Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/89464
Title: Beck–Chevalley condition and Goursat categories
Authors: Gran, Marino 
Rodelo, Diana 
Issue Date: 2017
Publisher: Elsevier
Project: UID/MAT/00324/2013 
info:eu-repo/grantAgreement/FCT/5876/147205/PT 
metadata.degois.publication.title: Journal of Pure and Applied Algebra
metadata.degois.publication.volume: 221
metadata.degois.publication.issue: 10
Abstract: We characterise regular Goursat categories through a specific stability property of regular epimorphisms with respect to pullbacks. Under the assumption of the existence of some pushouts this property can be also expressed as a restricted Beck–Chevalley condition, with respect to the fibration of points, for a special class of commutative squares. In the case of varieties of universal algebras these results give, in particular, a structural explanation of the existence of the ternary operations characterising 3-permutable varieties of universal algebras.
URI: https://hdl.handle.net/10316/89464
DOI: 10.1016/j.jpaa.2016.12.031
Rights: openAccess
Appears in Collections:I&D CMUC - Artigos em Revistas Internacionais

Files in This Item:
File Description SizeFormat
arXiv version B_CGC.pdf204.27 kBAdobe PDFView/Open
Show full item record

SCOPUSTM   
Citations

5
checked on Oct 28, 2024

WEB OF SCIENCETM
Citations 10

3
checked on Oct 2, 2024

Page view(s)

187
checked on Oct 29, 2024

Download(s)

179
checked on Oct 29, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.