([pi]) = (1/n) [Sigma]nj=1{fn(Xj) -; f(Xj)}2[pi](Xj), where f is the common density function of the independent and identically distributed random vectors X1,..., Xn, fn is the kernel estimator based on these vectors and [pi] is a weight function. Using U-statistics techniques and the results of Gouriéroux and Tenreiro (Preprint 9617, Departamento de Matemática, Universidade de Coimbra, 1996), we establish a central limit theorem for the random variable An([pi]) -; EAn([pi]). This result enables us to compare the stochastic measures An([pi]) and In([pi] · f) = [integral operator]{fn(x) -; f(x)}2([pi] · f)(x)dx and to deduce an asymptotic expansion in probability for An([pi]) which extends a previous one, obtained, in a real context with [pi] = 1, by Hall (Stochastic Processes and their Applications, 14 (1982) pp. 1-16). The approach developed in this paper is different from the one adopted by Hall, since he uses Komls-Major-Tusnády-type approximations to the empiric distribution function. Finally, applications to goodness-of-fit tests are considered. More precisely, we present a consistent test of goodness-of-fit for the functional form of f based on a corrected bias version of An([pi]), and we study its local power properties. © 1998 Elsevier Science B.V. All rights reserved.en_US
dc.description.urihttp://www.sciencedirect.com/science/article/B6V0M-3TCMRNF-B/1/f80db4a711cea49af37488786978ca0een_US
dc.format.mimetypeaplication/PDFen
dc.language.isoengeng
dc.rightsclosedAccesseng
dc.subjectKernel estimatorsen_US
dc.subjectaverage square erroren_US
dc.subjectAsymptotic distributionen_US
dc.subjectU-statisticsen_US
dc.subjectGoodness of fiten_US
dc.titleAsymptotic distribution for a discrete version of integrated square error of multivariate density kernel estimatorsen_US
dc.typearticleen_US
dc.date.embargoEndDate10000-01-01-
dc.identifier.doi10.1016/s0378-3758(97)00154-7-
uc.controloAutoridadeSim-
item.grantfulltextreserved-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextCom Texto completo-
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
crisitem.author.researchunitCMUC - Centre for Mathematics of the University of Coimbra-
crisitem.author.orcid0000-0002-5495-6644-
Appears in Collections:FCTUC Matemática - Artigos em Revistas Internacionais
Files in This Item:
File Description SizeFormat Existing users please
filef074628cf8d94876bd876855dca35e1a.pdf649.4 kBAdobe PDF    Request a copy
Show simple item record

SCOPUSTM   
Citations

2
checked on Oct 14, 2024

WEB OF SCIENCETM
Citations

2
checked on Oct 2, 2024

Page view(s)

188
checked on Oct 29, 2024

Download(s)

167
checked on Oct 29, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.