Please use this identifier to cite or link to this item:
https://hdl.handle.net/10316/84761
Title: | Otimização convexa sobre o preço de opções call europeias | Other Titles: | Convex optimisation on the price of European call options | Authors: | Rasquinho, Maria Carolina da Silva | Orientador: | Gouveia, João Eduardo da Silveira | Keywords: | Otimização convexa; Avaliação de opções; Problema generalizado do momento; Convex optimization; Option pricing; Generalised moment problem | Issue Date: | 30-Mar-2017 | metadata.degois.publication.title: | Otimização convexa sobre o preço de opções call europeias | metadata.degois.publication.location: | Departamento de Matemática da FCTUC | Abstract: | As opções de compra (call) europeias, que são o objeto de estudo desta dissertação, permitem que o detentor da opção possa exercer o seu direito, mas não o dever, de comprar um ativo por um determinado preço, denominado preço de exercício, na maturidade da opção. Devido ao caráter de incerteza associado ao poder de escolha do possuidor da opção, atribuir-lhe um preço justo torna-se bastante difícil. Esta é uma questão muito importante na matemática financeira uma vez que, caso as opções sejam mal avaliadas, poderão existir no mercado oportunidades de arbitragem. Nesse sentido, este trabalho pretende estabelecer limites para o preço de opções call europeias, assumindo a não existência de arbitragem. Sob esta suposição, o preço de uma opção europeia pode ser atribuído pelo retorno esperado do ganho exercido na maturidade, descontado a uma taxa de juro, onde a esperança é tomada sob a probabilidade neutra ao risco. Não especificamos qualquer modelo para a dinâmica do preço do ativo subjacente à opção, considerando apenas restrições sobre a distribuição probabilística do mesmo, na maturidade. Como observado por Lasserre, nestas condições este problema pode ser visto como um caso particular do problema generalizado do momento. Para o abordar utilizamos ferramentas de otimização convexa transformando-o num problema de não-negatividade de polinómios que podemos resolver com recurso a programação semidefinida. Partindo do trabalho de Bertsimas e Popescu, começamos por considerar separadamente restrições sobre os momentos da distribuições e sobre preços de algumas opções do mesmo tipo da que pretendemos estudar. De seguida, com o intuito de melhorar os resultados obtidos pelas abordagens anteriores, propomos um método híbrido cujas propriedades analisamos, como, por exemplo, a dualidade forte. Finalizamos este trabalho com um estudo numérico comparativo onde observamos melhorias com a utilização do método híbrido, em comparação às abordagens presentes na literatura analisadas nesta dissertação. The main objects of study in this work are European call options. This kind of options gives the owner the right, but not the obligation, to buy the underlying asset at a specific price, known as the strike price, on the options’ maturity. Due to the uncertainty associated with the owner decision power, fair pricing becomes quite difficult. This is a very important issue in financial mathematics because if the options are poorly evaluated, arbitrage opportunities may exist on the market. In this sense, this work pretends to establish limits on the price of European call options, assuming no arbitrage. Under this assumption, the price of a European option can be attributed to the expected return on maturity gain, discounted at an interest rate, where the expectation is taken on a risk-neutral basis. We did not specify any model for the price dynamics of the asset underlying the option, considering only restrictions on his probability distribution, at maturity. As observed by Lasserre, under these conditions this problem can be seen as a particular case of the generalised moment problem. In order to approach it, we use convex optimisation tools to transform it into a non-negativity problem of polynomials that can be solved using semidefinite programming. Starting from the work of Bertsimas and Popescu, we first consider separately restrictions on the moments of the distributions and on the price of some options of the same type that we intend to study. Then, in order to improve the results obtained by the previous approaches, we propose a hybrid method whose properties, such as strong duality, we analyse. We conclude this work with a comparative numerical study where we observe effective improvements with the use of the hybrid method in comparison to the approaches present in the literature analysed in this dissertation. |
Description: | Dissertação de Mestrado em Métodos Quantitativos em Finanças apresentada à Faculdade de Ciências e Tecnologia | URI: | https://hdl.handle.net/10316/84761 | Rights: | openAccess |
Appears in Collections: | UC - Dissertações de Mestrado |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Dissertação_Maria_Carolina_Rasquinho.pdf | 1.02 MB | Adobe PDF | View/Open |
Page view(s) 50
520
checked on Oct 29, 2024
Download(s) 50
482
checked on Oct 29, 2024
Google ScholarTM
Check
This item is licensed under a Creative Commons License