Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/89438
DC FieldValueLanguage
dc.contributor.authorJanelidze, George-
dc.contributor.authorSobral, Manuela-
dc.date.accessioned2020-06-02T14:14:46Z-
dc.date.available2020-06-02T14:14:46Z-
dc.date.issued2020-03-
dc.identifier.urihttps://hdl.handle.net/10316/89438-
dc.description.abstractGiven a monad T on the category of sets, we consider reflections of Alg(T) into its full subcategories formed by algebras satisfying natural counterparts of topological separation axioms T_0, T_1, T_2, T_ts, and T_ths; here ts stands for totally separated and ths for what we call totally homomorphically separated, which coincides with ts in the (compact Hausdorff) topological case. We ask whether these reflections satisfy simple conditions useful in categorical Galois theory, and give some partial answers in easy cases.pt
dc.language.isoengpt
dc.publisherElsevierpt
dc.relationCMUC-UID/MAT/00324/2019pt
dc.rightsembargoedAccesspt
dc.subjectMonadic topology; Monad; Separation axiom; Galois structurept
dc.titleStrict monadic topology I: First separation axioms and reflectionspt
dc.typearticle-
degois.publication.titleTopology and its Applicationspt
dc.relation.publisherversionhttps://doi.org/10.1016/j.topol.2019.106963pt
dc.peerreviewedyespt
dc.identifier.doi10.1016/j.topol.2019.106963pt
degois.publication.volume273pt
dc.date.embargo2022-03-01*
uc.date.periodoEmbargo730pt
item.languageiso639-1en-
item.fulltextCom Texto completo-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypearticle-
item.cerifentitytypePublications-
crisitem.author.researchunitCMUC - Centre for Mathematics of the University of Coimbra-
crisitem.author.orcid0000-0001-9289-6147-
Appears in Collections:I&D CMUC - Artigos em Revistas Internacionais
Files in This Item:
File Description SizeFormat
GJ&MS_corrected20190311.pdf275.73 kBAdobe PDFView/Open
Show simple item record

Page view(s)

150
checked on Nov 6, 2024

Download(s)

147
checked on Nov 6, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.