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Abstract

As data grows exponentially over time, it becomes a challenge for companies to cope with
this growth. One of the most obvious problems caused by data growth is the increased
need for data storage. Furthermore, as data grows, its complexity also increases, especially
if the data is unstructured or its quality is poor, giving rise to the inclusion of volatile
data. As such, the work produced for this document deals with a real problem, proposed
by the telecommunications company Altice, whose problem focuses on the consolidation
and improvement of data information regarding addresses. The interest and relevance
of this topic are based on the problems present in the data operationalization for many
companies, such as Altice, whose problems are related to data quality, such as completeness,
correctness, duplications or inconsistencies. The approach presented here is designed to
solve data problems, with an emphasis on the analysis of different tools and intelligent
techniques to address Altice’s problem, regarding data consolidation and processing. In
order to allow Altice to take advantage of the functionalities developed for its problem,
an architecture is proposed for building the software that incorporates said functionalities.
To prove the executability and validate the approaches designed for each type of issue
identified by Altice, results are presented on the approach designed concerning the correct
assignment of matches between addresses, which aim to validate and prove its viability, in
addition to proving its usefulness for the operationalization of Altice.

Keywords

Data Consolidation, Intelligent Systems, Information Retrieval, Databases, Record Match-
ing
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Sumário

À medida que os dados crescem exponencialmente ao longo do tempo, torna-se desafiante
para as empresas lidar com este crescimento. Um dos problemas mais óbvios causados pelo
crescimento dos dados é a maior necessidade de armazenamento de dados. Além disso, à
medida que os dados crescem, a sua complexidade também aumenta, especialmente se os
dados não estiverem estruturados ou a sua qualidade for fraca, dando origem à inclusão de
dados voláteis. Como tal, o trabalho produzido para este documento trata de um prob-
lema real, proposto pela empresa de telecomunicações Altice, cujo problema se foca na
consolidação e melhoria da informação de dados relativos a moradas. O interesse e relevân-
cia deste tópico baseiam-se nos problemas presentes na operacionalização dos dados para
muitas empresas, tais como a Altice, cujos problemas estão relacionados com a qualidade
dos dados, tais como completude, exatidão, duplicações ou inconsistências. A abordagem
aqui apresentada foi concebida para resolver problemas de dados como os referidos, com
ênfase na análise de diferentes ferramentas e técnicas inteligentes para tratar o problema
da Altice, no que respeita à consolidação e processamento de dados. De forma a permitir
à Altice tirar partido das funcionalidades desenvolvidas para o seu problema, é proposta
uma arquitetura para a construção do software que incorpora as referidas funcionalidades.
Para provar a exequibilidade e validar as abordagens concebidas para cada tipo de prob-
lema identificado pela Altice, são apresentados resultados sobre a abordagem concebida
relativamente à correta atribuição de correspondências entre moradas, que visam validar e
provar a sua viabilidade, para além de provar a sua utilidade para a operacionalização da
Altice.

Palavras-Chave

Consolidação de Dados, Sistemas Inteligentes, Recuperação de Informação, Bases de Dados,
Correspondência de Registos
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Chapter 1

Introduction

Information sources nowadays are ubiquitous. However, most information sources are not
human-ready, meaning that a person is often indispensable in the process of obtaining and
analyzing data, as well as in the process of extracting and consolidating information.

Although this scenario is not expected to be completely overcome, the truth is that there are
more and more systems and processes aimed at reducing this need, i.e., making it possible
to extract information from heterogeneous and noisy sources more and more automatically
(or at least automated).

At the same time as there are progressively more solutions for handling data, there are
also increasingly demanding challenges with a certain degree of complexity that lead to
the need to analyze, process, and act upon data from several different systems. Data anal-
ysis for consolidation and information extraction usually consists of inspecting, cleaning,
transforming, and modeling data in order to discover relevant information.

The application of data analytics techniques can bring significant advantages over competi-
tors by enabling increased efficiency, achieved by consolidating existing data, accommodat-
ing new data or removing duplicate data. For any organization that wants to communicate
with its customers, members or employees, or provide comprehensive services in terms of
touch points and interactions performed, the ability to recognize the same item, e.g. per-
son, company, address, computer, on different systems (or even within the same system)
is essential.

The challenges associated with information consolidation and extraction are from various
sources that are not always easy to identify and handle, for example, different nomencla-
tures for the same thing, which sometimes gives rise to repeated data (e.g. Nossa Senhora
de Fátima and Nª Srª de Fátima), data entry errors (e.g. empreza instead of empresa)
or field integrity (e.g. allowing a numeric field to have strings entered).

Additionally, it is often the case that there is no global identifier to identify the same item
in different data sources, which would link the equivalent records across different sources.

The challenges mentioned in the previous paragraphs are the focus of this work, which
tackles a real problem and deals with the consolidation and extraction of information
regarding addresses. Naturally, the interest and relevance of this subject are based on the
problems present in the data operationalization of many companies. To put it in context,
the topic of the work will be described in Section 1.1.

1



Chapter 1

1.1 Context

In the scope of information consolidation and extraction, this work focuses on the consol-
idation of address information for the telecommunications company Altice. This is a very
pertinent operational goal given that a large part of the services provided are based on a
physical location (address).

The more specific environment will be the consolidation of Altice’s main address database,
which includes confirmed addresses with services provided and addresses where services
may become available in the future. In this context, as this data source is not fully
complete in terms of national addresses, it is important for Altice to ensure the quality
and accuracy of its operational data and to absorb data from various sources to make it as
complete and correct as possible. In addition to this context, there are external sources,
namely from Instituto Nacional de Estatística (INE) and Correios, Telégrafos e Telefone
de Portugal (CTT), which can be used to extract new information.

1.2 Objectives

The main objective of this work is the investigation and application of intelligent methods
in the consolidation, extraction and enrichment of address information from heterogeneous
data sources. To achieve the main goal, there are several challenges to be met, namely:

• Identification of new addresses to be added and duplicates to be removed;

• Enrichment with relevant information to the records;

• Association of location to addresses;

• Definition, implementation and integration of the solution at Altice’s facilities.

Besides the main objective for consolidation purposes, this work also aims to design a
system that allows the application and execution of the developed functionalities for ex-
traction and consolidation from external sources and make possible autonomous use by
Altice.

1.3 Document structure

After this introductory chapter, Chapter 2 presents the fundamentals and work related to
information consolidation and extraction, namely the most widely used approaches in the
context of string extraction and matching, and also references previous research on the
topics of string matching for similar NLP problems and what is new in the area.

Chapter 3 presents a brief description of the data sources, as well as the requirements
defined for creating the solution.

Chapter 4 presents the architecture for the solution, in addition to the defined approach.

Chapter 5 presents the implementation language and tools used, as well as the functional-
ities employed for each of the requirements.

Chapter 6 presents the tests and results produced for the validation of the final solution.

2
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Finally, Chapter 7 closes the document with a summary of the results and proposals for
future work.

3
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Chapter 2

Background and State of the Art

Since data can have countless shapes and forms, many other problems related to the topic
of this thesis have been researched for a long time and will continue, given the exponential
growth of data with business expansion and the evolution of technology. Consequently,
there are many strategies and information that can be used to address and study the
problems regarding data. Therefore, this chapter is dedicated to the study and analysis of
previous works on the subject and what is most commonly used in terms of algorithms,
approaches and technologies that can be considered relevant for to the scope of this dis-
sertation.

The result of this study will largely give rise to different approaches for dealing with the
problem laid out in this document. For that reason, concepts like Record Linkage, Extract,
Transform, Load (ETL) will be explored in this document. Furthermore, the study and
application of string metric algorithms such as Levenshtein, Jaro-Winkler, N -Grams and
Cosine are essential to achieve this work’s goals.

2.1 Extraction, Transformation, Loading and Linkage

Data extraction and consolidation refers to the method of acquiring, processing, and cross-
referencing multiple data sets and moving it to a new context. The benefits associated
with consolidation are quality assurance and accuracy of information, which aids in data
access, manipulation, and analysis [4]. Additionally, it can be helpful in order to improve
a company’s operational paradigms, for example.

The sources used for consolidation can be both heterogeneous and homogeneous, but to get
into the context of our problem, the focus will only be on consolidation of heterogeneous
sources. By heterogeneous sources, as stated in [37], are those that do not have uniformity
among themselves, that is, with high variability of data types and formats. They are
sources with different structural characteristics, and this is due to the fact that they are
built on different and specific purposes within organizations.

When data is extracted from the various sources, it has to go through a cleaning process to
handle redudancy, inconsistency and integrity up in order to be combined and transformed
into a consumable and editable format, stored in a data repository for consultation. This
process is called ETL [39]. The main goal of ETL is to prepare data for analysis or business
intelligence, as it allows businesses to consolidate data from multiple sources into a single
repository with data that has been properly formatted and qualified in preparation for
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analysis [17][32].
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Figure 2.1: Extract, Transform, Load and Linkage process (adapted from [1])

2.1.1 Extraction

The first step is the data extraction process, which involves identifying the most relevant
original sources and extracting data from them, regardless of the format, into the staging
area, where all the information is converted into a single format and prepared for transfor-
mation [17]. The staging area is usually where the validation of the collected information
is done, before it is transported to the target source [34].

This is one of the most important steps, if not the most important, as the next steps
derive from the quality of the data that has been retrieved from the sources. This implies
that if the data extraction is not done correctly, the data can have a certain degree of
imperfections, which will compromise the quality of the data and is one of the main reasons
why normally the whole process is never done directly at the target source [7]. Designing
and creating an extraction process is often one of the most time-consuming tasks in ETL,
because the original data can be complex and poorly documented, requiring analysis and
determination of what data needs to be extracted.

2.1.2 Transformation

In a second iteration, a series of rules are applied to transform and derive the extracted data
in order to fulfill the needs of an organization and the rules for the data storage solution [6].
Although this process seems relatively simple, direct mapping between columns and tables
is impossible, even if the sources refer to exactly the same context, and this happens because
of the different column arrangements and quantities for the same record in different sources.
So it is usually necessary to perform transformation operations, typically normalizing data,
removing duplicates, validate the integrity of the information collected in the previous step,
etc. [32].
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Table 2.1: Representation of a record with different structure rules.

Attribute Source 1 Source 2 Source 3
Street Type Rua - R
Street Title Dom - D
Street Name João II Rua Dom João II João II
Zip Code 3030-385 3030-385 3030-385
City Coimbra Coimbra Coimbra

Examining Table 2.1, we can see that we are looking at data that corresponds exactly to
the same, but thanks to its arrangement in the 3 sources, there is a need to clean up and
deal with the presented information and structure it in the most convenient way, in order
to map the record correctly [32]. To do this, normalization must be done for some types
of information that do not conform to a standard format. When this format is defined,
normalization will be achieved by the use of rules that satisfy the desired format.

Still using Table 2.1 as a reference, the different representations of a street, as shown, make
it difficult to compare between entities. Assuming that the correct format would be that of
the Source 1, one would have to normalize and split the street name in the Source 2 by
the “Street Type” and “Title” fields, whereas in the Source 3 it would only be necessary
to compose the abbreviations in the same fields.

2.1.3 Loading

Finally in the last step we have the loading process, which deals with storing the trans-
formed data to its final destination, which can be a data warehouse, a delimited text file,
etc. [6]. In our case, this process applies to a database. It is at this stage that decisions
are made about what existing information is to be replaced or enhanced, and what new
information is to be loaded, making this data business-ready to its clients [6]. In addition,
it is at this stage that the frequency of data updates is usually established, which varies
according to the requirements of each system [32].

2.1.4 Record Linkage

Record linkage is the process of identifying and linking records that correspond or is be-
lieved to be the same entity, within one or across multiple independent data sources, in
such a way as to be treated as a single record. There are also other names referring to this
practice, such as data matching, entity resolution, entity disambiguation, deduplication
[20]. When records have a unique identifier, the linking process is simple, since matching
is done on the basis of equality of that common unique identifier. However, since records
generally lack a unique identifier across multiple sources, other common information must
be compared to link the records. For example, in the case of a person, identifiers such as
first and last name, date of birth, gender, residence address, etc. are used.

The first concept of record linkage was proposed by Halbert L. Dunn, in a paper entitled
“Record Linkage”, published in 1946. In this paper, the term is used to describe the process
of assembling the most significant events in the life of a person from the day they are born
until the day they die, what the author refers to as the “Book of Life” [16].

It was not until 1969 that the main theory behind record linkage was developed by Fellegi
and Sunter, in their paper “A Theory for Record Linkage”, in which pairs of records are
classified as matches, possible matches or non-matches, using for this purpose the fields
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considered common between the entities to be compared. They additionally present a for-
malization of the mathematical concepts of modern record linkage, where they introduced
similarity functions that calculate, based on estimates, how similar two records are. Given
their growing interest in applying advances in computing and automation, the mathemat-
ical concepts of this theory continue to serve as the basis for record linkage [18].

Table 2.2: Representation of a record in different sources.

Attribute Source 1 Source 2
Street Name Rua Cândido dos Reis R Cândido Reis
Zip Code 3030-075 3030075
City Coimbra Coimbra

Using Table 2.2 as reference, in this table are attributes of a street represented in different
ways in different sources, in this case, its name, zip code and location. In this concrete
example, this process can be handled manually by looking at the data directly and com-
paring them in order to link them. Although with human intervention accuracy can be
high, this practice becomes too time inefficient and error prone when dealing with a large
amount of data. This is where computers come into the picture, not only to reduce the
processing time required, in addition to the human factor in reviewing the data, but also for
better data quality and consistency. This can be achieved using classification algorithms
to help distinguish what may or may not be a match, some of which will be discussed in
the following chapters.

Taking into consideration that the linkage can be computationally heavy, ideally, the data
should undergo a quality assessment before record linkage is performed. As shown in the
Table 2.2, although both records correspond to the same address, the Source 1 record has a
different layout than the Source 2 record, which to a machine is not clear when comparing
them directly.

Source 2

Source 1
Preprocessing

Preprocessing

Blocking/Indexing Record pair
comparison

ClassificationReview

Matches Non-matchesPossible matches

Evaluation

Figure 2.2: Common approach for Record Linkage (adapted from [21])

Preprocessing

For the purpose of ensuring uniformity amongst data, in this subtopic we address data
preprocessing, which can be described as data cleaning as well. This approach is used on
data that contains some degree of noise, such as different formatting and arrangement of
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information by its fields, which for data consolidation and integration will be very costly.
In order to achieve this, a transformation of the records into canonical format must be
done, e.g. remove abbreviations or associated errors, normalize the arrangement of some
fields. All this is of great importance, as it helps to recognize similarities between data
more easily, while at the same time increasing the reliability of the equivalences [12].

Table 2.3: Representation of similar records in different sources.

Attribute Source 1 Source 2 Source 3
Street Name Rua Cândido dos Reis R Cândido Reis Rua Candido Reis
Zip Code 3030-075 3030075 4050151
City Coimbra Coimbra Porto

For instance, in light of what is shown in Table 2.3, we can observe that identifiers for the
same entity can be represented in different ways, either between different data sources or
even within one’s own. It is these distinct representations that worsen the application of
record linkage without some sort of transformation. To obtain a higher degree of certainty
and ensure that the Source 1 and Source 2 correspond to the same thing, ideally the
abbreviation of the street name should be expanded in the second source, as well as the
normalization of the zip code to have the same format. While preprocessing increases
the homogeneity of the data, it further facilitates comparison between records when using
similarity metrics, thus increasing confidence in the results.

Blocking/Indexing

Blocking is just as important as preprocessing, especially when we are dealing with large
data sets. The larger the datasets, the more comparisons between pairs of records are
required, which will cause scalability and computational cost to grow exponentially. Per-
forming a complete scan of all records will require a complexity of O(n2).

Therefore, to avoid doing a full check on all pairs of records, the data is partitioned into
groups, or blocks, so each block contains only records that are more likely to be similar [9].
Moreover, this process is intended to help minimize the number of non-matching pairs, as
well as ensuring that most matching pairs are placed in their correct blocks to be linked
in the following steps.

Table 2.4: Representation of records in different sources, before blocking.

Attribute Source 1 Source 2 Source 3
Street Name Rua Cândido dos Reis Rua Cândido dos Reis Rua Cândido dos Reis
Zip Code 3030-075 3030-075 2250-041
City Coimbra Coimbra Santarém

If the attributes of the considered records are completely different, comparisons between
those records are blocked. Using Table 2.4 as a reference, when looking at Source 2 and
Source 3, even though the street name is exactly the same in both, we realize that they
are different records, judging by the zip code and different localities. By blocking these
pairs, there is no longer any need to evaluate them, and the similarity techniques will only
be used on the matching pairs.

9



Chapter 2

Record pair comparison

From the previous step result the pairs to be compared, and from this step result the joining
of the data from the sets in play. To do this, the similarity between the attributes of the
pairs, usually textual strings, must be measured using appropriate comparison functions.
Some of these functions will be explored in the following sections, such as the edit distance.

In our case, the similarity measures will vary depending on the type of data we are eval-
uating. For the case of street comparison, the goal is to find and add new information,
reduce duplicates, complete missing field values, correct lexicographic differences.

Classification

The biggest challenge is at this point, when it comes to the accuracy of the results produced,
since this is where the decision criteria for categorizing what will be a match and a non-
match come in. A record pair can also be classified as a possible match, which is when
there is doubt about whether it is a match or not.

All the data that resulted from the previous steps goes through a decision model, which
will dictate what is a match from a non-match. A simple classifier to help distinguish a
match from a non-match can be based on a similarity threshold, determined from the result
produced in the comparison functions. Those above the threshold are merged and treated
as a single record, to avoid redundancy, while those below the threshold are considered
non-matches. Depending on how the classifier is being used, possible matches can rise.
These cases are separated for future review, so other classifiers can be used, since there is
no certainty that these pairs are the same or not [21].

Evaluation

Just as the process of record linking can add enormous value to business intelligence pro-
cesses, inaccuracy in its algorithms can also be very costly. This is why it is crucial to
choose a method and data attributes that will ensure maximum linkage accuracy between
datasets. In this last step, the ratings are evaluated, using the true positives, true nega-
tives, false positives and false negatives as a reference to express the comparison quality in
terms of precision, sensitivity, accuracy and F1-score [3].

• True Positive - Records with at least one associated match, as supposed.

• True Negative - Records with no associated matches, as supposed.

• False Positive - Records with at least one associated match, when they should not
have any.

• FalseNegative - Records with no associated matches, when they should have at least
one.

The precision, which is a measure of how many of the positive predictions made are
correct, is given by the following equation:

TP

TP + FP
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The sensitivity (or recall), which is a measure of how many of the positive cases are
correctly predicted, is given by the following equation:

TP

TP + FN

The accuracy, which is a measure of how many predictions are correct over all predictions,
is given by the following equation:

TP + TN

TP + FP + TN + FN

The specificity, which is a measure of how many negative predictions made are correct,
is given by the following equation:

TN

FP + TN

The F1-score, which is the harmonic mean of accuracy and sensitivity, is given by the
following equation:

2 ∗Accuracy ∗ Sensitivity
Accuracy + Sensitivity

2.1.5 Summary

The previous different processes were explored to better explain how records will be ex-
tracted and handled, before entering the fields of string similarities. In Subsections 2.1.1, 2.1.2
and 2.1.3 (ETL) the steps to handle and store the data in another repository are explained.
Record linkage mainly explains the process of record identification, which differentiates
what is a match from what is not.

2.2 String Similarity Measures

In this section the various approximate string matching techniques that can be used for the
purpose of information consolidation will be discussed and described. As there are many
different algorithms and approaches for efficient searching, some of them will be explored
in the next subchapters.

Approximate string matching is the technique that calculates similarity, or distance, be-
tween two strings, which is the minimum number of edit operations to transform one string
into the other. The number of operations is what calculates the similarity value. Based
on the obtained similarity value, we can set a threshold with the goal of determining how
similar or different both patterns are, usually in situations where the number of differences
is relatively small [10]. There are many different algorithms for efficient searching and,
based on the properties of operations, string similarity algorithms can be classified into a
set of domains, some of which are: character-based, token-based and hybrid approaches
[28].

• Character-Based - Character-based methods, as its name suggests, treats each
string as a sequence of characters. It is most suited when handling typographical
errors between pairs of strings, since the basis of their transformations are minimum
number of editions, between two strings a and b, needed to transform a into b [41].

11



Chapter 2

• Token-Based - Unlike character-based, token-based methods transform complete
strings (or text segments) into sets of individual words by splitting them using a
delimiter. The main logic for this type of measure is to find common tokens in both
sets of strings, calculating the overlap between them [41]. These methods work well
when the representation rules between words, or the word order, is different (e.g,
John Doe vs Doe, John), something that in character-based methods will drastically
influence the degree of similarity, because the order of characters matters as an edit
operation [28].

• Hybrid Approach - Hybrid approaches combine both ideas, in order to improve
effectiveness when matching names composed of multiple tokens [41]. It extends
the character-level edit operator to the token-level edit operator. For example, con-
sidering two strings like “Jane John Doe” and “Johnny Doe”, two token-level edit
operators can be used to transform the first one to the second one (e.g. deleting the
token “Jane” and substituting “John” for “Johnny”). Like its predecessors, the token
weight in the transformation are considered. So, “Jane” is less important than “John”
and we can assign a lower weight for “Jane”, since it is the only token that is not
present in the other string [36].

2.2.1 Levenshtein Distance

Based on the search for matches, one of the most common algorithms for this purpose
is the Levenshtein Distance, also known by the term Edit Distance, proposed by Russian
scientist Vladimir Levenshtein in 1965, which calculates in measures the similarity between
two words [27]. It has a wide range of applications within, besides matching strings, such
as in spell checkers and automatic suggestions of approximate words.

The distance calculated is based on the number of insertions, removes and substitu-
tions required to transform the first word into the second, which tells us that the greater
the distance, the greater the difference between the words.

Typically, each operation will have a cost of 1, however, these may have other values
associated with them, depending on the user’s criteria. By definition, this distance can be
used as a threshold to make a decision regarding the strings, whether they will match or
not, in this case.

In order to define this algorithm mathematically, let’s consider the descriptions for the
variables in equation 2.1:

• a and b are the text strings to be compared

• i corresponds to the letter in the i-th position in the string a

• j corresponds to the letter in the j-th position in the string b

Leva,b(i, j) =


max(i, j) If min(i,j) = 0

min =


Leva,b(i− 1, j) + 1

Leva,b(i, j − 1) + 1

Leva,b(i− 1, j − 1) + 1(ai 6=bj)

Else
(2.1)

Levenshtein Distance Equation (adapted from [22])
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The goal of this system of equations is to evaluate whether or not they are equal, for if
they are equal, no operations are required. On the other hand, if they are not equal, we
increment 1 for each operation performed, which are represented by the equations contained
in min. The first equation of this corresponds to the removal of a character, the second
corresponds to insertion, and the third to substitution, so incrementation only happens if
the compared characters are different (ai 6= bj).

For example, the distance between the words ‘price” and “prizes” will be 2, since it will
take 2 operations, namely a substitution and an insertion, to reproduce the first word in
the second:

1. price→ prize (replacing the letter “c” with the letter “z”)

2. prize→ prizes (inserting the letter “s” at the end of the string)

This algorithm can be used to make comparisons between long strings, but it becomes
impractical to reproduce the computations since the cost of the operations will be high
depending on the length difference between both strings. Thus, its application becomes
more feasible in topics such as record linkage when the compared strings are shorter, which
also helps improve the speed of the comparisons.

2.2.2 Jaro-Winkler Distance

Jaro

Like the Levenshtein Distance, the Jaro Distance is also suitable for finding matches be-
tween sources, besides its purpose being to measure the similarity between two given words.
Consequently, it is widely used in the areas of record linkage, entity linking and information
extraction [38]. This similarity measure was originally proposed by Matthew A. Jaro in
1989 [23], which was developed to compare small strings, such as names. The difference
between these two metrics is in the operations they perform. While Levenshtein does in-
sert, remove and replace operations, Jaro only considers transposition operations, which
in other words are the characters that occurs in both strings and match, but do not follow
the correct order. Besides the transposition operations, the Jaro Distance considers the
number of matching characters and the length of strings being compared [15].

In order to define this algorithm mathematically, let’s consider the descriptions for the
variables given by equation 2.2:

• a and b are the text strings to be compared

• la and lb are the lengths of the strings a and b, respectively

• m is the number of matching characters

• t is the number of transpositions

Jaro(a, b) =

{
0, If m = 0
1
3

(
m
|la| + m

|lb| + m−t
m

)
, Else

(2.2)

Jaro’s Distance Equation (adapted from [15])
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The system of equations represented in 2.2 shows how the distances between the strings
are calculated. For the first part, if the strings have no characters in common, then m = 0,
then the distance between the two strings will be 0 as well, so Jaro(a, b) = 0 and means
the strings do not match. Otherwise, if the two strings are the same, then the lengths
and number of matching characters are the same and no transpositions take place, so this
means m = |la| = |lb| and t = 0 and consequently Jaro(a, b) = 1 and means the strings
are a perfect match. The characters are an exact match if they are identical, naturally,
and these characters are not further than

⌊
max(|la|,|lb|)

2

⌋
− 1 characters away [24].

To better explain how transpositions work, the words ‘pahrmayc” and “pharmacy” will
be used as an example:

1. pahrmayc → pharmayc (swapping the order of letters “a” and “h”, since they are
included in both strings)

2. pharmayc → pharmacy (swapping the order of letters “c” and “y”, since they are
also included in both strings)

Jaro-Winkler

In order to improve the performance in terms of similarity and to provide better results,
a variant of the original Jaro Distance measure was developed by William E. Winkler and
Thibaudeau in 1990, to support the idea that differences near the start of the string are
more significant than differences near the end of the string, as it is believed that errors
tend to occur less often at the start of the strings [40]. They are similar to a certain
extent, and like its predecessor, considerations are based mainly on the order and number
of common characters in the strings, but include two new variables. Therefore, the higher
the similarity value for two strings, the higher the resemblance of both strings [26].

Considering Jaro’s original equation (2.2), here follows the description of the variables
given by the equation 2.3:

• a and b are the text strings to be compared

• l is the length of common prefix at the start of the string (up to 4 characters)

• p is the prefix scale, or the scaling factor

JaroWink(a, b) = Jaro(a, b) + l × p× (1− Jaro(a, b)) (2.3)

Jaro Winkler’s Distance Equation (adapted from [24])

Since the Jaro’s original equation (2.2) is the basis for this variant, the two new variables
described above now come into play. These two variables are considered in order to increase
similarity, one of which is a prefix scale p, which gives more favorable scores when the first
characters are the same (up to 4), whilst giving a more accurate answer to a defined prefix
length l [11][13].
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2.2.3 N -Grams

The n-grams, sometimes also called q-grams [35], are subsequences of n letters for a given
word or string. These subsequences are usually divided by one, two, three, or more se-
quences of n letters. One-letter n-grams are called unigrams, two-letter are called bigrams,
three-letter are called trigrams, and so forth [25]. For example, for the word “dissertation”,
with 3-character sequences the trigrams “dis”, “iss”, “sse”, “ser”, “ert”, “rta”, “tat”, “ati”, “tio”
and “ion” are formed. In addition, if sequences of words are considered, the sentence “this
dissertation is about database consolidation”, the trigrams formed are “this dissertation is”,
“dissertation is about ”, “is about database”, “about database consolidation” [19].

The idea behind the use of n-grams is that whenever an approximate match occurs between
two strings, one must resemble the original pattern. This resemblance is reflected if they
share the same n-grams both in the pattern and in its approximate match [13]. Yet, another
way to ensure that both strings are an approximate match is to preserve the positions of
the n-grams [33].

Cosine

When it comes to modelling text, words or subsequences of strings as a vector of terms,
the cosine similarity is a widely used metric due to its simplicity and effectiveness in
information retrieval [30][31]. Cosine similarity is a metric that determines how similar the
compared data objects are. The data objects are viewed as vectors in an inner product
space, with vectors typically being non-zero, and this product is measured by calculating
the cosine of the angle between two vectors and determining whether these two vectors are
pointing in the same direction, regardless of their size.

The cosine similarity is described mathematically as the division between the dot product
of vectors and the product of the euclidean norms or magnitude of each vector [5]. Its
equation can be derived using the Euclidean dot product formula [14] which is written as:

A ·B = ‖A‖ ‖B‖ cos(Θ) (2.4)

Then, given the two vectors and the dot product, the cosine similarity is defined and
represented by equation 2.5:

Cosinea,b = cos(Θ) =
A ·B

‖A‖ × ‖B‖
=

∑|∑|
i=1 aibi√∑|∑|

i=1 a
2
i ×

√∑|∑|
i=1 b

2
i

(2.5)

In terms of vector-space approaches, the cosine similarity between representations based
on character n-grams (i.e., based on sequences of n consecutive characters, typically with
n = 2 and/or with n = 3) is a common approach [31]. However, it still cannot handle
the semantic meaning of the text perfectly [30] and this occurs due to the implementation
of cosine similarity measurement between two vectors sometimes yields unreliable result
syntactically, when compared. Syntax matching may not be able to meet the difference
of semantic meaning problem, and for this reason will be applied together with the aid of
n-grams.
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The purpose of using n-grams and cosine is to separate words into tokens, and then to
separate each of these tokens into fixed sequences of n characters, which will be treated as
vectors when using the cosine similarity. Keeping in mind that these two algorithms will not
be used as main, but rather as auxiliary, due to this similarity calculation approach being
relatively rudimentary. Their purpose will be mostly to confirm the veracity of the results
obtained from the similarity measures, previously mentioned, and to make typographical
errors detection possible.

2.2.4 Summary

In the previous, we have focused on different similarity algorithms most commonly used,
studied with the intention of being combined and applied in the context of the stated
problem. In addition to explaining the algorithms, the different types of string manipu-
lation (character-based, token-based, hybrid) and operations (insert, remove, replace, and
transpose) are explained to clarify how said algorithms work and how they treat transfor-
mations.

2.3 Associated Technologies

In order to accommodate the data provided, it was necessary to create the infrastructure to
import and store the data received. Given the constraints of the project, it was considered
to use open source software. Thus, PostgreSQL1 was selected, which is a relational
database system that is among the most widely used and one of the most established in
the community for the SQL language, given that it offers a wide set of quality attributes,
such as reliability, data integrity, extensibility, scalability, among others.

For the operationalization and development of the solutions, the Python2 language was
considered, both because it is one of the most widely used languages nowadays, and be-
cause of the wide range of modules available in the library and its high readability. These
allow basic functionality to be included without having to write additional code, one of
these being integration with PostgreSQL, with the help of the Psycopg23 adapter, which
communicates directly with PostgreSQL through Python, allowing to retrieve the informa-
tion needed through queries. The FuzzyWuzzy4 and Jaro-Winkler5 libraries, also open
source, are used in addition to Psycopg2 to calculate string similarity measures. These
libraries contain the Levenshtein [27] and Jaro-Winkler [40] distances to help calculate the
similarity index between the compared records.

2.4 Summary

Previous work on the topic of data consolidation was explored in order to create an appro-
priate approach and select the processes and algorithms that best fit the problem addressed
in this project and build a usable solution. Additionally, for each process and algorithm, a
brief history on the development and changes over the years is presented. More specifically,
processes such as Record Linkage, which deals with how records should be treated, namely

1https://www.postgresql.org/
2https://www.python.org/
3https://pypi.org/project/psycopg2/
4https://pypi.org/project/fuzzywuzzy/
5https://pypi.org/project/jaro-winkler/
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the mapping between sources so that a distinction can be made between the various types
of data, and how partitioning is to be handled, so it is possible to keep the solution scal-
able, as well as decrease the error-proneness. In addition to the processes, approximate
string matching algorithms have been studied with the intention of being combined and
applied in the context of the stated problem, mostly to aid in record linkage and to set a
considerable threshold for distinguishing a match from a non-match.
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Problem Definition

Considering that Altice’s main database is not complete in terms of all addresses in the
national territory, the scope of this project is focused on designing and implementing
consolidation and knowledge extraction processes using intelligent techniques, identifying
specific and quantifiable processes to compose and improve data quality. This improvement
is to be achieved essentially through four processes:

(i) Improvement of existing address information;

(ii) Identification of potential duplicate addresses;

(iii) Identification of potential new addresses;

(iv) Identification of potential addresses to be removed.

In addition to the goal of integrating information into the database, there is the intention
of transforming the implemented functionalities into a service that allows its autonomous
execution by Altice. This service must allow the system users to perform a series of
operations on addresses, either individually to each address, or to a subset of them.

This chapter details the problem to be addressed and the main objectives to be achieved.
First, the specification of the requirements is presented. Then, a description of the provided
data sources, to get a better view of what the main challenge is and how it is going to be
solved.

3.1 Requirements and Constraints

3.1.1 Requirements

Given Altice’s needs and taking into account the nature of the problem, five functional
requirements were defined that are considered fundamental to the development of this
project. These requirements must be guaranteed so that the main objectives intended by
Altice are met.

The functional requirements of the system are detailed in Table 3.1.
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Table 3.1: Requirements for applying information retrieval techniques.

Requirement Description

R1 Determine geographic coordinates for records in Altice’s address
database, based on address information from external sources.

R2 Identify for each non-certified address the corresponding certified ad-
dress.

R3 Identify addresses from external sources that are not in Altice’s address
database.

R4 Identify addresses with different names that correspond to the same lo-
cation, from external sources.

R5 Transform and aggregate the methods applied to data consolidation into
an operable service.

For R1, it is known that in Altice’s database there are addresses that have no geographic
coordinates and some that come from sources that provide low confidence. Therefore, in
this requirement it is intended to enrich the records with geographic coordinates present in
the auxiliary information sources. The degree of certainty of the coordinates obtained must
be quantified as well, so that it can be identified which ones can be loaded automatically,
and which ones must be validated manually.

InR2 two types of addresses are distinguished, certified and non-certified (tickets), with the
first type corresponding to records that are accepted as official addresses, and the second
referring to address records that have missing fields, which prevent its evolution, making it
impossible to certify. The main purpose of this requirement is to assist in the certification
of ticket type addresses and thus reduce the number of data to be manually processed and
validated. Among all non-certified address records, those that already exist in the Altice
database as a certified address should be identified, otherwise try to complement missing
fields in order to assist in their certification evolution.

For R3, bearing in mind that Altice’s database is not complete regarding all of the ad-
dresses that exist on national territory, in this requirement it is intended to enrich it with
new addresses that may exist in the auxiliary information sources. From the addresses that
are identified as possible new, a list must be created with these, which must contain all the
necessary information for the creation and loading of records on the Altice side. The degree
of certainty associated to the new addresses must be quantified as well, in order to identify
which ones can be loaded automatically and which ones must be validated manually.

As time goes by and toponymy evolves there are streets that go extinct or change their
names, which leads us to the problem related toR4. It is intended to identify addresses that
are synonymous, that is, addresses that have distinct names for what should be considered
the same, in order to improve data quality by removing duplicate entries. To do this, a list
should be created with the records representing the same address, identifying the official
record that should prevail.

Finally, R5 has the objective to aggregate and transform the functionalities developed for
the requirements R1, R2, R3 and R4 into a service that enables the integration with
Altice’s systems, through an API. In this sense, the engineering processes for the transfor-
mation and development of this requirement into operable software must be followed.
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3.1.2 Constraints

There are a few constraints that will have an impact on the requirements contemplated,
namely technical constraints. As for these constraints, it stands to notice that the tech-
nologies used must be open-source and the operating system should be Red Hat, mainly
because it is the operating system used by Altice’s machines. Moreover, the system de-
veloped must be able to be used by Altice autonomously. The restrictions are described
below:

• C1: Open Source - The technologies used must be Open Source;

• C2: Operating System - The operating system used should be Red Hat, at Altice’s
request;

• C3: Integration at Altice’s facilities - The developed solution must be installed
at Altice’s premises.

3.2 Data Sources

To be able to fulfill the requirements and better contextualize the problem, four sources
of information are provided for the purpose of data consolidation, all located in national
territory. Since the main goal is to consolidate and enrich address information, one of the
sources, named POLARIS, will be the main target of consolidation, while the other three,
named Correios, Telégrafos e Telefone de Portugal (CTT), Instituto Nacional
de Estatística (INE) and SURVEY, will be the data sources for adding and enhancing
the information present in POLARIS, represented in Figure 3.1. In order to be able to
cross-reference and compare information between sources, a few common fields are used,
such as street name, house number, floor, side, zip code and Global Positioning
System (GPS) coordinates.

CTT INE

POLARIS

Survey

Figure 3.1: Database connection.

POLARIS is the database containing all addresses operated by Altice, which is intended
to provide the addresses for all their internal systems. Within this there are two separate
types of data, certified and tickets. The first type refers to Altice’s official operational data,
and the second refers to non-certified data, which is data that is missing information and
needs complementing in order to become certified and operable. In addition, this relational
database contains its address elements separated by three main types, which are streets,
buildings and housing units.

CTT represents the official addresses for housing units. Although it is a consistent source
in terms of quantity and quality of address information, it presents a problem concerning
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the coordinates, which are often represented at the mailbox level, unlike the other sources,
which generally focus on the centroid of the building. This can influence the accuracy of
coordinates in POLARIS, when inherited from this source.

INE represents official addresses as well, and these are obtained and produced through the
national population census study, which is carried out every 10 years. Although this source
contains less information than in CTT, its geographic coordinates are way more accurate,
besides being very relevant in the domain of address information. INE contains data from
2011, and for this purpose, some of the data may be outdated in terms of streets that no
longer exist, which may be enough to introduce noise or unwanted addresses into the main
database.

SURVEY is an auxiliary database, owned by Altice, which is based on the construction
of the optical fiber footprint for customers connected to the company. This is a smaller
source in terms of size, both in number of fields and total records, than the CTT and INE
databases. As it refers to buildings, it may not bring much relevant information in terms of
complementing housing units, for example. However, we take advantage of the accuracy of
the GPS information, bearing in mind that this is the result of the study done in relation
to the optical fiber operated by Altice.

3.3 Summary

In Chapter 3, the problems and objectives of this project are presented, along with the
requirements. In addition, a description for each data source is provided, which gives a
better insight of the problem in hands like how the databases will cross-reference each
other, which information or fields should be used, etc. This chapter lays the foundations
for the proposed approach and architecture that is described in the following chapter.
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Approach and Architecture

This chapter details the approach designed to address the proposed challenges, as well as
the software architecture defined for building the solution. First, an introduction explaining
the need for a customized approach is presented. Then, the customized approach is put
forward, with a thorough analysis of the steps and methodologies applied to each iteration
for information consolidation and extraction. Finally, in combination with the defined
approach, an architecture is also presented, first to contextualize the design and then a
more conceptual one using the C4 model [8] that facilitates understanding by the intended
audience for each level.

4.1 Approach

The designed approach needs to meet the requirements described in the last chapter (see
Section 3.1), defined to achieve four different goals regarding information extraction and
consolidation, notably, improve existing information; remove duplicates; add new informa-
tion; and remove wrong information. This fourfold process makes it necessary to design a
specific approach, considering that no “silver bullet” solutions or ready-to-use tools were
found in the literature.

Hence, the approach was designed to take advantage of several techniques that complement
each other. The exploration of these techniques and the understanding of how they interact
with each other was done in order to achieve the best possible results, given the fact that
it should be possible to validate the integrity of the data.

The data processing practices are based on what was explored in Chapter 2 and what is
considered state-of-the-art, namely, information retrieval, record linkage, and string simi-
larity measures.

Given the size of the data and the techniques used to compose the project, the approach
to the problem must be scalable to the point of avoiding that execution times or required
resources grow faster than the volume of records to be treated. In order to achieve sub-
linear complexities, the solution must consider an effective subdivision and partitioning of
the data, coupled with indexing strategies, derivation of that data and materialized views.

Figure 4.1 is an overview of the suggested approach. Therefore, this will serve as a reference
to explain the steps and techniques used in each.
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1st phase

Improved
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data
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(final)

Figure 4.1: Overview of the proposed approach.

In the first phase represented in Figure 4.1, the goal and main focus is to apply information
retrieval techniques to the different databases provided, in order to validate, integrate,
index and improve them in an external environment. To better explain the process, a
more detailed overview of the procedures will be presented in Subsection 4.1.1.

The second phase focuses on processing and enhancing the data, and for this purpose
clustering analysis techniques will be addressed, followed by string similarity measuring
techniques, based on Natural Language Processing (NLP). The procedures in question will
be explained in more detail in Subsection 4.1.2.

It is important to point out that the defined approach may change and is in continuous
improvement until the end of the project, and that it is natural that some steps are more
undefined, meaning that although there is an idea of the high-level path, it will still be
necessary to detail and optimize the steps according to the performance of the various
techniques that are being used.

4.1.1 Data Integration and Enhancement

This subsection discusses the first phase of the Figure 4.1 activities, which aims to inte-
grate the sources provided in an external environment, with the purpose of creating an
improved database, in order to make its processing as scalable as possible. To this end, all
sources must be validated, so that it is possible to relate the data to each other and effi-
ciently analyze the various types of cases that we will encounter and design the appropriate
strategies for each of them. This requires several steps, including data integrity validation,
data integration into a relational database, attribute mapping, partitioning, indexing, and
feature extraction. Figure 4.2 provides a detailed overview of this step.
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CTT INE POLARIS SURVEY

Integrated 

database

Information validation 

and mapping

Indexing Feature extraction

Improved

database

Figure 4.2: Detailed view of the the data integration and enhancement phase of the ap-
proach.

Firstly, it is necessary to validate the integrity of each of the data sources individually,
in order to correctly map all the information and analyze the relationship between the
different columns. To this end, efforts were made to understand the structure of these
data sources with the help of associated documentation, besides counting on support and
information provided by Altice as well. With the knowledge absorbed from these efforts,
data integrity validation is done so that the data can be loaded into a relational database
engine, in order to make the data manipulation efficient and scalable in the next steps.

After the validation phase, the correspondence between fields or sets of fields in the various
tables provided is mapped in order to understand how the various databases can be related
to each other. Therefore, the first integrated database contemplating all the supplied
data and respective relations is obtained.

Finally, it is necessary to take advantage of indexing and feature extraction. Indexing
is intended to improve the performance of the database when it comes to searching. Each
index allows the server to retrieve specific rows, where it is located. These can be created
using one, multiple columns or using partial data. Feature extraction processes allow
pre-computing values derived from the remaining values, in order to simplify or speed up
subsequent steps or even make it easier for humans to understand the data. After these
steps are achieved, we reach what is refered to as an improved database.

4.1.2 Clustering and String Similarity Measures

The second phase of activities aims primarily at analyzing the data in the new and improved
database, with a view on identifying data that can be improved or completed. Figure 4.3
presents an overview of the methodology.
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Figure 4.3: Detailed overview of the clustering and use of string similarity measures phase
of the approach.

The first step is the intersection analysis of the different databases based on the various
data in common, such as coordinates and/or zip codes. This analysis allows two types of
data groups to be identified: clusters of records that are close geographically and
groups of records that have no counterpart in the other databases, in order to gain
some sensitivity about what can be expected from the results of the next steps. It may also
allow groups of records that correspond to other scenarios that are not yet identified.

Given the large volume of records, in order to prevent the time complexity of the solution
from being exponential, this data must be partitioned and grouped by reference values,
in order to prevent the comparison of the data by brute force. Again, since Altice’s database
is not fully complete, there are cases where the data used as a reference for the partitioning
is not objective or not totally correct. These cases are separated from the rest and are left
for later analysis.

Based on these groups, string similarity measuring techniques are applied with the
goal of understanding, within each group, which pairs have higher degrees of similarity.
Several techniques are used for this, one of them being based on Levenshtein Distance [27],
explored in Chapter 2, this being one of the focuses in view of using similarity measurement
techniques. However, to robust the veracity of the results, other techniques, like Jaro-
Winkler, n-grams and cosine similarity, will be used as well.

The results obtained by the string similarity measuring techniques will allow the identi-
fication of new scenarios of interest and also new rules for the records and possible
different approaches for each of the requirements. In some of these cases user validation
may be required, but one of the main goals of this project is that this will always be done
on a very small number of records, in relation to the amount of data handled.

Since the topic is about residential addresses, some examples of objective and effective
partitioning are grouping the first 4 digits of the zip code or by the complete zip code (7
digits). The similarity measurement techniques are applied to local clusters in order to
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refine these clusters and consolidate the information for each address. In Subsection 4.1.3,
the strategy of how to incorporate these string similarity measurement techniques, as well
as the selection criteria for these are presented.

4.1.3 Consolidation Strategy

In order to put the previous sections into practical terms, the strategy applied to the data
processing will be explained here in more detail.

Since the data originates from completely different environments than the one being de-
veloped, the process starts by checking the integrity of the data. This validation is done
so that all data can be successfully integrated, since sometimes, some records conflict with
the used relational database for containing characters that are not allowed. Some examples
of these conflicts are broken lines (containing new line characters, splitting the record into
two or more lines) due to exportation from the original source, unclosed quotation marks,
which in our environment is interpreted as an unterminated string, fields that contain the
delimiter inserted in the column text, which the system understands as an extra column.

Once the validation phase is over, the data is loaded into the system, where all the sources
go through a normalization process on the fields that are common. Normalization must
be done since we are dealing with distinct sources, which means that the rules and data
layouts will also be different amid themselves. Among the common fields, one of the main
fields for comparison is the complete street name, which is usually divided by street type,
street title and street name.

The street type, as its name suggests, represents the type of the street (e.g. Avenida, which
translates to Avenue in English) and is placed before the street’s name. The street title,
which is a supplementary element to the address when it is named after someone (e.g. Rua
Doutor Salgueiro Maia), is placed between the type and the street name. Since each
data source has different ways of its representing information, now and again the street
type and title contains abbreviations (e.g. AV means Avenida or DR means Doutor). Natu-
rally, different representations for the same thing will affect the accuracy of the similarity
measures, hence the need to normalize the sources. For a better understanding of how
many abbreviations exist in the different sources, refer to Appendix A.

3030-076

3030-023
3030-172

3030-295

3030-502

4730-201

4730-203
4730-202

4730-190

4730-032

3030-076
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2025-942

2025-624

2025-602

4730-032

2025-194
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2025-942

2025-624

2025-602

Figure 4.4: Example of a grouping by zip code.

Now that the data is more uniform, it is grouped by its respective zip codes, as shown in
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Figure 4.4, to maintain acceptable scalability when the similarity measurement is being
performed. In order to include only the relevant information from each source and make
the comparison process modular, the identifier, address and door number of each source
are included.

Next, the data grouped in the previous step is compared using similarity measures. To
do this, the addresses are compared using textual similarity and only those with a high
degree of similarity are accepted, e.g. those that are certain to be exactly the same. At
the same time, the door numbers are compared using equality, i.e. they are either the
same or they are not. In this process more than one correct match may be found for the
same record, and this happens for two reasons: when a record exists in multiple sources
(e.g. one-to-one) or when we have repeated data in one or more auxiliary sources (e.g.
one-to-many). These cases are handled in post-processing, in order to filter and select one
of the matches, if it is possible to determine the correct one.

In post-processing a priority between sources is set, determined based on the degree of
confidence one has in the information from each source. This step aims to break the tie
between cases that contain more than one equivalence defined by the similarity measures.
To better describe the priority, it goes something like this:

• If we find one match in the first source and five in the subsequent ones, since the
first match is unique and is our priority, that match is chosen as correct.

• In another case, if the first source does not have any matches, the priority shifts to
the second source, and if there is a single match in it, it is considered as correct.

• In the last case, if two matches are found in the first source, those two and the rest
of the matches found in the other sources are separated, for the reason that if the
source we are most confident of has repetitions, we cannot be sure which entry is
correct, even in the remaining ones.

Once the priority is defined, all the data is grouped and sorted by its identifier and by the
source in which the matches were found. Finally, an iteration is performed on the sorted
data, and based on the defined priority, the records with unique matches are selected and
those that do not respect the priority rules are separated.

4.2 Architecture

In this section, the description and proposition of the project’s architecture will be de-
tailed, based on what is wanted in terms of operational services by Altice. Furthermore,
since the main goal of this project is to adapt what has been developed for Altice, the
proposal for the architecture will be made with the intention of facilitating integration into
Altice’s ecosystem for its own benefit. The architecture to be introduced results from the
requirements described in Chapter 3, mainly the last requirement (R5), which in short is
the transformation of the first four requirements (R1, R2, R3 and R4) into an operable
service, proposed by Altice.

Before moving on to the main subject, which is to describe and document the software
architecture, a simplified concept of the system will first be presented. Then, to hierar-
chically document the architecture and explain how the system will be modeled, the C4
model will be used.
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4.2.1 Simplified Concept

Since Altice’s main objective is to produce a data consolidation system to aggregate in-
formation to its main database, the diagram represented in Figure 4.5 demonstrates the
basic concept of what this system will be.

Interface/Client

REST API

HTTP Request 

(GET)

HTTP Response

(JSON)

Server

Figure 4.5: Simplified architecture concept of the service to be developed.

On one end we have the interface, which will make the requests and handle the inputs for
the requests to be made. On the other end, we have the server, which will contain all the
data and functionalities designed for the feasibility of what is proposed in the requirements.
In the middle, we have an Application Programming Interface (API), which will serve
as the communication link between the interface and the server. APIs offer security by
design because their position as an intermediary eases the abstraction of functionality
between two systems. The API endpoints also decouples the consuming application from
the infrastructure that provides the service.

To briefly explain how communication works between the three parts, the interface initiates
an API call to make requests to the server. These requests are processed from an interface
to the server via the API’s Uniform Resource Identifier (URI) and includes a request verb,
headers, and sometimes, a request body. After receiving a valid request, the API makes a
call to the server containing the data, which in turn sends a response to the API with the
requested information. The API transfers and presents the data to the initial requesting
interface.

4.2.2 C4 Model Architecture

Context

Similar to what is represented in Figure 4.5, we have Figure 4.6, which corresponds to
the first level of the C4 model. This diagram provides a good starting point for someone
unfamiliar with the system, showing how the system interacts without details about how
it works. It also shows how the software system in scope fits into the environment and its
relationship with users and other systems.

User
[Person]

A user looking for information about an
address or a set of them.

Address Search System
[Software System]

Allows the user to query and get answers
about addresses based on the desired

request.

Uses

Address Backend
[Software System]



Stores all core information about addresses.

Gets address 

information from


Figure 4.6: System Context diagram.
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This context diagram helps us understand that two systems are needed to be able to fulfill
the purpose of address consolidation. An address search system that displays a set of
addresses based on the request made by the user. Secondly, a storage system is needed to
manage the data and send it to the address lookup system for processing.

Container

The container diagram represents the individual service or application, and breaks the
system box into “containers” that represent the execution code or store data, such as
applications, databases and file systems. To fully cope with the challenges that arise from
data consolidation, different technologies are required. These technologies are depicted at
a high-level in Figure 4.7.

Single Page App
[Container: OpenAPI]

Allows the input of information to
accommodate the search and returns the

content.

API Service
[Container: Python]

Provides address searching functionality via a
JSON/HTTPS API.

Database
[Container: PostgreSQL]

Stores all of the sources containing
information about addresses.

Reads from
[SQL]

User
[Person]

A user looking for information about an
address or a set of them.

Uses
[HTTPS]

Makes API calls to
[JSON/HTTPS]

Address Searching System
[Software System]

Figure 4.7: Container diagram.

It is represented in Figure 4.7 that the address lookup system is composed of three contain-
ers: a single page application, an API Service, and a database. The single page application
uses JSON/HTTPS API, which is powered by an API Service application using Python.
The API Service reads information from a Database, using SQL queries. The Database
uses a Relational Database Management System (RDBMS) named PostgreSQL to store
and read the data.

Components

The component diagram further shows how individual containers are made up of a number
of “components”, what each of those components are, their responsibilities and the technol-
ogy details. In-depth details about the API Service container are provided in Figure 4.8.
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Single Page App
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Figure 4.8: Components diagram.

It is represented in Figure 4.8 that the API Service is composed by three components: a
Search Controller, a Database Component and Similarity Measures. The Search Controller
uses Python to translate the requests made by the user and prepare them for communica-
tion with the database. The Database Component uses a Python module called Psycopg2,
which allows communication of requests in SQL format between Python and PostgreSQL.
Finally, the Similarity Measures component also uses Python modules, namely Leven-
shtein and Jaro-Winkler. The similarity measures included in this component compare the
addresses obtained from the database and return an answer.

4.3 Summary

This chapter detailed the designed approach, as well as the software architecture defined
for building the solution. The next chapter will delve into the development process de-
tails, which will implement the different systems needed to enable communication and the
execution of the solution.
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Implementation

In this chapter, the solution development will be presented. The implementation of the
solution is based on the architecture defined in Section 4.2, as well as the technologies
chosen for this purpose. First, the implementation language and tools are presented. Next,
the functionalities, along with an explanation of the procedures for each requirement, are
detailed.

5.1 Implementation Language and Tools

Bearing in mind that one of the constraints of the project (and the most impacting on the
decision about which language or tools to use) is to use only open source technologies, The
Python language was selected, considering that it is an object-oriented language with a
wide range of libraries, besides being one of the most popular programming languages in
the world. Along with the mentioned advantages, the ease of learning and readability is
also a determining factor in the event that someone else has the need to modify the code
of the developed solution.

5.1.1 FuzzyWuzzy

FuzzyWuzzy is a free and open source Python library that has been developed by Seat-
Geek [2], which is used for the purpose of string matching, given a pattern. It uses Leven-
shtein Distance to calculate the differences between sequences. As discussed in their blog,
the original use case was based on finding out whether two event ticket lists refer to the
same event in real life. Although our problem is not related to tickets, the use case applies
to our problem, since the objective is to verify what is a correct match and whether it
refers to the same address. For these reasons, it was chosen as one of the implementations
to support the comparison of the addresses.

Within the FuzzyWuzzy library, some variants of the Levenshtein Distance are provided.
Firstly, we have Simple Ratio, which corresponds to the base implementation of the Lev-
enshtein Distance. Then, Partial Ratio is also a variant which offers higher scores over
Simple Ratio, taking into account that the size of each of the strings is not relevant, as
long as there are at least substrings that are the same. Next is Token Sort Ratio, which
gives higher scores if the substrings are contained within the strings, but have their order
changed. Finally, we have the Token Set Ratio, which is similar to Token Sort Ratio,
but a bit more flexible. In this last variant the two strings are tokenized, but instead of
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sorting and comparing immediately, the tokens are divided into two sets: intersection and
remainder. After that, the divided sets are used to build a comparison string. As in our
case the strings usually always have a defined order and similar lengths, the Token Set will
be used, given its flexibility.

5.1.2 Jaro-Winkler

Like the FuzzyWuzzy library, it is a free and open source Python library that was developed
by Richard Milne [29]. It is also intended to be used for string matching purposes, given
a pattern. The difference is that this technique will be used as an extra validation step
in addition to Levenshtein Distance, since its operations for comparison are different from
the latter. The choice was made having in mind a greater assurance about the veracity of
the results.

5.1.3 N -Grams and Cosine

In addition to the Jaro-Winkler Distance helping to confirm the results of the Levenshtein
Distance, the n-Grams and Cosine techniques are also used, with the goal of making
possible the detection of typographical errors. While n-Grams separates words into tokens,
and then separate each of these tokens into fixed sequences of n characters (in our case
being being tri-grams). In turn, these sequences are transformed into vectors, so that it is
possible to calculate the distance between them using Cosine similarity.

Since the validation is already done by Levenshtein and Jaro-Winkler Distance, the prob-
ability of it being a matching error is very low. Thus, the goal is to check whether some
of the sequences have a lower degree of similarity, which raises the hypothesis that this
sequence is connoted as a typo.

5.2 Functionalities

This section aims to lay out the designed functionalities, explaining in detail the steps that
are necessary to achieve what is intended in each of the requirements. Even though all
the requirements have different goals, they all have common parts, namely the way data
is clustered and compared. To ease and standardize some of the steps, the creation of
address classes was implemented, where all the common fields to the sources are included,
some of them being street name, number, floor and side of the door, zip code, longitude
and latitude, etc.

5.2.1 Functionalities for R1

Since there was a need to have a starting point, this was the first requirement to be
addressed, given that compared to the other requirements, this was the simplest to address
in terms of procedures. The decision to address this requirement first was to help gain some
sensitivity about the procedures involved as well.
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Figure 5.1: R1 flow diagram.

Using the flowchart shown in Figure 5.1, the process for this requirement starts with group-
ing the source data by their respective zip codes. Then, the data is compared using the
similarity techniques implemented. The data is always cross-referenced between POLARIS
and the other sources, always toward the consolidation of information for POLARIS. In
turn, the similarity scores are evaluated between 0 and 100, with 100 being the highest
score possible and the one that presents us with the greatest certainty of the equivalences.
In case we find equivalences with a score higher than 90, which can lead to a false posi-
tive, further validation is done with the source CTT, which has a common locality code
with POLARIS, serving as a tiebreaker. If the locality code matches between POLARIS
and CTT, this match is accepted as correct and added to the set that was validated in
the previous steps. Finally, after all equivalencies are properly validated, the geographic
coordinate information is replaced or added to POLARIS, transforming the data into an
output format defined by Altice. For a better understanding of the output formats, refer
to Appendix A.

5.2.2 Functionalities for R2

After implementing the solution for the first requirement and proving that the used tech-
niques worked, we moved on to the second requirement. This requirement was tackled
second because it added another layer of complexity, taking into account that it dealt with
records that were not fully validated, i.e. had missing information, which in turn caused
some steps to be added to what was developed for the first requirement. Unlike the first
requirement, the procedures in this requirement assist in the certification of addresses, i.e.
POLARIS tickets. The SURVEY source is not used, since it is a source with few fields
compared to POLARIS, making it impractical to use for information consolidation pur-
poses. In exchange, the main POLARIS source is used as a consultation source, given the
affinity between the former and POLARIS tickets.
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Figure 5.2: R2 flow diagram.

Using the flowchart shown in Figure 5.2, the process for this requirement begins, similarly
to the previous one, with grouping the source data by their respective zip codes, if the
information in question has the full zip code. Otherwise, the data is grouped by partial
(first four digits) zip code, so as not to mix relatively good data with data that has poor
quality. In partial grouping, the data is compared with the goal of at least finding the last
three digits of the zip code first. Then, all data is compared using the similarity techniques,
given a threshold. Same as before, in case we find equivalences with a score above 90, a
posterior validation is made with the CTT source. The process differs from this step in
relation to its predecessor, since if we find a match with POLARIS certified, the ticket in
question can be automatically certified as long as the certainty about the match is very
high. If a match is found with the CTT and INE, to leave no margin for error, the tickets
are filled in with the information available from these two sources and transformed into
the appropriate output format.
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5.2.3 Functionalities for R3

In this requirement it is intended to enrich it with new addresses that may exist in the
auxiliary information sources, namely CTT and INE. As with the second requirement, the
SURVEY source is not used, since it is a source with few fields compared to POLARIS,
making it impractical to use for information consolidation purposes.
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Figure 5.3: R3 flow diagram.

Using the flowchart shown in Figure 5.3, the process starts with grouping all the source data
by their respective zip codes. Then, the data is compared using the similarity techniques
and the data that is deemed to be equivalent is separated from the data that has no matches
in the following steps. The “non-matches” are again grouped by zip code and compared
towards CTT and INE, in order to prove that they really do not have close matches, which
we refer to as dissimilarity. For the data to be treated as different, the similarity score
must be very low. After this stage, an extra step is taken in order to check if some of the
addresses given as dissimilar exist only in CTT and INE, comparing the former and the
latter, respectively. If so, for the addresses identified as possible new ones, new tickets are
created and then validated by Altice’s systems, provided that they respect the POLARIS
entry rules and have sufficient information to justify their entry in Altice’s source.
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5.2.4 Functionalities for R4

This requirement is intended to handle synonymous streets, that is, addresses that have
distinct names for what should be considered the same. Considering that similarity tech-
niques cannot directly validate synonymous words, we resorted to the CTT database which
contains an external table with some of the synonymous addresses. As such, the compari-
son is made only between POLARIS and CTT.
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Figure 5.4: R4 flow diagram.

Using the flowchart shown in Figure 5.4, the process for this requirement is very similar to
the first requirement, taking into account that the grouping and comparison is done with
information from POLARIS and CTT. The synonymous CTT addresses point to the one
that is considered official in their database, and as soon as there is a direct match between
the official CTT address and the POLARIS address, the associated CTT synonymous
addresses are consolidated into POLARIS. The biggest difference from the first requirement
is the final step, which consists in calculating the distance as a way of validating whether
the addresses being compared are close to each other. Like its predecessors, the list of
records obtained is transformed into the output format proposed by Altice, which aims
to input the streets that are considered synonymous, identifying the official record that
should prevail.

5.2.5 API Endpoints

An endpoint is a remote computing device that communicates back and forth with a
network to which it is connected, in other words, an entry point typically available in
REST APIs. Since for each requirement a specific operation is desired, four endpoints
were defined in order to realize the four operational requirements (R1, R2, R3 and R4).
Furthermore, since this data will be treated in an environment external to Altice’s main
systems, the defined endpoints only do GET operations, since the data will only be for
consultation and later consumed by Altice’s internal systems. The list of endpoints is as
follows:

• GET /rf1/{geo_filter} - This endpoint is used to look for missing geographic
coordinates or change those that are dubious, within a chosen set.

• GET /rf2/{geo_filter} - This endpoint is used to certify, or help in the evolution
of certification of tickets under validation, within a chosen set.

• GET /rf3/{geo_filter} - This endpoint is used to search for addresses present in
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external sources that do not exist in POLARIS, in order to consolidate new informa-
tion, within a chosen set.

• GET /rf4/{geo_filter} - This endpoint is used to identify addresses that are
synonymous, i.e., addresses with different nomenclatures but corresponding to the
same location, within a chosen set.

In addition to the endpoints, it was also necessary to use geographic filters (geo_filter
fields in the endpoints) as input data in order to replicate the clustering explained in the
previous chapters, defined based on the fields present in POLARIS, in order to be able
to focus only on specific subsets, chosen at the user’s discretion. The list of geographics
filters is as follows:

1. All zip codes - Information search considering the entire POLARIS universe, clus-
tered by all zip codes.

2. Zip code - Information search considering a specific zip code (e.g., 3030-076).

3. Partial zip code (CP4) - Information search considering only the first four digits
of the zip code (e.g., 3030).

4. Locality code - Set of codes present in POLARIS and CTT used to divide the
search by a specific District, Municipality or Town, in addition to the street Locality
code (e.g., DDMMTTLLLLL).

5. Primary Identifier - POLARIS unique identifier field used to identify a specific
record.

6. Georeferencing source - Set of codes that indicates the system that provides the
geographic coordinates of the records present in POLARIS.

7. Timestamp - POLARIS field that indicates the date of record entry/modification on
a given date, sorted by year, month, day, hours, minutes and seconds (e.g., YYYYM-
MDDHHMMSS).

5.3 Summary

This chapter detailed the implementation language and tools used, along with the func-
tionalities of the solution, as well as a step-by-step walkthrough of each requirement and
the API endpoints. The next chapter will elaborate on the details of the validation process
of the techniques used, as well as the results obtained, which will prove the feasibility of
the implemented solution.
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Validation and Results

This chapter details the testing environment, scenarios and results, in order to detail the
usefulness of the chosen tools in the context of the project. It will start by showing
the testing environment and explain the the machine’s specifications. Next, the different
testing scenarios chosen, defining each one and, in the end, the result of each test scenario
and achieved gains.

6.1 Testing Environment

In order to validate the developed solution, a test environment needed to be developed.
For safety reasons, the machine was set up on the DEI’s premises with the following
specifications:

• OS - Ubuntu 20.04.5 LTS (Focal Fossa)

• Disk - 800 GB

• RAM - 32 GB

• CPU - Intel® Xeon® Processor E5-2650 v4 @ 2.20GHz - 16 vCPUs

From the beginning, for the executability of what is proposed, Altice periodically pro-
vides a collection of files with the information regarding the data sources in CSV format.
These repositories include both Altice’s main database, named POLARIS and the auxil-
iary sources CTT, INE and SURVEY. As all these sources are constantly evolving, it is
of interest to maintain regular updates on the data in order to include new information,
either for treatment or for reference. In addition, these refreshes also deal with the removal
of discontinued data. Table 6.1 presents the size in numbers for each data source used in
our experiments.

Table 6.1: Summary of the sources provided.

Data Source Total # Buildings # Housing Units Observations
POLARIS (certified) 13 396 671 5 182 254 8 214 417 Only certified addresses
POLARIS (tickets) 13 587 648 1 045 387 12 542 261 Addresses in validation process (not certified)

SURVEY 3 241 799 3 241 799 - Only contains building addresses
CTT 6 905 177 4 509 294 6 905 177 Buildings identified from the housing units
INE 5 910 282 3 566 268 5 910 282 Buildings identified from the housing units
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In Table 6.1 the data is separated by their type, in this case housing units and buildings.
In POLARIS a distinction is made between buildings and dwellings, unlike CTT and INE,
which only have information on housing units, and buildings are obtained from these units.
This distinction is necessary to be able to separate the data according to the context to
which the data is being applied. A perfect example of why this separation is necessary
is, for example, when we are looking for geographic coordinates, it doesn’t make much
sense to include this information in the housing units, since these units are contained in
the building, making it useless to have this information repeated by the different housing
units. Another reason is that the SURVEY data source only contains data about buildings,
which also makes it necessary to separate the data types.

6.2 Testing Scenarios

The test scenarios will revolve around the precision of the similarity measures in getting
correct matches for each requirement. Then, to evaluate the performance of the similarity
measures in obtaining correct matches on the different requirements, different thresholds on
the similarity measures will be tried in order to evaluate which tuning is best to avoid false
positives and aggregate as many true positives as possible. Furthermore, to avoid matching
errors (streets that have the same name but are in different locations, for example) and to
prevent unnecessary comparisons, all data is always grouped by their full zip code (7 digits),
but within their partial zip code (4 digits). In order to not consider the entire universe of
data, but still have an acceptable amount of data, for each requirement a subset is chosen
in a partial zip code, which varies as needed for the requirement in question. This decision
is also due to the evaluation of the amount of true positives vsfalse positives obtained in
the similarity measures being made by looking directly at the data in order to validate the
veracity of the results obtained. For example, the first requirement is to include geographic
coordinates for records in POLARIS that do not have them, the zip code was chosen based
on the largest number of records without coordinates.

To recap in part how the similarity measures are implemented, the thresholds of all sim-
ilarity measures vary on a scale from 0 to 100, which is interpreted as the percentage of
similarity between matches in our context. So, in each zip code (7 digits) the comparisons
are processed using the Levenshtein Distance, and only those with a 100% score are ac-
cepted, since below this score there is the possibility of gathering some false positives. The
addresses with a score below 100 go through a revalidation where they are compared using
Jaro-Winkler and n-Grams. The rationale for this revalidation is to ensure that we are
not losing good matches due to errors (spelling, abbreviations, etc.).

Similarly to Levenshtein Distance, Jaro-Winkler also tolerates scores below 100, which in
turn are compared by n-Grams, with the help of Cosine. The idea is to use the Jaro-
Winkler with thresholds flexible enough to filter out some of the false positives, without
eliminating the true positives that we are less certain about. To remove the doubts about
which are the real true positives, n-Grams is applied, aided by Cosine, in order to refine
the dubious results obtained from Jaro-Winkler.

When using n-Grams, an initial comparison is made with the street types, which must be
equal, otherwise the matches are discarded. This decision was made taking into account
that there may be streets with the same name, but different street types (Rua de Santo
Amaro vsTravessa de Santo Amaro, e.g.). After this check, the other strings are divided
into tokens, then into bigrams in n-Grams, which in turn are transformed into vectors to
allow these to be measured with Cosine. If more than half of these tokens have a score
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below a defined threshold, the match is rejected. Generally, only strings with less than
one or two tokens different from their matches are accepted, at most, which in our scope
is seen as a spelling error. In order to test the behavior of each of the similarity measures,
the thresholds considered for each of the measures is presented in Table 10.

Table 6.2: Thresholds considered for testing similarity measures.

Levenshtein Jaro-Winkler N -Grams/Cosine
Scenario #1 70 90 75
Scenario #2 80 90 75
Scenario #3 90 90 75
Scenario #4 80 85 75
Scenario #5 80 95 75
Scenario #6 80 90 50
Scenario #7 80 90 90

In the set of experiments, we tried to evaluate the performance of the similarity metrics
that were explored throughout this thesis by varying the similarity thresholds for each
measure individually, Being an ongoing project, tests of this kind had been done before,
especially at the beginning, since previously only the Levenshtein Distance was used for
measuring similarity, only the data with a score of 100 were considered correct, since they
are the ones that are considered equal by the Levenshtein Distance. As such, median
thresholds were applied to all similarity measures in order to maintain flexibility between
the amount of false positives and true positives obtained.

6.3 Experimental Results

This section details the experimental methodology and the results obtained in each re-
quirement. To avoid repeating too much information to be compared, we consider only
buildings for comparison in these tests, since the street name is what is being considered
for comparison, and also since the goal of the tests is to prove the executability of the ap-
proach defined throughout the thesis. Each subsection corresponds to the results obtained
for each of the requirements, sorted in the same order as laid out in Chapter 3.

6.3.1 Results for R1

To test the defined approach with the similarity measures chosen for this requirement,
16067 records were considered. The partial zip code chosen was 8200, since it had the
most geographic coordinates within all partial zip code subsets. The lack of geographic
coordinates is a problem that Altice has tried to solve before, but without much success.
Table 6.3 shows the results in terms of precision for this experiment.
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Table 6.3: Precision for each similarity measure used in R1’s first step.

Levenshtein Jaro-Winkler N -Grams/Cosine Overall
Scenario #1 30.84 3.33 52.17 96.17
Scenario #2 35.89 3.47 80.00 98.92
Scenario #3 58.57 4.11 66.67 98.90
Scenario #4 35.89 2.70 80.00 98.92
Scenario #5 35.89 8.80 78.57 98.92
Scenario #6 35.89 3.47 75.00 98.57
Scenario #7 35.89 3.47 62.50 98.90

Addresses that get a 100% similarity score using Levenshtein Distance are always consid-
ered to be correct (true positives), and those below that threshold (false positives) are
processed by the remaining algorithms. That is, the number of false positives that are
obtained at Levenshtein Distance are also passed through Jaro-Winkler and n-Grams,
affecting their precision percentage, due to the thresholds considered for these when Lev-
enshtein’s threshold is relatively low. The number of false positives decreases as it goes
through the algorithms and as the thresholds considered vary. The percentages are so
low because it is relative to the total matches found by Levenshtein Distance against the
matches that were actually included with Jaro-Winkler and n-Grams filtering, which makes
these results a bit misleading at first glance. The result that really matters in percentage
terms is the one represented in the last column of Table 6.3, which corresponds to the
overall precision when using the similarity measures together.

6.3.2 Results for R2

To test the defined approach with the similarity measures chosen for this requirement, 2540
records were considered. The partial zip code chosen was 3030, because it is a subset that
corresponds to the city of Coimbra, and it was thought it would be interesting to analyze
a known data set for more dubious data like the POLARIS tickets. Table 6.4 shows the
results in terms of precision for this experiment.

Table 6.4: Precision for each similarity measure used in R2.

Levenshtein Jaro-Winkler N -Grams/Cosine Overall
Scenario #1 83.30 8.33 14.44 94.33
Scenario #2 85.92 8.05 13.79 94.46
Scenario #3 89.17 6.08 10.71 94.45
Scenario #4 85.92 7.04 13.79 94.46
Scenario #5 85.92 8.78 12.79 94.46
Scenario #6 85.92 8.05 9.79 90.85
Scenario #7 85.92 8.05 7.41 94.44

Unlike the results shown for R1, in Table 6.4 we can already see some consistency in terms
of percentages. This is mostly due to the whole universe within the 8200 zip code being
considered, and not just those without geographic coordinates. Since most of the true
positives were found mostly by the Levenshtein Distance, the other similarity measures
just filter out the false positives. These are mostly cases that have the same street name,
but different street types, which in turn get high scores because most of the address is
the same. As mentioned in Section 6.2, these cases are considered as false positives by
the measures. Given that we are dealing with tickets, and many of these tickets being
aggregated into POLARIS are from various external sources other than the ones being used
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in these experiments, the consistency of this data is somewhat low. Some of these problems
are in the way the data is laid out, sometimes repeating information when normalization
of this data is done by POLARIS processes. Nevertheless, regardless of the intermediate
results obtained in the similarity measures, the overall precision is still above 90%, which
is a good indicator that the approach really works.

6.3.3 Results for R3

To test the defined approach with the similarity measures chosen for this requirement, 2905
records were considered. The partial zip code chosen was 5090, because it had the most
geographic coordinates within all partial zip code subsets. Table 6.5 shows the results in
terms of precision for this experiment.

Table 6.5: Precision for each similarity measure used in R3.

Levenshtein Jaro-Winkler N -Grams/Cosine Overall
Scenario #1 85.68 19.78 38.93 96.44
Scenario #2 88.53 20.70 38.58 96.52
Scenario #3 92.06 20.75 35.54 96.51
Scenario #4 88.53 18.03 38.58 96.52
Scenario #5 88.53 16.23 25.71 96.48
Scenario #6 88.53 20.70 25.73 93.48
Scenario #7 88.50 20.70 31.50 96.50

Table 6.6: Precision for each similarity measure used in R1’s last step.

Levenshtein Jaro-Winkler N -Grams/Cosine Overall
Scenario #1 78.82 21.95 57.14 96.36
Scenario #2 83.77 25.71 72.73 98.15
Scenario #3 90.45 33.33 72.73 96.95
Scenario #4 83.77 25.00 72.73 98.15
Scenario #5 83.77 23.81 57.14 98.10
Scenario #6 83.77 25.71 37.50 91.43
Scenario #7 83.59 25.00 66.67 96.32

To complete the results presented, the precision obtained by the similarity measures to
search for new addresses, which corresponds to the final step of the approach defined for
R3, is presented in Table 6.6. In this step only the data from CTT and INE are considered,
since the goal is to consolidate the addresses that are present in both sources for POLARIS.

6.3.4 Results for R4

To test the defined approach with the similarity measures chosen for this requirement, 2905
records were considered. It was thought that it would be interesting to see the behavior of
the measures with varying the sources considered for the same cases, although the approach
is equal to R3 to some extent, so the partial zip code chosen was 5090, as was R3. Table 6.7
shows the results in terms of precision for this experiment.
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Table 6.7: Precision for each similarity measure used in R4.

Levenshtein Jaro-Winkler N -Grams/Cosine Overall
Scenario #1 78.22 38.95 72.63 95.45
Scenario #2 83.96 42.29 83.13 96.97
Scenario #3 92.65 56.41 82.89 97.07
Scenario #4 83.96 39.11 78.72 96.23
Scenario #5 83.96 68.67 79.41 96.90
Scenario #6 83.96 42.29 82.22 96.73
Scenario #7 83.96 42.29 81.58 96.94

Similar to R3, here only the information between POLARIS and CTT is crossed, and the
obtained results for this experiment prove the good quality of the data present in CTT, as
the precision was higher for all similarity measures than in any of the other experiments
done. This is due to the fact that the CTT source has an alternative table that contains
synonym information for each of its streets, which the other sources do not have. As such,
the goal is to inherit the synonyms from the corresponding CTT streets that contain this
information.

6.4 Conclusion

The obtained results show that, when properly tuned, the different similarity metrics can
achieve very similar results in terms of matching quality, when used together. Although we
have relied on Python implementations for the different similarity metrics, which indeed
could be further optimized, the values that are reported already provide a good indication
of the executability of these approaches for consolidation purposes by Altice.

While no experiments were formulated with thresholds significantly lower than those pre-
sented in the tests, these would bring disastrous results at the level of number of wrong
matches. This is because a lower threshold implies that the similarity measures perform
more operations to transform one address into another.

Based on the analysis done for the tests, Scenario #2 with thresholds of 80 for the Leven-
shtein Distance, 90 for the Jaro-Winkler Distance and 75 for the n-Grams/Cosine, are the
most appropriate for the generality of cases. This is due to the fact that they present a
higher overall than the other results obtained in this study. Also, because of the way the
similarity measures are aligned, another reason why thresholds of Scenario #2 are chosen
is because of the need to make the Levenshtein Distance more flexible, so as not to reject
matches that are correct but are discarded because they have different arrangements or
even contain errors. The Jaro-Winkler running with a higher threshold than Levenshtein,
the input matches become more limited, giving more confidence, being finally validated
by n-Grams and Cosine, to ensure that it is the same address, through the separation and
comparison of the words contained in the addresses in tokens. For a better understanding
of the percentages shown in each of the results presented above refer to Appendix C, which
presents the same tables, but with concrete numbers, where the separation between true
positives vsfalse positives is also made for each similarity measure.
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Conclusion and Future Work

This chapter presents the conclusions regarding the results achieved with the study fo-
cused on the consolidation of address information and accommodating the functionalities
developed for this purpose in an operable software that allows Altice’s autonomous use.
To achieve Altice’s proposed objectives, in-depth research on the topic and work related
to information consolidation and extraction was required in order to build a customized
approach to address the problem at hand, since there was no specific approach to solve it.

To get a better understanding of the project objectives and build the customized approach,
the requirements and constraints were defined together with Altice, in order to understand
the steps and decisions to be taken towards achieving the project’s goals. With the require-
ments and constraints defined, there was a further need to study the data to understand
how they are arranged, how they intersect, and how to group the data. As the customized
approach was being designed, the researched similarity measures that best fit the problem
were applied, which match an input string representing an address with the targeted string
of the same type in the database. Moreover, steps such as normalizing the data have been
taken in order to standardize the information across all sources and decrease the possibility
of missing addresses with good information when using the similarity measures.

After all functionalities were implemented, based on the approach, a proposal was designed
for the creation of the service with those functionalities. Following software engineering
standards, an architecture for the system was defined in order to detail how the system
will be designed, as well as to seek Altice’s approval more easily. This architecture involves
the creation of an API that contains the endpoints for each of the requests intended by
the requirements, which will serve to communicate the responses to the requests executed
by a user without having to deal with the server directly.

Finally, in order to validate the feasibility of the designed approaches, test scenarios were
prepared to evaluate which thresholds to use for each of the similarity measures, in order
to have some flexibility about possible correct addresses, but at the same time have enough
confidence in the matches produced. All requirements were successfully addressed and it
was possible to get a good response from each one of them. A good metric for this success,
is that at this moment Altice has already managed to consolidate a considerable portion
of the data found through the approaches produced and demonstrated in this document.
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7.1 Future Work

The work carried out in this dissertation presented promising results, and showed that it is
possible to continue this work to integrate natural language processing techniques to solve
problems related to address consolidation. As future work, the system has a lot of maturing
to do in terms of ways to deal with differences in the layout of the addresses between sources,
which brings us back to the normalization problems. The data normalization problems
have various levels of difficulty, such as the inclusion of accentuation, Roman numerals,
numbers expressed in digits or in full, etc. Some of these problems mentioned are solved
by removing all special characters (including accentuation) directly in all sources. Other
problems are solved with string tokenization, which allows individual analysis of each word
included in the address, and normalization is done using fixed lists of abbreviations and
common Portuguese connectors. Another challenge is related to spelling error detection,
that although basic spelling error detection is already in place, there is still room for
improvement.

The direction of future work is in this sense, where machine learning models could be used,
in order to understand where the errors in the trained models are occurring and to study
how these challenges can be tackled.
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Appendix A

The following appendices correspond to the documents provided by Altice for the treatment
of abbreviations related to street types and titles, as well as the file containing the output
format for each of the proposed requirements.
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Abrev. Indicativo Abrev. Indicativo
ACSS Acesso IMP Impasse
ADRO Adro IC Itinerário Complementar
AL Alameda IP Itinerário Principal
ALDT Aldeamento JRD Jardim
ARRM Arruamento LAD Ladeira
ATLH Atalho LG Largo
AE Auto-estrada LEV Levada
AV Avenida LOTEAM Loteamento
AZ Azinhaga MTE Monte
BR Bairro PASS Passeio
BC Beco PQ Parque
CAIS Cais PTO Pátio
CC Calçada PTE Ponte
CCNH Calçadinha PC Praça
CAM Caminho PCT Praceta
CM Caminho Municipal PROLNG Prolongamento
CV Caminho Vicinal QLHA Quelha
CPO Campo QTA Quinta
CAN Canada RAM Ramal
CSL Casal RAMP Rampa
CTR Centro ROT Rotunda
CID Cidade ROSS Rossio
CRC Circular R Rua
CRCV Circunvalação RLA Ruela
CRZT Cruzamento SIT Sítio
EMPR Empreendimento TAP Tapada
ENC Encosta TERR Terreiro
ENT Entrada TRANSV Transversal
ENTRC Entroncamento TV Travessa
ESC Escadas URB Urbanização
ESCNH Escadinhas VAR Variante
ESTR Estrada VR Vereda
EM Estrada Municipal VIA Via
EN Estrada Nacional VDTO Viaduto
ER Estrada Regional VLA Viela
FTE Fonte VL Vila
GAV Gaveto ZN Zona
HRD Herdade
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Abrev. Título Abrev. Título
AB Abade GD Guarda
ACT Actor/Actriz GDJ Guarda-Jóias
ALC Alcaide GDM Guarda-Mor
ALF Alferes INF Infante
ALM Almirante INF D Infante Dom/Infanta Dona
ARC Arcebispo INT Intendente
ARQ Arquitecto/Arquitecta JZ Juíz
ASP Aspirante J CNS Juíz Conselheiro
AVD Aviador MTO Maestro
BR Barão MAJ Major
BTA D Beata Dona MCH Marechal
BTO Beato MAQ Marquês/Marquesa
BPO Bispo MESTR Mestre
BPO D Bispo Dom MINIS Ministro
BB Bombeiro MONS Monsenhor
BRG Brigadeiro OPR Operário
CB Cabo PE Padre
CAP Capitão PATR Patrão
C MOR Capitão-Mor PILOT Piloto
C TEN Capitão-Tenente PINT Pintor/Pintora
CAR Cardeal POETA Poeta/Poetisa
CAR D Cardeal Dom PR Presidente
COM Comandante PCB Primeiro Cabo
CMD Comendador PTEN Primeiro Tenente
CMR Comodoro PRI D Príncipe Dom
CD D Conde Dom PRI Príncipe/Princesa
CD Conde/Condessa PRIOR Prior
CON Cónego PF DR Professor Doutor
CONS Conselheiro PF EG Professor Engenheiro
CNSUL Cônsul PROF Professor/Professora
C ALM Contra-Almirante RA Rainha
COR Coronel RA D Rainha Dona
CORR Corregedor RA ST Rainha Santa
DEPUT Deputado/Deputada REI Rei
DSB Desembargador REI D Rei Dom
DSP Despachante REV Reverendo
D Dom/Dona ST Santo/Santa
DR JZ Doutor Juíz S São
DR Doutor/Doutora S FR São Frei
DQ Duque/Duquesa SG Sargento
EMB Embaixador SEC Secretário/Secretária
ENF Enfermeiro SEN Senador
ENG Engenheira/Engenheiro SD Soldado
ENG D Engenheiro Dom TEN Tenente
EGT Engenheiro Técnico TEN C Tenente-Coronel
ESCRT Escritor/Escritora TEN G Tenente-General
ESC Escultor/Escultora TEN M Tenente-Médico
FR Frei V ALM Vice-Almirante
FR D Frei Dom VIG Vigário
FUR Furriel VISC Visconde/Viscondessa
GEN General

Abbreviations for street titles
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O POLARIS dentro dos parâmetros do projeto necessitará de outputs da UC abaixo descritos para reutilização dos processos atuais. 
Quaisquer alterações aos formatos implica esforço de alteração do lado POLARIS e com impacto em sistemas consumidores da informação. 

 
 

• Ficheiro de novas moradas a certificar 
Os campos deste ficheiro de input não deverão ter qualquer separador e deverão ser de tamanho fixo. 
 

Campo Formato Comprimento Observações 
REFERENCIA Alfanumérico 20 Referência para a morada. 

Deverá ser preenchido pelo sistema origem com um valor 

gerado para cada morada de acordo com a seguinte regra: 

T<nnn><pppppppppppppppp> :  

em que,  

<nnn> será um código numérico de 3 dígitos 
atribuído pelo Mestre de Moradas a cada sistema 
consumidor de moradas (ver Tabela de códigos de 
sistemas utilizadores de moradas); 

<pppppppppppppppp> será uma string de 16 
caracteres gerada por cada sistema e única dentro 
de cada sistema. 

TIPO_PEDIDO_CERTIFICACA
O 

Alfanumérico 1 Tipo de Pedido de Certificação. 
Pode ser { “A”, “P” , “Q”, “U”, “C”, “I”, “X”} onde, 
 
“A” – Arruamento; 
“P” – Prédio; 
“Q” – Prédio com Código Postal; 
“U” – Unidade Alojamento; 
“C” – Unidade de Alojamento com Código Postal e Giro 
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Campo Formato Comprimento Observações 
Postal; 
“I” – Internacional; 
“X” – Apartado. 

INDICATIVO_ARRUAMENTO Alfanumérico 5 Logradouro 
TITULO Alfanumérico 5 Título do Arruamento 
DESIGNACAO_ARRUAMENT
O 

Alfanumérico 100 Designação do Arruamento 

PRI_IND Alfanumérico 12 Primeiro indicador de morada (vulgo “Nº de Polícia”) 
Limitado a 11 posições no caso de o indicador ser numérico 
ou Abreviatura + numérico 

SEG_IND Alfanumérico 8 Segundo indicador de morada (vulgo “Andar”) 
Limitado a 7 caracteres no caso de o indicador ser numérico 
ou Abreviatura + Numérico 

TER_IND Alfanumérico 8 Terceiro indicador de morada (vulgo “Fracção”) 
Limitado a 7 caracteres no caso de o indicador ser numérico 
ou Abreviatura + Numérico 

CODIGO_LOCALIDADE Alfanumérico 11 Código de Localidade 
Formato: DDCCFFLLLLL 

NOME_LOCALIDADE Alfanumérico 40 Nome da Localidade 
Ignorado caso o Código de Localidade venha preenchido 

REGIAO Alfanumérico 20 Nome da Região da morada internacional 
PAIS Alfanumérico 20 Nome do País da morada internacional 
ESTAB_POSTAL Alfanumérico 40 Estabelecimento Postal do Apartado 
NRO_APARTADO Numérico 5 Número do Apartado 
CP4 Numérico 4 Código Postal 
CP3 Numérico 3 Giro Postal 
OBSERVACOES Alfanumérico 50 Informação adicional de morada 
ID_MOR_ARR_ENVIADO Alfanumérico 20 Obsoleto 

Id de morada correspondente ao Arruamento 
Nota: Este campo, quando enviado, deve ser numérico 

ID_MOR_PRD_ENVIADO Alfanumérico 20 Obsoleto 
Id de morada correspondente ao Prédio 
Nota: Este campo, quando enviado, deve ser numérico 

Format defined for the output files
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Campo Formato Comprimento Observações 
ID_MOR_UAL_ENVIADO Alfanumérico 20 Obsoleto 

Id de morada correspondente à UAL 
Nota: Este campo, quando enviado, deve ser numérico 

DT_HR_MORADA_ENVIADA Alfanumérico 26 Obsoleto 
Data/Hora da morada quando foram enviados os campos de 
ID anteriores. Este campo deve ter o seguinte formato: 
 AAAA-MM-DD-hh.mm.ss.nnnnnn 

NR_PISOS Alfanumérico 2 Nº de pisos do prédio 
Nota: Este campo, quando enviado, deve ser numérico 

FRACC_RESIDENCIAIS Alfanumérico 3 Nº de fracções residenciais existentes no prédio 
Nota: Este campo, quando enviado, deve ser numérico 

FRACC_COMERCIAIS Alfanumérico 3 Nº de fracções comerciais existentes no prédio 
Nota: Este campo, quando enviado, deve ser numérico 

FRACC_ESCRITORIOS Alfanumérico 3 Nº de fracções para escritórios existentes no prédio 
Nota: Este campo, quando enviado, deve ser numérico 

OUTRAS_FRACC Alfanumérico 3 Nº de fracções que não sejam residenciais nem comerciais 
nem escritórios. 
Nota: Este campo, quando enviado, deve ser numérico 

MARGEM_ERRO Alfanumérico 6 Margem de erro em centímetros 
Nota: Este campo, quando enviado, deve ser numérico 

X_LONG Alfanumérico 20 Ordenada X (em metros) ou Longitude em graus decimais. 
Nota: Este campo, quando enviado, deve ser numérico no 
seguinte formato: {‘-’,’+’,’ ’}dddddddd.dddddddddd 
d – dígito 
Separador decimal: Ponto (‘.’) 
Sinal: Mais, Menos, Espaço (‘+’,’-’,’ ’) 

Y_LAT Alfanumérico 20 Ordenada Y (em metros) ou Latitude em graus decimais. 
Nota: Este campo, quando enviado, deve ser numérico no 
seguinte formato: {‘-’,’+’,’ ’}dddddddd.dddddddddd 
d – dígito 
Separador decimal: Ponto (‘.’) 
Sinal: Mais, Menos, Espaço (‘+’,’-’,’ ’) 

ID_EXTERNO_MORADA Alfanumérico 25 Identificador externo da morada. 
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Campo Formato Comprimento Observações 
FONTE_GEOREF Alfanumérico 5 Fonte de Georreferenciação. 

Valores possíveis: 
2243 – BDI 
2245 – CTT 
2236 – Digitalização SIG 
2235 – GPS 
2999 – INE 
2244 – Levantamento GPON 
558 – Outro 
2805 – SIGNET 
2731 – SITED 
Nota: Este campo, quando enviado, deve ser numérico 

SISTEMA_COORDENADAS Alfanumérico 5 Sistema de Coordenadas. 
Valores possíveis: 
2237 – DATUM 73 
2370 – UTM Fuso 25 - Gr. Ocidental Açores 
2371 – UTM Fuso 26 - Gr. Oriental e Central Açores 
2372 – UTM Fuso 28 – Madeira 
2238 - WGS84 
Nota: Este campo, quando enviado, deve ser numérico.  

ID_PROJETO Alfanumérico 32 Apenas enviado por Netwin. Restantes sistemas enviam sem 
este campo. 

ID_SURVEY Alfanumérico 16 Apenas enviado por Netwin. Restantes sistemas enviam sem 
este campo. 

CODIGO_OPERADOR Alfanumérico 3 Identificador do operador associado ao id externo. 
 

 
 

• Ficheiro de Unidades de Alojamento a fundir. Dois campos de 20 carateres separados por “;”: 
Campo Formato Notas 
Id_morada_origem char(20) Identificador Polaris da morada a fundir 
id_morada_destino char(20) Identificador Polaris da morada que prevalece após fusão 
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Será com base neste ficheiro que fundiremos a unidade alojamento origem na unidade de alojamento destino. 
 

• Criação de Arruamentos:  ficheiro com o seguinte formato (campos separados por “;”): 
Campo Formato Notas 
COD_LOCALIDADE varchar(11) Código de localidade do arruamento 
NOME_LOCALIDADE varchar(40) Nome da localidade do arruamento 
ID_ARRUAM_PROVISORIO char(20) Id provisório para fazer mapeamento entre o input e o output 
IND_ARRUAM varchar(5) Abreviatura do indicativo do arruamento segundo a tabela de 

valores de referência já fornecida. 
TIT_ARRUAM varchar(5) Abreviatura do título do arruamento segundo a tabela de valores 

de referência já fornecida. 
DESIG_ARRUAM varchar(100) Designação do arruamento 
TIPO_PARIDADE_CP7 varchar(40) Valores possíveis: 

Troço de portas Impares 
Troço de portas Pares 
Troço de portas Sequenciais 
Porta com outra identificação 
Código Postal de Grande Cliente 
(nenhum) 

INDIC_INFERIOR varchar(12) Indicador inferior do intervalo de portas ao qual se aplica o CP7 
INDIC_SUPERIOR varchar(12) Indicador superior do intervalo de portas ao qual se aplica o CP7 
CP4 char(4) Código Postal 
CPL3 char(3) Giro Postal 
DESIG_POSTAL varchar(40) Designação Postal 

 
 
Exemplo: 
31020200000;Curral das Freiras;PTST0000000000000001;IM;;1 Estrada da Capela;Porta com outra identificação;;;9030;322;CURRAL DAS FREIRAS 
31020200000;Curral das Freiras;PTST0000000000000002;EC;;Pau Formoso;Porta com outra identificação;;;9030;352;CURRAL DAS FREIRAS 
31020200000;Curral das Freiras;PTST0000000000000003;IM;;1 Estrada do Colmeal;Porta com outra identificação;;;9030;325;CURRAL DAS FREIRAS 

 
• Criação de Sinónimos de Prédio:  ficheiro com o seguinte formato (campos separados por “;”): 

 
Campo Formato Notas 

Appendix
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Operação Varchar(50) Valor fixo: CRIAR_SINONIMO_PREDIO 
Id_morada Varchar(20) Identificador Polaris do prédio oficial 
Pri_ind Varchar(12) Indicador de morada do sinónimo a criar 

Exemplo: 
CRIAR_SINONIMO_PREDIO; P0000000000000123853;LT 20 

 
• Criação de Sinónimos de Arruamento:  ficheiro com o seguinte formato (campos separados por “;”): 

 
Campo Formato Notas 
Operação Varchar(50) Valor fixo: CRIAR_SINONIMO_ARRUAMENTO 
Id_morada Varchar(20) Identificador Polaris do arruamento oficial 
Ind_arr Varchar(5) Abreviatura do indicativo de arruamento (R, AV, AL, TV, ...). Ver tabela de referência. 
Tit_arr Varchar(5) Abreviatura do título do arruamento (DR, PROF, CAP, …). Ver tabela de referência. 
Nome_Sinónimo Varchar(36) Nome do arruamento sinónimo 

Exemplo: 
CRIAR_SINONIMO_ARRUAMENTO;A0000000000000012345;R;DR;ANTÓNIO SEABRA 

Format defined for the output files
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Appendix B

Análise de Agrupamento e Intersecção

Para descrever a abordagem analítica aplicada nas intersecções, começamos por apresentar
as intersecções consideradas e as variáveis que serviram de base à definição dos critérios de
intersecção. De seguida, descrevemos as restrições que foram usadas em cada critério ou
variável e os resultados obtidos com as intersecções.

Descrição dos casos considerados

Tendo em conta as 4 tabelas principais tabelas, nomeadamente Alojamentos (CTT),
Inspire (INE), Survey e Polaris, foram realizados os 6 cruzamentos possíveis entre estas
(duas a duas). Nestes cruzamentos as variáveis consideradas foram: o código do postal
e as coordenadas de latitude e de longitude, de maneira a que fosse exequível obter o
maior número possível de correspondências, tanto para descobrir possíveis melhorias como
permitir a consolidação e adição de informação nova que não esteja presente Polaris.

Quando possível, outras variáveis como o número de porta, localidade, código de
localidade, etc., são utilizados para dar mais confiança aos clusters resultantes das inter-
secções.

De modo a manter a coerência dos valores que se seguem, são expostas na Tabela 1 todas as
bases de dados consideradas, bem como os números associados a cada uma delas, divididas
por tipo.

Table 1: Sumário das bases de dados disponibilizadas.

Fonte de dados Total # Prédios # Alojamentos Observações
Polaris (certificada) 13 283 056 4 908 027 7 746 882 Apenas moradas certificadas
Polaris (tickets) 17 316 773 1 216 848 16 032 352 Moradas em processo de validação (não certificadas)
Survey 3 028 995 3 028 995 - Só contém moradas de prédios
CTT 6 887 615 4 496 338 4 496 338 Prédios obtidos a partir das unidades de alojamento
INE 5 910 282 3 566 268 5 910 282 Prédios obtidos a partir das unidades de alojamento

Variáveis de intersecção

Em termos de comparações, no caso das coordenadas, foi feita com base no arredondamento
à 4ª casa decimal (correspondente a 11,132 metros de precisão) e na distância euclidiana,
dado que a comparação direta entre elas era impossível pois a precisão varia entre as tabelas.

Para tal, estas duas abordagens foram utilizadas em termos analíticos para conseguir obter
um bom número de correspondências e visualizar nos restantes valores que podem remeter
para a consolidação da Polaris.

Também foi tida em consideração uma análise entre todas as tabelas utilizando os dois
campos referidos anteriormente juntamente com o número da porta de cada uma de modo
a extrair clusters com um maior nível de confiança, diminuindo ligeiramente o volume
de correspondências. Para contrariar esta limitação, foi baixada a precisão da distância
euclidiana de 11,132 para 22,264 metros, de maneira a abranger uma gama maior de
moradas, mas mantendo a consistência de correspondências com o número da porta.
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Para diminuir a redundância em termos de correspondências (por exemplo um prédio
pode ter vários alojamentos o que origina correspondências duplicadas), foi ainda real-
izada uma separação das tabelas só com moradas de prédios para evitar clusters com
muitas repetições, dada que a Polaris apresenta claramente esta distinção entre prédios e
alojamentos. Para auxiliar a informação presente na Tabela 1, é mostrado na Tabela 2
como foi feita esta separação na Polaris.

Table 2: Segmentação da Polaris por tipo de dados.

Tipo de registos Total de registos
Moradas c/ sinónimos 37 669
Arruamentos s/ sinónimos 420 810
Prédios s/ sinónimos 4 759 690
Unidades de alojamento 7 563 771
Internacionais e apartados 162 885

De referir ainda que 1 451 270 dos prédios sem sinónimos não possuem coordenadas, ou
seja, só 69,51% destes é que contam com esta informação. Nenhuma das unidades de
alojamento tem coordenadas diretas, mas como todas apontam para um prédio principal
(campo id_predio), estas podem ser obtidas a partir dos seus prédios. Tal como há prédios
sem coordenadas, o mesmo acontece com as unidades de alojamento, que contam com 5
726 973 dos 7 563 771 registos com estes campos preenchidos, isto é, 75.72%.

Resultados para a Análise de Agrupamento e Intersecção

Nesta secção apresentamos os resultados preliminares para a parte de análise de agrupa-
mentos. Apesar de os parâmetros da abordagem como as distâncias limite e que outros
atributos considerar nos casos em que as coordenadas estejam ausentes ainda estarem a ser
afinados de acordo com as avaliações em andamento, os resultados já permitem mostrar
que a abordagem é promissora, como discutido nas secções seguintes.

A. Polaris - Survey

Apesar da dimensão da base de dados Survey em termos de registos e campos, com base
nas análises feitas, foram obtidas boas correspondências, validando a sua utilização. Nesta
intersecção foram considerados os códigos postais, latitude e longitude. Tendo em conta
que a Survey corresponde a moradas de prédios, foram considerados apenas os prédios
presentes na Polaris.

De ummodo geral, baseando a análise dos datasets com a distância euclidiana e o arredonda-
mento à 4ª casa decimal, foi possível incluir mais correspondências entre as tabelas uti-
lizando a distância euclidiana do que propriamente o arredondamento, sendo que em termos
percentuais obteve-se cerca de 71,61% da Survey e 48,52% da Polaris com a distância eu-
clidiana, contra 53,82% e 35.05%, respetivamente, dos arredondamentos, fazendo com que
esta última análise seja, de certa forma, inviável.

Com base nisto, observam-se bastantes correspondências corretas, sendo que em alguns ca-
sos há erros devido à proximidade entre moradas. Para contornar este problema, manipulou-
se o campo local_e presente na Survey, que contém o nome da rua e o número de porta
juntos, apenas separados por um carater, de modo a retirar apenas o número de porta
e utilizá-lo como campo de comparação. Com isto, as percentagens também diminuem,
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o que é justificável pelo facto de incluir este campo para reduzir a margem de erros de
proximidade, dando mais confiança que as correspondências obtidas são as mesmas. Ao
fazer esta comparação apenas com os prédios resultaram 53.11% e 34.90% da Survey e da
Polaris, respetivamente.

É possível retirar e adicionar novos prédios à Polaris, visto que existem códigos-postais do
lado da Survey que não existem na Polaris, por exemplo. Porém, em termos de complexi-
dade de tabelas, a Survey possui pouca informação acerca destes prédios, devido ao número
reduzido de campos em relação à Polaris. Para tal, há a possibilidade de complementar
estes dados com informação de outras tabelas, como a Inspire (INE) e a Alojamentos
(CTT). Em termos de melhorias, logo que haja uma correspondência fidedigna, há a pos-
sibilidade de melhorar alguma informação, como por exemplo a adição de GPS em prédios
da Polaris que não contenham este campo preenchido.

2309268 21690303740171

Polaris com GPS
Per. de matches - 48.52%

Survey
Per. de matches - 71.61%

Campos de comparação
CP(7 dígitos) e GPS

Distância euclidiana = 0.0001 ~ 11.132 metros

Figure 1: Intersecção entre moradas Polaris - Survey baseado no CP7 e distância euclid-
iana.
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1661278 16086501676046

Polaris com GPS
Per. de matches - 34.9%

Survey
Per. de matches - 53.11%

Campos de comparação
CP(7 dígitos), GPS, nº porta

Distância euclidiana = 0.0002 ~ 22.264 metros

Figure 2: Intersecção entre moradas Polaris - Survey baseado no CP7, número de porta
e distância euclidiana.

B. Polaris - Inspire (INE)

Face aos testes realizados anteriormente, aqui já é feita a completa distinção entre prédios
e unidades de alojamentos de ambas as tabelas. Esta distinção é feita com o intuito de
melhorar a resultante em termos de correspondências por parte dos prédios, dado que como
os estes têm o mesmo GPS para cada uma das suas unidades de alojamento e sendo este
um dos campos principais utilizados a título de comparação, ao cruzar todas as unidades
de alojamentos, gera uma série de repetições entre estas, caso não haja um campo que
ajude a distinguir entre cada uma.

Assim, sabendo que a morada e o GPS são iguais para todas as unidades correspondentes,
evita-se este problema considerando apenas os prédios, o que simplifica o processo de
identificação entre moradas equivalentes e moradas a adicionar.

Identificados os prédios, é possível extrair informação sobre as unidades que se encontram
nestes, tais como o piso, número da porta e lado, visto serem campos presentes na Inspire.
Em alguns casos, poder-se-á incluir o número de pisos, logo que haja a possibilidade de
fazer esta distinção com confiança para não induzir em erros. Dado que a localização do
INE é fidedigna, poder-se-á substituir os valores com zero (sem coordenadas) no lado da
Polaris e indicar a fonte de georreferenciação.
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2062629 17984233039302

Polaris com GPS
Per. de matches - 43.34%

Inspire (INE)
Per. de matches - 50.43%

Campos de comparação
CP(7 dígitos) e GPS

Distância euclidiana = 0.0001 ~ 11.132 metros

Figure 3: Intersecção entre moradas Polaris - INE baseado no CP7 e distância euclidiana.

1398979 13900181414604

Polaris com GPS
Per. de matches - 29.39%

Inspire (INE)
Per. de matches - 38.98%

Campos de comparação
CP(7 dígitos), GPS, nº porta

Distância euclidiana = 0.0002 ~ 22.264 metros

Figure 4: Intersecção entre moradas Polaris - INE baseado no CP7, número de porta e
distância euclidiana.

C. Polaris - Alojamentos (CTT)

Dando continuidade à análise anterior e mantendo a mesma abordagem para todas as bases
de dados, aqui também foi aplicada a caracterização entre prédios e unidades de alojamento
para contornar as duplicações.

Tendo a base de dados dos CTT o mesmo grau de relevância que a do INE, esta análise
é feita quase que em paralelo, devido a terem alguns campos em comum, logo, com base
na identificação predial, é possível extrair informação sobre as unidades que se encontram
nestes, tais como o piso, número da porta e lado, visto serem campos também presentes nos
CTT. Em alguns casos, poder-se-á incluir o número de pisos, logo que haja a possibilidade
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de fazer esta distinção com confiança para não induzir em erros. Considerando que as
coordenadas dos CTT possuem a limitação de estarem identificadas ao nível da caixa
postal, verificando e considerando o valor da distância euclidiana no cruzamento dos CTT
com as outras tabelas, será fazível a determinação e correção, se for o caso, das coordenadas
em falta no lado da Polaris.

Face aos números obtidos, apesar de serem notavelmente distantes comparativamente ao
cruzamento entre Polaris e Inspire (INE) em termos percentuais, as moradas que se encon-
tram do lado de fora deste podem ser aproveitadas, logo que estas não existam no lado da
Polaris, sendo esta verificação auxiliada pela similaridade textual.

1475493 17506323360826

Polaris com GPS
Per. de matches - 31.0% Alojamentos (CTT)

Per. de matches - 39.75%

Campos de comparação
CP(7 dígitos) e GPS

Distância euclidiana = 0.0001 ~ 11.132 metros

Figure 5: Intersecção entre moradasPolaris - CTT baseado no CP7 e distância euclidiana.

1756725 16056381774163

Polaris com GPS
Per. de matches - 36.91%

Alojamentos (CTT)
Per. de matches - 36.46%

Campos de comparação
CP(7 dígitos), GPS, nº porta

Distância euclidiana = 0.0002 ~ 22.264 metros

Figure 6: Intersecção entre moradas Polaris - CTT baseado no CP7, número de porta e
distância euclidiana.
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D. Inspire (INE) - Alojamentos (CTT)

Sendo as duas tabelas mais semelhantes e relevantes em termos de campos de comparação
e de unidades de alojamento, respetivamente, dado que a Survey é limitada no que toca às
unidades dos prédios.

Este cruzamento é feito com o intuito de averiguar a fidedignidade das duas bases de da-
dos e onde se diferenciam, o que é importante, visto que tendo as coordenadas GPS dos
CTT a limitação de estarem identificadas ao nível da caixa postal, quando estas discrepân-
cias forem corretamente reconhecidas, poder-se-á utilizar este cruzamento para melhorar e
contornar as imprecisões associadas.

No que diz respeito às correspondências, as percentagens mostraram-se igualmente semel-
hantes, o que viabiliza a utilização de ambas as tabelas como fontes de dados a utilizar
para a consolidação para a Polaris.

1559600 20242323158835

Inspire (INE)
Per. de matches - 43.73% Alojamentos (CTT)

Per. de matches - 45.96%

Campos de comparação
CP(7 dígitos) e GPS

Distância euclidiana = 0.0001 ~ 11.132 metros

Figure 7: Intersecção entre moradas INE - CTT baseado no CP7 e distância euclidiana.
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1574312 16946051726765

Inspire (INE)
Per. de matches - 44.14%

Alojamentos (CTT)
Per. de matches - 38.48%

Campos de comparação
CP(7 dígitos), GPS, nº porta

Distância euclidiana = 0.0002 ~ 22.264 metros

Figure 8: Intersecção entre moradas INE - CTT baseado no CP7, número de porta e
distância euclidiana.

E. Inspire (INE) - Survey

Uma vez que a Survey não possui informação sobre as unidades de alojamento dos prédios
que tem, esta poderá ser utilizada como reforço à base de dados dos INE a nível de coorde-
nadas GPS e correção de nomes de arruamentos. No entanto, observando as percentagens
obtidas, verifica-se que estas são semelhantes às do cruzamento entre Polaris e Inspire, o
que reforça a ideia de que ambas as tabelas são de facto usáveis e pertinentes no que diz
respeito tanto à consolidação, adição e remoção de moradas à Polaris.

1810991 19500102800531

Inspire (INE)
Per. de matches - 50.78%

Survey
Per. de matches - 64.38%

Campos de comparação
CP(7 dígitos) e GPS

Distância euclidiana = 0.0001 ~ 11.132 metros

Figure 9: Intersecção entre moradas INE - Survey baseado no CP7 e distância euclidiana.
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1205816 12566161388224

Inspire (INE)
Per. de matches - 33.81%

Survey
Per. de matches - 41.49%

Campos de comparação
CP(7 dígitos), GPS, nº porta

Distância euclidiana = 0.0002 ~ 22.264 metros

Figure 10: Intersecção entre moradas INE - Survey baseado no CP7, número de porta e
distância euclidiana.

F. Alojamentos (CTT) - Survey

Apesar de serem duas tabelas completamente diferentes, era de esperar que houvesse um
número de correspondências semelhante ao obtido no cruzamento com a tabela Inspire
(INE), mas tendo em conta que o centróide do GPS da Survey se encontra ao nível da
porta/edifício e o GPS dos CTT a nível da caixa postal, justifica-se assim o baixo número
entre ambas.

Novamente, apesar de a Survey não possuir informação sobre as unidades de alojamento
dos prédios que tem, esta poderá ser utilizada como complemento à base de dados do CTT
a nível de coordenadas GPS e correção de nomes de arruamentos.

1463066 11858362475793

Alojamentos (CTT)
Per. de matches - 33.22%

Survey
Per. de matches - 39.15%

Campos de comparação
CP(7 dígitos) e GPS

Distância euclidiana = 0.0001 ~ 11.132 metros

Figure 11: Intersecção entre moradas CTT - Survey baseado no CP7 e distância euclid-
iana.

69



Appendix
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Alojamentos (CTT)
Per. de matches - 30.57%

Survey
Per. de matches - 41.92%

Campos de comparação
CP(7 dígitos), GPS, nº porta

Distância euclidiana = 0.0002 ~ 22.264 metros

Figure 12: Intersecção entre moradas CTT - Survey baseado no CP7, número de porta
e distância euclidiana.
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Sobreposição vs clusters para várias distâncias

O objetivo de analisar este tópico é avaliar em que medida a oscilação da distância influencia
a inclusão de correspondências, e, ao mesmo tempo o número de repetições para cada
registo. Para tal, esta distância foi variada entre os 2.7 e os 55.6 metros, aproximadamente,
de modo a termos dois extremos em que seja possível verificar qual o valor que permitam
ter a maior eficácia, em termos inclusões e as repetições. Ainda assim, vai ser preciso nas
próximas fases entender quão eficaz conseguem ser as técnicas de NLP, quando a operar
sobre estes clusters.

Tendo em consideração a intersecção entre Polaris e Survey, e começando por fazer a apre-
ciação da menor distância para a maior, é possível observar-se que, embora 2.7 metros se
mostre promissor no que toca a ter um número baixo de repetições, ao mesmo tempo inclui
poucos registos entre as duas tabelas. O mesmo acontece quando é o valor é elevado para
5.6 metros (metade do valor inicial considerado), que neste caso nota-se um salto signifi-
cante no que diz a respeito à percentagem de inclusão, passando de 45% para 62% no caso
da Survey, mas ao mesmo tempo continua a apresentar valores baixos. Nos 11.1 metros,
olhando para o gráfico de barras da frequência absoluta, observa-se que com esta distância
consegue-se obter um bom número de correspondências para um registo da Polaris, mas
com isso é acarretado uma série de repetições, e isto deve-se à posição dos centróides das
coordenadas GPS estarem localizados próximos uns dos outros e à precisão da distância
ser relativamente mais baixa. Este fenómeno ocorre com mais frequência a partir dos 22.2
metros onde, ainda que continue a incluir mais alguns registos, nota-se um maior acréscimo
de repetições em comparação ao seu antecessor, mas se tivermos em conta os gráficos das
restantes distâncias, pode-se dizer que esta ainda é útil e muitas das repetições podem ser
tratadas recorrendo à similaridade textual. Entre os 33.4 e os 55.6 metros, as conclusões
serão as mesmas, dado que cada vez haverão mais repetições e mais correspondências,
embora em termos de proporções, a primeira irá decolar com mais facilidade.

Baseados nestes números podemos observar que as distâncias mais promissoras são entre
os 11.1 e os 22.2 metros, visto serem os valores em que se verifica um balanço aceitável
entre o número de correspondências obtidas e o número de repetições, sem que o último
aumente descontroladamente.
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Polaris com GPS
Per. de matches - 28.94%

Survey
Per. de matches - 45.94%

Campos de comparação
CP(7 dígitos) e GPS

Distância euclidiana = 0.000025 ~ 2.783 metros
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Figure 13: Intersecção entre moradas Polaris - Survey, com distância máxima de 2.8m
e mesmo CP7, e a frequência absoluta dos tamanhos dos clusters correspondentes.
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Polaris com GPS
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Survey
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Campos de comparação
CP(7 dígitos) e GPS

Distância euclidiana = 0.00005 ~ 5.566 metros
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Figure 14: Intersecção entre moradas Polaris - Survey, com distância máxima de 5.6m
e mesmo CP7, e a frequência absoluta dos tamanhos dos clusters correspondentes.
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Campos de comparação
CP(7 dígitos) e GPS

Distância euclidiana = 0.0001 ~ 11.132 metros
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Figure 15: Intersecção entre moradas Polaris - Survey, com distância máxima de 11.1m
e mesmo CP7, e a frequência absoluta dos tamanhos dos clusters correspondentes.
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Figure 16: Intersecção entre moradas Polaris - Survey, com distância maxima de 22.2m
e mesmo CP7, e a frequência absoluta dos tamanhos dos clusters correspondentes.
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Campos de comparação
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Distância euclidiana = 0.0003 ~ 33.396 metros
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Figure 17: Intersecção entre moradas Polaris - Survey, com distância maxima de 33.4m
e mesmo CP7, e a frequência absoluta dos tamanhos dos clusters correspondentes.
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Figure 18: Intersecção entre moradas Polaris - Survey, com distância maxima de 44.5m
e mesmo CP7, e a frequência absoluta dos tamanhos dos clusters correspondentes.
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Figure 19: Intersecção entre moradas Polaris - Survey, com distância maxima de 55.6m
e mesmo CP7, e a frequência absoluta dos tamanhos dos clusters correspondentes.

Resultados

Dataset piloto

No sentido de validar as experiências feitas, o uso das ferramentas e técnicas descritas, foi
proposto um dataset piloto com cerca de 50 mil registos vindos de Polaris, que conta com
moradas certificadas e não certificadas (tickets), ambas relativas a Unidades de Alojamento,
que representam habitações individuais. Assim sendo, o tratamento destes dados foi feito
em direção ao primeiro requisito, que visa determinar coordenadas em falta na base de
dados da Altice.

Para contextualizar, é mostrado na Tabela 3 o total de registos que são considerados para
tratamento, separados por tipo de morada.

Table 3: Dispersão dos registos do dataset piloto

Tipo de morada Total de registos
Certificada 15 449
Não certificada 34 620
Total 50 069

Para estes dados, através dos algoritmos de similaridade, foram encontradas um total de
19 119 equivalências nos 50 069 registos (∼38%).
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Table 4: Total de equivalências encontradas no dataset piloto

Tipo de morada Tipo correspondência Total de registos Percentagem

Certificadas Única
Múltipla

9 039
251

47.2%
1.3%

Não certificadas Única
Múltipla

7 199
2 630

37.7%
13.8%

Total - 19 119 100%

Análise

De um modo geral, ao observar pela Tabela 4, podemos afirmar que os resultados obtidos
foram bastante positivos, apesar de não resolver todos os registos incluídos no dataset. No
entanto, tendo em conta que estamos a tratar dois tipos de moradas diferentes, faz sentido
que estes sejam analisados separadamente e depois comparados para retirar conclusões.
Esta separação é feita porque, apesar de terem formatos semelhantes, a qualidade da
informação contida nas moradas certificadas é superior à das não certificadas, e isto reflete-
se nos resultados obtidos.

Antes de partir para a análise aprofundada, deve ser feita também a separação feita entre
“Únicas” e “Múltiplas” . A primeira acontece quando é encontrada apenas uma entrada
para um registo em Polaris. A segunda acontece quando é encontrada mais do que uma
entrada em todas as fontes para o mesmo registo em Polaris, e como tal, não é possível
dizer com toda a certeza qual é a resposta correta. Para estes casos, há a necessidade de
implementar um algoritmo de desempate entre as mesmas.

Em relação às moradas certificadas, nesta obtiveram-se 9 290 correspondências, sendo 9
039 com correspondências únicas e 251 com correspondências múltiplas, isto num total de
15 449 registos certificados, o que corresponde a cerca de 66% destes dados. Estes números
mostram que os procedimentos trazem bons resultados, e que é exequível a aplicação das
abordagens e técnicas definidas no contexto deste problema.

Em contraste, as moradas não certificadas (ou tickets), foram alcançadas 9 829 corre-
spondências, sendo 7 199 com correspondências únicas e 2 630 com correspondências
múltiplas num total 34 620 registos não certificados, o que corresponde a cerca de 24%
destes dados. Estes últimos resultados geraram algumas dúvidas, tanto pelo baixo número
de correspondências, como pela quantidade de correspondências múltiplas em relação às
moradas certificadas, considerando que as percentagens entre os dois tipos de moradas
foram visivelmente distantes.

Para melhor perceber o porquê da discrepância entre os dois tipos de morada e retirar
conclusões, foi feita uma análise à posteriori apenas aos registos das moradas não cer-
tificadas. Nesta análise observou-se que alguns campos da morada destes dados não se
encontram preenchidos ou totalmente normalizados (e.g. ter abreviaturas ou o número
da porta agregado à morada), como normalmente é feito nas moradas certificadas. Estes
detalhes dificultam a adaptação dos dados para comparação com os algoritmos de sim-
ilaridade, resultando que os graus de similaridade sejam mais baixos, o que impede de
garantir que se referem exatamente à mesma coisa. Ao mesmo passo que trará menos
correspondências, poderá incluir também correspondências erradas em moradas que sejam
muito semelhantes. Detetou-se ainda que cerca de 22 313 desses tickets não têm número
de porta associado, tornando-os obsoletos, tendo em vista que este campo é imprescindível
para ser atribuída a morada correta. Somados a estes, foram encontrados 4 650 casos com
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código-postal parcialmente ou completamente vazio, o que exclui estes dados do agrupa-
mento pelo código postal a 7 dígitos.

A partir dos primeiros resultados obtidos do dataset piloto, observa-se que a abordagem
definida já se mostra auspiciosa. Embora não tenha sido possível dar resposta a todos
os registos, foram alcançadas boas correspondências com grau de certeza muito elevado,
tendo em conta as limitações associadas às moradas não certificadas. Como tal, para ter
uma visão mais ampla do comportamento desta abordagem, partiu-se para um dataset de
maior dimensão que não contém coordenadas geográficas, visto representar um dos grandes
problemas da Altice da perspetiva da operacionalização desses mesmos dados.

Dataset com moradas certificadas

Tendo em vista a grande diferença entre certificadas e tickets nos primeiros resultados
atingidos, os registos a ter em consideração para este teste são relativos apenas à Polaris
certificada. Novamente, levando em consideração que os formatos são semelhantes, as
moradas não certificadas carecem de alguma normalização na sua disposição, que por sua
vez influenciará drasticamente os resultados obtidos. Neste sentido, consideram-se agora
1 365 706 registos sem GPS a serem comparados com as fontes auxiliares, através da
similaridade textual. De referir ainda que estes são dados que a Altice já tinha tentado
resolver anteriormente, e não foi possível dar resposta a todos. Os dados na Tabela 5
referem-se aos registos em que foram encontradas correspondências, tanto únicas como
duplicadas, provenientes das outras fontes e que têm um GPS associado para consolidar
para a Polaris.

Table 5: Total de correspondências encontradas para as moradas certificadas

Tipo de correspondência Total de registos
Única 149 926
Múltipla 9 780
Total 159 706

Para estes dados, através dos algoritmos de similaridade, foram encontradas um total de
159 706 correspondências nos 1 365 706 registos sem coordenadas associadas (∼12%).

Análise

Nestas 159 706 equivalências, estão incluídas 9 780 múltiplas, que, apesar de não estarem
a ser tratadas nesta fase, este número continua a mostrar-se bastante baixo quanto ao
tratamento das certificadas, graças à prioridade definida inicialmente.

Do total, resta-nos ainda 149 926 registos com correspondências únicas, que são o foco
destes resultados e os futuros dados a serem integrados na base de dados da Altice.

Se avaliarmos pelos resultados obtidos apenas nas moradas certificadas do dataset piloto ex-
plorado na Secção 7.1, em termos percentuais, os números foram visivelmente mais baixos.
Isto acontece porque nem todos os dados em Polaris se encontram totalmente atualiza-
dos, tendo ainda alguns erros de atribuição associados ao código postal (e.g. 3000-350 e
3000-351, que correspondem à mesma rua, mas são referentes a moradas com números de
porta pares e ímpares, respetivamente). Este problema influencia na fase de agrupamento
dos dados, que nos mapeia erroneamente as moradas com as restantes fontes auxiliares.
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Por sua vez, para os dados em que isto acontece, não serão encontradas correspondências,
visto que o algoritmo de similaridade compara individualmente cada registo associado a
um código postal. Acontece ainda que a base de dados, apesar de operacional, já tem
alguns anos, e como existem ruas que evoluíram, mudaram de nome ou deixaram de existir
com o passar do tempo, alguns registos podem corresponder a dados que já não existem
nas fontes auxiliares.

Num próximo passo, tem-se como objetivo aplicar outras medidas no sentido de aumentar
a margem destas correspondências. Para tal, uma das abordagens passa por fazer uma
normalização a todos os campos da morada, e não somente o indicativo de arruamento e
título associado (quando existe).

Em suma, apesar da percentagem obtida ser 12% contra 66% de correspondências para
moradas certificadas no dataset piloto, os números continuam promissores e certamente
trazem melhorias associadas, considerando que foram melhorados com sucesso 149 926
registos candidatos a adição de coordenadas geográficas.

Dataset com moradas não certificadas

Mantendo o mesmo processo de comparação produzido para os resultados das Secções 7.1
e 7.1, aplicou-se esta abordagem às moradas não certificadas, mas desta vez em direção ao
requisito R2, que corresponde à certificação ou evolução de tickets. O objetivo nesta fase é
de encontrar correspondências, no sentido de associar e compor as informações em falta nos
registos não certificados. Para tal, desta vez consideram-se os dados da Polaris certificada
como fonte auxiliar a procurar, com o intuito de validar, também, se estes tickets existem.
Neste sentido, foram propostas 810 829 entradas não certificadas associadas a serviços da
Altice, relativas a Unidades de Alojamento, que representam habitações individuais. De
tal modo, estes dados foram agrupados novamente pelos seus códigos postais associados,
e comparados através dos algoritmos de similaridade. Na prioridade anterior definida, o
repositório de moradas certificadas passa a ter prioridade máximo, dada a afinidade entre
os dados.

Para estes dados, através dos algoritmos de similaridade, foram encontradas um total de
184 693 correspondências nos 810 829 registos sem certificação (∼20%).

Table 6: Total de correspondências encontradas para as moradas não certificadas

Tipo de correspondência Total de registos
Única 165 504
Múltipla 19 189
Total 184 693

Análise

Nestas 184 693 equivalências, estão incluídas 19 189 múltiplas, que, apesar de não estarem
a ser tratadas nesta fase, este número, comparado aos resultados obtidos para as não
certificadas na Secção 7.1, é relativamente mais baixo, e isto deve-se ao facto de serem
tickets de moradas com serviços associados. Ao terem serviços associados, alguns destes
dados já têm bastantes campos normalizados, embora muitos deles ainda estejam por
tratar.

Do total, resta-nos ainda 165 504 registos com correspondências únicas, que são novamente
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o foco destes resultados e os futuros dados a serem integrados na base de dados da Altice.
De um modo geral, estes resultados continuam a não ser perfeitos, mas o processo continua
a mostrar-se promissor na resolução de problemas deste tipo.

Aqui continuamos a ter o problema de alguns destes dados em consideração não se en-
contram totalmente normalizados e preenchidos. Acontece muitas vezes os campos da
morada terem erros de entrada, ou até mesmo o código postal apenas preenchido pelos 4
primeiros dígitos. Tudo isto são problemas que influenciam negativamente tanto o agru-
pamento dos dados, como a comparação dos mesmos. Num próximo passo, tal como nos
testes anteriores, tem-se como objetivo aplicar outras medidas no sentido de aumentar a
margem destas correspondências. No entanto, a abordagem de normalização dos campos
das moradas deste tipo é um processo mais delicado, visto que a informação, por vezes,
não segue as regras comuns à base de dados certificada. Este problema deve-se ao facto de
alguns destes dados serem derivados de moradas de outros sistemas.

Em suma, estes números ainda são bastante preliminares, mas já trazem algumas melhorias
associadas aos 165 504 registos com correspondências, considerando que se conseguiria
certificar completamente algumas destas moradas, ou pelo menos fazer com que estas mais
informação, de modo a auxiliar no processo de certificação dentro dos sistemas da Altice.

78



This page is intentionally left blank.



Chapter 7

Appendix C

Table 7: True Positives vsFalse Positives for R1

Levenshtein Jaro-Winkler N -Grams/Cosine Overall
TP FP TP FP TP FP TP FP

Scenario #1 276 619 12 348 12 11 276 11
Scenario #2 276 493 12 334 12 3 276 3
Scenario #3 270 191 6 140 6 3 270 3
Scenario #4 276 493 12 433 12 3 276 3
Scenario #5 276 493 11 114 11 3 275 3
Scenario #6 276 493 12 334 12 4 276 4
Scenario #7 276 493 12 334 5 3 269 3

Table 8: True Positives vsFalse Positives for R2

Levenshtein Jaro-Winkler N -Grams/Cosine Overall
TP FP TP FP TP FP TP FP

Scenario #1 754 210 74 116 69 26 735 35
Scenario #2 754 144 74 101 69 14 735 23
Scenario #3 744 59 66 51 63 13 729 22
Scenario #4 754 144 79 123 74 20 740 29
Scenario #5 754 144 57 26 54 14 720 23
Scenario #6 754 144 74 101 74 16 740 25
Scenario #7 754 144 74 101 62 14 728 23

Table 9: True Positives vsFalse Positives for R3

Levenshtein Jaro-Winkler N -Grams/Cosine Overall
TP FP TP FP TP FP TP FP

Scenario #1 2225 372 55 223 51 80 2219 82
Scenario #2 2223 288 53 203 49 78 2217 80
Scenario #3 2214 191 44 168 43 78 2211 80
Scenario #4 2223 288 53 241 49 78 2217 80
Scenario #5 2223 288 31 160 27 78 2195 80
Scenario #6 2223 288 53 203 53 153 2221 155
Scenario #7 2223 288 53 203 36 78 2204 80

Table 10: True Positives vsFalse Positives for R4

Levenshtein Jaro-Winkler N -Grams/Cosine Overall
TP FP TP FP TP FP TP FP

Scenario #1 1282 257 15 165 13 77 1280 77
Scenario #2 1281 210 14 160 12 75 1279 75
Scenario #3 1276 155 9 139 9 75 1276 75
Scenario #4 1281 210 14 185 12 75 1279 75
Scenario #5 1281 210 13 135 11 75 1278 75
Scenario #6 1281 210 14 160 14 12 1281 129
Scenario #7 1281 210 14 160 6 75 1273 75
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