Please use this identifier to cite or link to this item:
https://hdl.handle.net/10316/48375
Title: | In silico studies targeting G-protein coupled receptors for drug research against Parkinson’s disease | Authors: | Lemos, Agostinho Meloc, Rita Preto, Antonio J. Almeida, Jose G. Moreira, Irina S. Cordeiro, M. Natália D. S. |
Keywords: | Parkinson; GPCR; Computational modeling | Issue Date: | 2018 | Publisher: | Benthan | Project: | info:eu-repo/grantAgreement/FCT/5876/147218/PT POCI/01/0145/FEDER/007265 IF/00578/2014 MEMBRANEPROT 659826 info:eu-repo/grantAgreement/FCT/5876/147358/PT info:eu-repo/grantAgreement/FCT/SFRH/SFRH/BPD/97650/2013/PT info:eu-repo/grantAgreement/FCT/5876/147266/PT SFRH/BSAB/127789/2016 |
metadata.degois.publication.title: | Current Neuropharmacology | metadata.degois.publication.volume: | 16 | Abstract: | Parkinson's Disease (PD) is a long-term neurodegenative brain disorder that mainly affects the motor system. The causes are still unknown, and even though currently there is no cure, several therapeutic options are available to manage its symptoms. The development of novel anti-parkinsonian agents and an understanding of their proper and optimal use are, indeed, highly demanding. For the last decades, L-3,4-DihydrOxyPhenylAlanine or levodopa (L-DOPA) has been the gold-standard therapy for the symptomatic treatment of motor dysfunctions associated to PD. However, the development of dyskinesias and motor fluctuations (wearing-off and on-off phenomena) associated to long-term L-DOPA replacement therapy have limited its antiparkinsonian efficacy. The investigation for non-dopaminergic therapies has been largelyexplored as an attempt to counteract the motor side effects associated to dopamine replacement therapy. Being one of the largest cell membrane protein families, G-Protein-Coupled Receptors (GPCRs) have become a relevant target for drug discovery focused in a wide range of therapeutic areas, including Central Nervous System (CNS) diseases. The modulation of specific GPCRs potentially implicated in PD, excluding dopamine receptors, may provide promising non-dopaminergic therapeutic alternatives for symptomatic treatment of PD. In this review, we focused on the impact of specific GPCR subclasses, including dopamine receptors, adenosine receptors, muscarinic acetylcholine receptors, metabotropic glutamate receptors, and 5-hydroxytryptamine receptors, on the pathophysiology of PD and the importance of structure- and ligand-based in silico approaches for the development of small molecules to target these receptors. | URI: | https://hdl.handle.net/10316/48375 | DOI: | 10.2174/1570159X16666180308161642 | Rights: | embargoedAccess |
Appears in Collections: | I&D CNC - Artigos em Revistas Internacionais |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
CurrNeuro.pdf | 4.15 MB | Adobe PDF | View/Open |
SCOPUSTM
Citations
16
checked on Oct 28, 2024
WEB OF SCIENCETM
Citations
10
15
checked on Nov 2, 2024
Page view(s) 50
606
checked on Nov 6, 2024
Download(s) 50
478
checked on Nov 6, 2024
Google ScholarTM
Check
Altmetric
Altmetric
This item is licensed under a Creative Commons License