Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/7749
DC FieldValueLanguage
dc.contributor.authorVicente, Luís N.-
dc.date.accessioned2009-02-17T11:18:01Z-
dc.date.available2009-02-17T11:18:01Z-
dc.date.issued2003en_US
dc.identifier.citationOptimization and Engineering. 4:3 (2003) 159-175en_US
dc.identifier.urihttps://hdl.handle.net/10316/7749-
dc.description.abstractThe goal of this paper is to organize some of the mathematical and algorithmic aspects of the space-mapping technique for continuous optimization with expensive function evaluations. First, we consider the mapping from the fine space to the coarse space when the models are vector-valued functions and when the space-mapping (nonlinear) least-squares residual is nonzero. We show how the sensitivities of the space mapping can be used to deal with space-mapping surrogates of the fine model. We derive a framework where it is possible to design globally convergent trust-region methods to minimize such fine-model surrogates.en_US
dc.language.isoengeng
dc.rightsopenAccesseng
dc.titleSpace Mapping: Models, Sensitivities, and Trust-Regions Methodsen_US
dc.typearticleen_US
dc.identifier.doi10.1023/A:1023968629245en_US
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextCom Texto completo-
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
crisitem.author.orcid0000-0003-1097-6384-
Appears in Collections:FCTUC Matemática - Artigos em Revistas Internacionais
Files in This Item:
File Description SizeFormat
obra.pdf112.97 kBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations 10

9
checked on Oct 2, 2024

Page view(s)

360
checked on Oct 29, 2024

Download(s) 50

406
checked on Oct 29, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.