Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/89485
Title: On a ternary generalization of Jordan algebras
Authors: Kaygorodov, Ivan
Pozhidaev, Alexander 
Saraiva, Paulo
Keywords: Jordan algebras; non-commutative Jordan algebras; derivations; n-ary algebras; Lie triple systems; generalized Lie algebras; Cayley–Dickson construction; TKK construction
Issue Date: 2019
Publisher: Taylor & Francis
Project: UID/MAT/00324/2019 
metadata.degois.publication.title: Linear and Multilinear Algebra
metadata.degois.publication.volume: 67
metadata.degois.publication.issue: 6
Abstract: Based on the relation between the notions of Lie triple systems and Jordan algebras, we introduce the n-ary Jordan algebras, an n-ary generalization of Jordan algebras obtained via the generalization of the following property [R_x; R_y] \in Der (A); where A is an n-ary algebra. Next, we study a ternary example of these algebras. Finally, based on the construction of a family of ternary algebras defined by means of the Cayley-Dickson algebras, we present an example of a ternary D_{x,y}-derivation algebra (n-ary D_{x,y}-derivation algebras are the non-commutative version of n-ary Jordan algebras).
URI: https://hdl.handle.net/10316/89485
DOI: 10.1080/03081087.2018.1443426
Rights: embargoedAccess
Appears in Collections:I&D CMUC - Artigos em Revistas Internacionais

Files in This Item:
File Description SizeFormat
On a ternary generalization of Jordan algebras_IK_APP_PS.pdf350.91 kBAdobe PDFView/Open
Show full item record

SCOPUSTM   
Citations

12
checked on Nov 4, 2024

WEB OF SCIENCETM
Citations 10

11
checked on Nov 2, 2024

Page view(s)

158
checked on Nov 5, 2024

Download(s)

220
checked on Nov 5, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.