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Abstract

The interaction vertex functions of Quantum Chromodynamics are of fundamental importance
in hadronic physics. These vertices control the interactions between quarks and gluons. Non-
perturbative methods are required to evaluate these vertices in the low-energy scale.

Due to the convoluted tensor structure of four gluon vertex, non-perturbative methods face the
challenge of extracting reliable data on this vertex. As such, it is poorly understood on the low-
energy scale. Lattice Quantum Chromodynamics provide access to this non-perturbative regime.
The following dissertation’s work conducted exploratory research on employing this method to
compute the four gluon vertex. This work chose the Landau gauge and did not consider the
dynamics of quarks.

To implement an approach to determine the four gluon vertex on the lattice by computing its form
factors, the vertex is constructed from first principles and in a set of chosen kinematic configurations
that allow for the four gluon correlation function to depend solely on the four gluon vertex with its
external legs contracted with the propagators. The form factors expressions can then be formulated
by spanning this correlation function on a tensor basis and projecting the form factors by Lorentz-
colour contractions of the correlation function with its basis elements. In principle, the tensor
structure of the correlation function allows for a large number of possible tensor basis elements, but
in the Landau gauge and this work’s chosen kinematic configurations, the number of possible tensor
basis elements is significantly reduced. This allows for practical access to lattice data from which
the vertex form factors can be determined. The tensor basis considered in this work is incomplete,
except for one of the chosen kinematic configurations.

The novel form factor data reported in this work achieved a reasonable signal-to-noise ratio and
statistical errors, from which conclusions can be drawn. The data showed how, in general, the form
factors’ contribution to the vertex differed and how significant their dependence on the kinematic
configuration was. Further improvements on this data can be accomplished by an increase in
the lattice volume and size of the statistical ensemble generated by lattice simulations. Other
realizations of Lattice Quantum Chromodynamics studies on the four gluon vertex can also be
exercised by considering other vertex basis tensor elements and investigating different kinematic
configurations.

Keywords: Lattice Quantum Chromodynamics, Non-perturbative Quantum Chromodynamics,
Four gluon vertex , Quantum Chromodynamics, Gluon interaction





Resumo

As funções de vértice de interação da Cromodinâmica Quântica são de importância fundamental
na f́ısica hadrónica. Estes vértices controlam as interações entre quarks e gluões. Para avaliar estes
vértices na escala de baixas energias são necessários métodos não perturbativos.

Devido à estrutura tensorial convoluta do vértice de quatro gluões, os métodos não perturbativos
enfrentam o desafio de extrair dados fiáveis sobre este vértice. Como tal, há uma ausência de
conhecimento deste vértice na escala de baixas energias. A Cromodinâmica Quântica na rede
permite aceder a este regime não perturbativo. No trabalho da dissertação que se segue foi conduzida
uma investigação exploratória sobre o emprego deste método para calcular o vértice de quatro
gluões. Neste trabalho foi escolhida a gauge de Landau e a dinâmica dos quarks não foi considerada.

Para implementar uma abordagem que permita determinar o vértice de quatro gluões na rede
através do cálculo dos seus fatores de forma, o vértice é constrúıdo a partir de primeiros prinćıpios
e num conjunto de configurações cinemáticas escolhidas tal que permitem que a função de correlação
de quatro gluões dependa apenas do vértice de quatro gluões com as suas pernas externas contráıdas
com os propagadores. As expressões dos fatores de forma podem então ser formuladas através da
extensão desta função de correlação numa base tensorial e projetando os fatores de forma, através
de contrações de cor e Lorentz da função de correlação com os seus elementos de base. Em prinćıpio,
a estrutura tensorial da função de correlação permite um grande número de elementos tensoriais
da base, mas, na gauge de Landau e nas configurações cinemáticas escolhidas neste trabalho, o
número de elementos de base tensoriais posśıveis é significativamente reduzido. Isto permite um
acesso prático a dados da rede a partir dos quais os fatores de forma dos vértices podem ser
determinados. A base tensorial considerada neste trabalho é incompleta, exceto para uma das
configurações cinemáticas escolhidas.

Os dados de fatores de forma relatados neste trabalho alcançaram uma razoável relação sinal-rúıdo
e erros estat́ısticos, dos quais podem ser tiradas conclusões. Os dados mostraram como, em geral,
as contribuições dos fatores de forma diferem entre si e o quão significativa é a sua dependência na
configuração cinemática. Melhorias adicionais nestes dados podem ser conseguidas por um aumento
no volume da rede e no tamanho da ensemble estat́ıstica gerada por simulações na rede. Outras
realizações de estudos de Cromodinâmica Quântica de Rede no vértice de quatro gluões também
podem ser exercidas considerando outros elementos tensoriais de base do vértice e investigando
diferentes configurações cinemáticas.



Palavras-chave: Cromodinâmica Quântica na rede, Cromodinâmica Quântica não perturbativa,
Vértice de quatro gluões , Cromodinâmica Quântica, Interação entre gluões
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Convention of Units and Notation

To simplify discussions, the following text will use Natural units, where the speed of light in vacuum
c and the reduced Planck constant ℏ are set to one,

c = ℏ = 1.

In this convention,
[length] = [time] = [energy]−1 = [mass]−1.

The chosen Minkowski space-time metric signature is

gµν = diag(+,−,−,−).

Einstein notation will be used, i.e. summation is assumed to any repeated indices within a term,
whether or not each index occurs once as a superscript and once as a subscript, for example∑

a,b

Aa1...an

b1...bm
Ba1...an

b1...bm
= Aa1...an

b1...bm
Ba1...an

b1...bm
= Ab1...bm

a1...an
Ba1...an

b1...bm
.

The chosen normalization convention for the SU(N) generators in the fundamental representation
(see Appendix A) will be

Tr(tatb) = 1
2δ

ab.



Introduction

The Standard Model is a mathematical model of the fundamental structure of matter, consisting
of the elementary particles and the forces that govern their interactions [42]. The weak, strong and
electromagnetic forces govern these interactions.

Quantum Field Theory (QFT) is the theoretical framework of the Standard Model, and Quan-
tum Chromodynamics (QCD) is the QFT belonging to the strongly interacting matter sector of
the Standard Model [11]. QCD is formulated in terms of the elementary particles that constitute
hadronic matter, quarks and gluons, where the latter are the force-carrying particles that mediate
this interaction.

Even though the Standard Model has had remarkable success in explaining the outcome of particle
physics experiments, it has shortcomings [28]. To demonstrate its deficiencies and search for physics
beyond the Standard Model [36], it is necessary to understand it as well as possible.

At high energies (ultraviolet), QCD can be treated analytically with perturbation theory due to
its asymptotic freedom [56]. This makes perturbative studies of QCD phenomena reliable at high
energy scales [17]. However, there is no such analytical treatment of QCD at low energies (infrared),
leading to invisible effects in the perturbative context. There are two prominent examples of low-
energy phenomena. One is colour confinement [5], which describes the fact that no free quark or
gluon has ever been observed, only their confinement within hadronic bound states, and the other
is chiral symmetry breaking [50], which explains the observed masses of some mesons. The previous
two mechanisms play a dominant role in determining the observable characteristics of QCD, and
as such, there is a call for non-perturbative methods [34].

Two major ab initio approaches exist that can delve into the infrared scale of QCD, Lattice Quantum
Chromodynamics [57] and Functional Methods [15,32], each with its advantages and disadvantages.
Some examples of Functional Methods are the renormalization group [20], Dyson-Schwinger equa-
tions [5] and n-particle irreducible methods [8]. Although they set the stage for a non-perturbative
exploration of QCD, they rely on truncating systems of equations by making some ansatz. This
work follows the Lattice Quantum Chromodynamics approach, where the continuum Euclidean
space-time is discretized and set on a finite volume lattice, allowing for numerical methods to be
implemented. This method necessarily involves extrapolation between the lattice and continuum
space-time, and, as such, the data found in this approach is subjected to errors originating from
the continuum extrapolation.
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Interaction vertex functions, also known as one-particle irreducible functions, control the inter-
actions between quarks and gluons and are thus of prime theoretical interest for understanding
hadronic physics. Several studies have put these vertices under the scrutiny of non-perturbative
approaches [3, 4, 10, 13, 16, 18, 24, 29, 32, 35, 59], in the hopes of gaining insight into the aforemen-
tioned infrared regime of QCD. Of all elementary interaction vertices allowed by QCD, the four
gluon vertex is the most poorly understood due to its intricate tensor structure, which considerably
complicates the extraction of reliable, non-perturbative information.

Following the call for the non-perturbative study on the four gluon vertex, this work will conduct
research by constructing this vertex from first principles and using Lattice QCD simulations to
compute its form factors. Due to this vertex’s previously stated convoluted tensor structure, this
dissertation will be an explorative study bound by the choice of a set of kinematic configurations
and tensor structures that allow for a practical extraction of data from Lattice QCD methods.
Similar studies were conducted in [9, 12].

This dissertation is organized as follows. In Chapter 1, the formalism of Quantum Field Theory
is outlined and reviewed, and with it, Quantum Chromodynamics is formulated, with particular
emphasis on the concepts required for this work. In Chapter 2, the four gluon vertex is found
from the four gluon Green functions in a specific kinematic configuration that allows isolating its
contribution. With this, the vertex is spanned on a tensor basis, and expression for the form factors
can be formulated by contractions of the Green function with the tensor basis elements. Chapter 3
starts by reviewing Lattice QFT, and with it, the gluon sector of Lattice QCD is devised. It then
follows how to perform Lattice computations and extract data, particularly the lattice four gluon
vertex data. This Chapter ends with a review of the different sources of errors affecting this data
and how this work will approach them. Finally, Chapter 4 reports on this work’s results.
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1. The Basics of Quantum Chromo-
dynamics

This chapter aims to review Quantum Chromodynamics and focus on the relevant concepts that
will come into play in the following chapters. This chapter starts with a basic introduction to
Quantum Field Theory. QCD is then formulated by first building the classical theory and then
quantizing it. This subject’s more complete and in-depth treatment can be found in [38,45,49,51].

1.1 Quantum Field Theory and the Path Integral Approach
Quantum Field Theory is the most useful theoretical framework for studying elementary particle
interactions, where the necessary information for experimental predictions is fully encapsulated in
QFT’s n-point Green functions. This can be seen in the LSZ reduction formula’s formalism, which
aims to compute S-matrix elements – the quantum mechanical transition amplitude between n
asymptotic multi-particle states. Green functions are defined by the vacuum expectation value of
the time-ordered products T , of the generalized quantum mechanical field operators ϕ̂α(x)1,

⟨0| T {ϕ̂α1(x1)...ϕ̂αn
(xn)} |0⟩ ≡ ⟨ϕ̂α1(x1)...ϕ̂αn

(xn)⟩ (1.1)

In the Minkowski space-time path-integral formalism [37], these functions are given by

⟨ϕ̂α1(x1)...ϕ̂αn(xn)⟩ =
∫

D[ϕα]eiS[ϕα]ϕα1(x1)...ϕαn
(xn)∫

D[ϕα]eiS[ϕα] , (1.2)

where on the r.h.s side, the fields are just regular functions, i.e. c-numbers.

D[ϕα] =
∏

x

∏
α

dϕα(x) (1.3)

is the integration measure and

S[ϕα] =
∫
d4xL(ϕα(x), ∂µϕ

µ
α(x)) (1.4)

is the action – a functional of the field variables with L (ϕα(x), ∂µϕ
µ
α(x)) being the classical La-

grangian density. The Green functions are evaluated by a functional integration over all the possible
1α is a generalized indexation of possibly different fields and their respective internal degrees of freedom.
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paths in the fields configuration space, starting and ending at vacuum, i.e. ϕα(x) = 0, with S[ϕα]
acting as a weight for every each path. It then follows that the Lagrangian density, as a function
of the classical fields, defines the quantum theory’s dynamics by determining the exponent in the
path integral and a classical theory is quantized.

Note that it has been assumed that there are infinitely many interacting degrees of freedom. Prac-
tically, this means that when computing the Green functions, one has to consider arbitrarily short
and long distances or equivalently high and low energies, respectively [47]. In perturbation theory,
this leads to the divergent loop integrals [41], which can be made finite by introducing a regulator
in the loop integrals such that these become convergent. This regulator introduces a scale into the
theory. The regulator-dependent parts can then be separated from the independent ones and seen
as the source of divergence when the regulator is adequately removed. Doing this allows one to
identify, isolate and remove these infinities by renormalizing the theory, i.e. redefining the theory’s
parameters, void of any direct physical meaning, given as the bare masses, coupling constants and
field strengths such that these infinities get removed. In lattice QCD (Chapter 3), this scale ambi-
guity is dealt with by defining the theory on a discrete space-time lattice with a finite lattice spacing
and volume that regularizes the theory, i.e. rendering it finite in both the infrared and ultraviolet.

1.1.1 Quantum Effective Action
Computing the Green functions by exact evaluation in the continuum space-time path integral (1.2)
is not a practical possibility. In Chapter 3, we will see how this integration can be approximated
with the formalism of lattice QCD. Still, in continuum space-time, one way to define the Green
functions is by using the generating functional

Z[Jα] =
∫

D[ϕ]e
i
∫

d4x

{
L(ϕα(x),∂µϕµ

α(x))−Jα(x)ϕα(x)
}
. (1.5)

Here, Z[Jα] is the generating functional depending on the auxiliary source field Jα(x) of the ϕα(x)
classical field functions. The Green functions are then computed by the functional differentiation

⟨ϕ̂α1(x1)...ϕ̂αn
(xn)⟩ = in

1
Z[Jα]

δnZ[Jα]
δJα1(x1)...δJαn(xn)

∣∣∣∣
Jα=0

. (1.6)

However, there are other functionals from which one can build the Green functions by functional
differentiation. Defining the quantum effective action as

Γ [Φα] = W [Jα] +
∫
d4xΦα(x)Jα(x) (1.7)

with
W [Jα] = −i lnZ[Jα] (1.8)

and

Φα(x) = −δW [Jα]
δJα(x) = 1

Z[Jα]
iδ

δJ(x)α
Z[Jα] ≡ ⟨ϕ̂α(x)⟩J

⟨0|0⟩J

, (1.9)

the vacuum expectation value of the field ϕα in the presence of the source field Jα, which vanishes
when Jα = 0.
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In a perturbative evaluation of the path-integral, which entails the use of Feynman diagrams [60], it
is seen that the Green functions generated by the generating functional (1.6) contain disconnected
graphs and connected graphs. The former graphs do not contribute to the S-matrix. The latter
contains redundant information in the form of external propagators, which are common to all graphs,
and one-particle reducible graphs that can be separated by removing a propagator that connects the
two. The quantum effective action is the generator of the one-particle irreducible Green functions,
which eliminate redundancies and encode only the relevant information for calculations.

From the effective action (1.7), it follows that

Jα(x) = δΓ[Φα]
δΦα(x) , (1.10)

which can be used with (1.7) and (1.9) to give the orthogonality relation∫
d4y

δ2W [Jα]
δJα1(x)δJα2(y)

δ2Γ[Φα]
δΦα2(y)δΦα3(z) = −δα1α3(x− z). (1.11)

From this expression we see that

−
[

δ2Γ[Φα]
δΦα2(x)δΦα3(y)

]−1

= δ2W [Jα]
δJα2(x)δJα3(y) ≡ Dxy

α1α2
[Φ], (1.12)

with Dxy
α1α2

[Φ] being the ϕα(x) field propagator in the presence of a source Jα(x) and

−iDxy
α1α2

[Φ]
∣∣∣∣
Jα=0

= ⟨ϕ̂α1(x)ϕ̂α2(y)⟩ ≡ Dα1α2(x, y). (1.13)

Using these definitions on the expression that finds the n-point Green functions from the generating
functional (1.6), and after some algebra, we can find the identity

⟨ϕ̂α1(x1)...ϕ̂αn
(xn)⟩ =

[
Φα(x) +

∫
d4y Dxy

α [Φα] iδ

δΦα(y)

]n ∣∣∣∣
Jα=0

(1.14)

which is the relation that we were after. This allows one to find the n-point Green functions from
functional differentiation of the quantum effective action, i.e., the one-particle irreducible graphs,
also known as the n-point vertex functions:

δnΓ[Φα]
δΦα1(x1)...δΦαn(xn)

∣∣∣∣
Jα=0

≡ Γα1...αn
(x1, ..., xn). (1.15)

1.2 Formulating Quantum Chromodynamics
Quantum Chromodynamics is the QFT of strong force interactions associated with the colour-
charged2 elementary particles quarks and gluons. There are three types of colour that, by conven-
tion, are labelled red, green, or blue. Such a theory needs to be symmetric under gauge transfor-
mations of these colour charge degrees of freedom3.

2Historically, colour charge quantum number was introduced so that the observed ground state of hadrons would
agree with the spin-statistics theorem.

3The colour labels that are given to QCD’s elementary particles are redundant, only the relationship between
these degrees of freedom is relevant.
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Following the concepts introduced earlier, formulating this colour gauge theory requires the expres-
sion for the Lagrangian density. For this, one can start by writing the quark and anti-quark fields
as

ψα,f,j(x), ψ†
α,f,c(x)γ0 ≡ ψα,f,j(x), (1.16)

respectively. They are Dirac spinors, indexed by α, with f and j indexing the six flavour and
three colour degrees of freedom, respectively. The former two indices are irrelevant in the following
discussion and will be suppressed. The Dirac Lagrangian density that provides the dynamical
content of these fields can be written as

LDirac = ψj(x) (iγµ∂µ −m)ψj(x), (1.17)

where the flavour diagonal matrix m gives the different quark flavour bare masses.

Due to the complex-valued triplet colour structure of these fields, colour gauge symmetry is realized
by imposing the symmetry of the previous expression under SU(3) group local transformations in
the fundamental representation,

ψi(x) −→ Vij(x)ψj(x), (1.18)

and anti-fundamental representation,

ψ†
i (x) −→ ψ†

j (x)V †
ij(x), (1.19)

with
Vij(x) ≡ exp[iθa(x)taij ], (1.20)

where ta are the eight generators of SU(3) in the fundamental representation and θa(x) are real
numbers that parameterize the transformation.

The derivative term in LDirac (1.17) requires evaluation of ψ(x) at two different points in space-
time separated by an infinitesimal distance, resulting in this expression not being invariant under
the transformations (1.18) and (1.19). To deal with the lack of gauge symmetry, we introduce the
link variable U(x, y), defined by the path-ordered exponential4

U(x, y) = P{ exp
(
ig

∫ y

x

dlµAµ(z)
)

}, (1.21)

where the matrix-valued gauge field Aµ will be defined later on, and g is this field’s bare cou-
pling constant. The link variable can be set to follow the gauge transformation in the adjoint
representation

U(x, y) −→ V (x)U(x, y)V †(y). (1.22)

With this, we can now define the covariant derivative Dµ as

Dµψ(x) ≡ lim
ϵ→∞

1
ϵ

[U(x, x+ ϵ)ψ(x+ ϵ) − ψ(x)], (1.23)

4The path-ordering ensures that exponential matrix definition as a power series is still valid even if they are
non-commutative.
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Following the transformations (1.18) and (1.22) leads to this expression having the gauge transfor-
mation

Dµψ(x) −→ V (x)Dµψ(x). (1.24)

The derivative term of (1.17) with ∂µ replaced by Dµ is now invariant under this gauge transfor-
mation. To now find an expression for Dµ we can write the Taylor Series expansion,

U(x, x+ ϵ) = I3 − igϵµAµ(x) + O
(
ϵ2
)
, (1.25)

Substituting this expression in (1.23), we find

Dµ = ∂µ − igAµ(x), (1.26)

The transformation of Aµ(x) can be readily found by inserting (1.25) in (1.23),

Aµ(x) −→ V (x)Aµ(x)V †(x) − i

g
[∂µV (x)]V †(x). (1.27)

From this, we see that Aµ(x) transforms in the adjoint representation and so can be written with
the generators in the fundamental representation as

Aµ(x) = Aa
µ(x)ta. (1.28)

This newly introduced gauge field can be then be identified as the eight different gluon fields5.
Promoting it to a dynamical field requires a gauge invariant kinetic term. This can be found by
inspection of the gauge field transformation (1.27) on

Fµν(x) = i

g
[Dµ, Dν ] , (1.29)

with Fµν(x) the field-strength tensor, from which it is seen to transform as

Fµν(x) −→ V (x)Fµν(x)V †(x). (1.30)

Like (1.28), the field-strength tensor can be defined in the adjoint representation,

Fµν(x) = F a
µνt

a. (1.31)

and the required gauge invariant kinetic term can be written as

−1
4F

a
µνF

aµν = −1
2Tr(FµνF

µν), (1.32)

with,
F a

µν(x) = ∂µA
a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν . (1.33)

5Gluons’s colour degrees of freedom (red, anti-red, green, anti-green, blue and anti-blue) can be found by noting
that the SU(3) fundamental representation, Rf , is spanned by the quark colour triplet (eq.1.18) and anti-fundamental
representation, Rf , spanned by the anti-quark colour triplet (eq.1.19). These representations can be used to write
the adjoint representation, Radj , in the tensor product Rf ⊗ Rf = Radj ⊗ 1 by using [25], therefore preserving the
quark and anti-quark colour organization scheme in the adjoint representation.
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The Dirac Lagrangian (1.17) and the expressions resulting from demanding gauge invariance, (1.26)
and (1.32), now allow the writing of the colour charge gauge symmetric Lagrangian density,

LQCD = −1
2Tr(FµνF

µν) + ψ (iγµDµ −m)ψ. (1.34)

The first term is also known as the SU(3) Yang-Mills theory’s Lagrangian,

LYM = −1
2Tr(FµνF

µν). (1.35)

As this work aims to investigate the four gluon vertex, the previous expression is of special impor-
tance, as will be seen in Chapter 3.

1.2.1 Quantization and Gauge Fixing
The transformation property of the gauge fields (1.27) introduced an infinite number of redundant
degrees of freedom. With this transformation, V (x) relates gauge equivalent fields in what is called
a gauge orbit. These redundant degrees of freedom describe the same physics, and with their
presence, a naive quantization of the classical field theory described in the previous section leads
to integrations of the form ∫

D[A]eiS[A]. (1.36)

Here, D[A] takes into account the infinite number of gauge fields in a given gauge orbit related by
the gauge transformation (1.27). Such a contribution will lead to the divergence of the integration
over the gauge orbit, resulting in an ill-defined generating functional (1.2). This shows the need
to adequately discard the gauge orbit redundant degrees of freedom, which is the scope of the
Faddeev–Popov procedure [62]. The outcome of this method is∫

D[A]eiS[A] =
∫

D[θ]
∫

D[A]eiS[A]det
(
δfa[A]
δθb

) ∣∣∣∣
θ=0

exp
(

−i
2ξ

∫
d4xfa[A]2

)
, (1.37)

where on the r.h.s, the first integration is over the gauge orbit, amounting to a factor that can
be formally cancelled in the theory’s Green functions (1.2). The functional fa[A] is a gauge fixing
condition verifying fa[A] = 0, and it has been assumed that this constraint is ideal, i.e. only one
Aa(x) in the gauge orbit integration satisfies this. Generally, this is not the case, and one has to
deal with Gribov Ambiguity [30]. The real number ξ is a parameter that determines a choice of
gauge.

Gauge fixing results in the breaking of gauge symmetry, leading to gauge-dependent Green functions.
For the rest of this dissertation, the Landau gauge fixing condition

fa[Aθ] = ∂µAa
µ = 0 (1.38)

is chosen. The outcome of experiments is gauge-independent. To compute gauge unconstrained
observables, the response of the gauge-dependent Green functions with the change of gauge con-
ditions is needed, such that one can relate Green functions defined with different gauges. This is
accomplished by the Slavnov-Taylor identities [53].

8



2. Four Gluon Vertex

The main goal of this dissertation’s work is to compute the four gluon vertex in the Landau Gauge.
This chapter is dedicated to finding how this can be done from what is accessible in Lattice QCD
simulations (see Chapter 3). This introduces the necessity of expressing the Green functions in terms
of their form factors, which is done by exploiting the tensor structure of the Green functions. As
will be seen, this is a challenging task, so one must resort to restrictions stemming from theoretical
arguments and computation capabilities. In what follows, the fermionic sector of QCD is neglected.

2.1 Green Functions in a Tensor Basis

An n-point gluon Green function (2 ≤ n ≤ 4) in momentum-space6 has n− 1 independent external
momenta. It can be spanned in the assumed to be complete N -dimensional tensor basis, with N
depending on the type of Green function, by using N -independent tensor structures {t(i)},

⟨Aa1
µ1

(p1)...Aan
µn

(pn)⟩ =
N∑

i=1

(
F (i)(p2

1, ..., p
2
n, p1 · p2, ...)t(i)a1...an

µ1...µn
(p1, ..., pn)

)
(2π)4

δ(p1 + ...+ pn),

(2.1)
where F i are form factors that encapsulate the physical content of the Green functions. They depend
on all possible Lorentz invariant momentum variables such that the Green functions comply with
Bose-symmetry.

The available Lorentz and colour building blocks of such a basis are {gµν , pµ} and {δab, fabc, dabc},
respectively. These can then be combined in every possible way that complies with the constraints
of the Green functions, where p stands for all independent momenta.

The gluon propagator, in momentum space, is given by

⟨Aa
µ(p1)Ab

ν(p2)⟩ = Dab
µν(p) (2π)4

δ(p1 + p2). (2.2)

Its tensor structure is constrained by the Slavnov-Taylor identity, which in the Landau gauge reads

pµpνDab
µν(p) = 0. (2.3)

6The momentum-space Green functions is found by Fourier transforming the space-time Green functions, hence
the appearance of the Dirac-delta function and the (2π)4 factor.
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The only available rank-2 tensors for building this expression are δab, gµν and pµpν
7. These struc-

tures and the previous identity fix the simple tensor structure of the gluon propagator to be

Dab
µν(p) = D(p2)δabPµν(p), (2.4)

where

Pµν(p) =
(
gµν − n

pµpν

p2

)
(2.5)

with pµPµν(p) = 0 the momentum-orthogonal projector and n = 0 if p = 0 and n = 1 if p ̸= 0.
Using this tensor decomposition, the form factor can be projected when multiplying both sides of
the propagator (2.2) by δabgµν , giving

δ(p1 + p2)D(p2) = ⟨Tr [Aµ(p1)Aµ(p2)]⟩
(2π)4 (16 − 4n) (2.6)

On the other hand, the three independent external momenta and Lorentz-colour tensor structure
of the four gluon Green function make it extremely rich, complex and cumbersome to compute
its form factors since it allows a large range of Lorentz-colour rank-4 linearly independent basis
elements:

⟨Aa
µ(p1)Ab

ν(p2)Ac
η(p3)Ad

ζ(p4)⟩ =
N∑

i=1

(
F (i)t

(i)abcd
µνηζ (p1, p2, p3, p4)

)
(2π)4

δ(p1 + p2 + p3 + p4), (2.7)

with

F (i) ≡ F (i) (p2
1 + ...+ p2

4, (p1 · p2) + (p1 · p3) + (p1 · p4) + (p2 · p3) + (p2 · p4) + (p3 · p4)
)
, (2.8)

the Bose-symmetric form factor, with this being the only possible momenta variable dependence.

As stated in this chapter’s introduction, this work’s goal is to find the four gluon vertex - i.e.
computing its form factors. To do so, one needs to isolate these from the Green functions form
factors (2.7).

2.2 Isolating the Vertex

As will be seen in Chapter 3, Lattice QCD simulations only access the Green functions. The lattice
evaluation of vertices can then only be achieved if the Green functions are decomposed in terms of
vertex functions. To find the four gluon vertex, one can start by using expression (1.14) to express
the 4-point gluon Green functions8 as a function of functional derivatives of the quantum effective
action. Doing so, and Fourier transforming into momentum-space, we get

⟨Aa
µ(p1)Ab

ν(p2)Ac
σ(p3)Ad

ζ(p4)⟩ = Gabcd
µνσζ(p1, p2, p3, p4) (2π)4

δ(p1 + p2 + p3 + p4), (2.9)

7If p = 0, pµpν is discarded.
8From now on, the field operator circumflex notation will be omitted.
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Figure 2.1: Diagrammatic representation of expression (2.10), i.e. the four gluon Green functions,
denoted the black circle, which decomposed in terms of the gluon propagator, as well as the three
and four vertices, all denoted here by the shaded circles. Lorentz, colour and momenta indices are
omitted.

with

Gabcd
µνηζ(p1, p2, p3, p4) = Daa′

µµ′(p1)Dbb′

νν′(p2)Dcc′

ηη′(p3)Ddd′

ζζ′ (p4)Γµ′ν′η′ζ′

a′b′c′d′ (p1, p2, p3, p4)

− iDaã
µµ̃(p1)Dbb′

νν′(p2)Γµ̃ν′ν̃′

ãb′b̃′ (p1, p2, p1 + p2)

×Db̃′b̃
ν̃′ν̃(p1 + p2)Γν̃η′ζ′

b̃c′d′ (p3, p4, p3 + p4)Dcc′

ηη′(p3)Ddd′

ζζ′ (p4)

+Dab
µν(p1)δ(p1 + p2)Dcd

ηζ(p4)δ(p3 + p4)
+ cyclic permutations.

(2.10)

This expression is diagrammatically represented in Figure 2.1. In the following chapter, it will
be seen that, in lattice QCD, one only has access to Gabcd

µνηζ(p1, p2, p3, p4). To compute the four
gluon vertex form factors, one could, in principle, consider every term in the last expression and
then subtract the contribution of the three 3-vertices and disconnected propagators terms from
the four gluon vertex, but in the next chapter, we will see that this would heavily hinder the
lattice simulations. One can remove these troublesome term contributions with a suitable choice of
independent external momenta kinematics. Firstly, the disconnected propagators can be removed
if any two external propagators i and j are such that pi + pj ̸= 0. In Appendix B, the remaining
3-vertex terms can also be seen to vanish by choosing a kinematic configuration with proportional
external momentum, i.e. when

p1 = c1p, p2 = c2p, p3 = c3p, p4 = (−c1 − c2 − c3) p. (2.11)
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With this, we finally have:

⟨Aa
µ(p1)Ab

ν(p2)Ac
η(p3)Ad

ζ(p4)⟩ =Daa′

µµ′(p1)Dbb′

νν′(p2)Dcc′

ηη′(p3)Ddd′

ζζ′ (p4)

× Γµ′ν′η′ζ′

a′b′c′d′ (p1, p2, p3, p4)(2π)4δ(p1 + p2 + p3 + p4),
(2.12)

where the four gluon vertex term has been isolated.

2.3 Computing the Vertex Form Factors

2.3.1 Tensor basis
Spanning the four gluon vertex in a suitable tensor basis enables expressing its form factors. In
[9, 12, 23, 29, 33], discussions have been made on the possible tensor structure of the four gluon
vertex basis, composed by combinations of members of the rank-4 Lorentz-colour tensors sets:
{gµνgηζ , gµνpηpζ , pµpνpηpζ} and {δabδcd, fabrf cdr, fabrdcdr, dabrdcdr}. Due to the vast amount of
possible basis tensors shown in these studies, one is forced to adopt some restriction to a smaller
subset of basis elements. One major simplification is made with the previously chosen kinematics
(2.11) by noting that vertex basis tensors with four-momenta structure vanish when contracted with
the momenta-orthogonal projectors (2.5), hence leaving only the possible Lorentz rank-4 tensor
{gµνgηζ} as building blocks that contributes to the Green function tensor structure.

In this work, from the remaining possible basis structure, to build such a basis, we first consider
the tree level four gluon vertex,

t
(1)µνηζ
abcd = fabrfcdr(gµζgνη − gµηgνζ) + facrfbdr(gµνgζη − gµηgνζ)

+ fadrfbcr(gµνgηζ − gµζgνη).
(2.13)

This is the leading order contribution to the four gluons interaction in perturbation theory, which
surely contributes to the high momentum limit of the vertex basis built here.

A near-identical structure can be found by replacing the anti-symmetric fabc with the symmetric
dabc, symmetrizing the Lorentz structures, such that Bose-Symmetry is preserved. Such a basis
element is:

t̃
(1)µνηζ
abcd = dabrdcdr(gµηgνζ + gµζgνη) + dacrdbdr(gµζgνη + gµνgηζ)

+ dadrdbcr(gµνgηζ + gµηgνζ).
(2.14)

The last structure that shall be considered here is

t
(2)µνηζ
abcd = (gζηgµν + gζνgµη + gζµgνη)(δabδcd + δacδbd + δadδbc), (2.15)

which was also studied as a basis structure in [9].

These tensors do not form an orthogonal basis, as can be seen in the Lortenz-colour contractions,
denoted here by · ,

t(1) · t(2) = 0
t̃ (1) · t(2) ̸= 0
t̃ (1) · t(1) ̸= 0.

(2.16)
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But from this, one also sees that a new tensor can be defined,

t(3) ≡ 1
t̃ (1) · t(1) t̃

(1) − 1
t(1) · t(1) t

(1) − t̃ (1) · t(2)(
t(2) · t(2)

) (
t̃ (1) · t(1)

) t(2), (2.17)

such that {t(1), t(2), t(3)} is an orthogonal tensor basis, following the relation

t(i) · t(j) = Njδ
ij , (2.18)

where
N1 = t(1) · t(1), N2 = t(2) · t(2), N3 = t(3) · t(3). (2.19)

2.3.2 Form Factors
The four gluon vertex may now be written on this basis,

Γµ′ν′η′ζ′

a′b′c′d′ (p2) = F̄ (1)(p2)t(0)µ′ν′η′ζ′

a′b′c′d′ + F̄ (2)(p2)t(2)µ′ν′η′ζ′

a′b′c′d′ + F̄ (3)(p2)t(3)µ′ν′η′ζ′

a′b′c′d′ + ... , (2.20)

where the vertex form factors momenta dependence follow (2.8) and the kinematic configuration
(2.11), with the ellipsis expressing the fact that this is not necessarily a complete basis. This vertex
can now be inserted in the four gluon Green function expression found in (2.24),

⟨Aa
µ(p1)Ab

ν(p2)Ac
η(p3)Ad

ζ(p4)⟩ = Daa′

µµ′(p1)Dbb′

νν′(p2)Dcc′

ηη′(p3)Ddd′

ζζ′ (p4)

×
(
F̄ (1)(p2)t(0)µ′ν′η′ζ′

a′b′c′d′ + F̄ (2)(p2)t(2)µ′ν′η′ζ′

a′b′c′d′ + F̄ (3)(p2)t(3)µ′ν′η′ζ′

a′b′c′d′ + ...
)

× (2π)4δ(p1 + p2 + p3 + p4).
(2.21)

Similarly to what was done in the gluon propagator (2.6), the four gluon Green function form
factors, defined in (2.7), can be found by the projection

δ(p1 + p2 + p3 + p4)F (i)(p2) = 1
(2π)4 t

(i)abcd
µ′ν′η′ζ′g

µ′µgν′νgη′ηgζ′ζ⟨Aa
µ(p1)Ab

ν(p2)Ac
η(p3)Ad

ζ(p4)⟩. (2.22)

In the next chapter, we will see that this expression can be computed in the lattice formalism. The
four gluon vertex form factors can then be found with

F̄ (i)(p2) = F (i)

gµ′µgν′νgη′ηgζ′ζDaa′
µµ′(p1)Dbb′

νν′(p2)Dcc′
ηη′(p3)Ddd′

ζζ′ (p4)t(i)abcd
µ′ν′η′ζ′t

(i)µ′ν′η′ζ′

a′b′c′d′

. (2.23)

The reader is again reminded that these are found on a basis that is not necessarily complete.
Therefore, the form factors found here may contain contributions from form factors associated with
basis elements that are not considered. Appendix B makes these expressions explicit for the three
t(i) and kinematic configurations chosen in this study. The latter are

p1 = p, p2 = p, p3 = p, p4 = −3p (p, p, p,−3p),
p1 = 0, p2 = p, p3 = p, p4 = −2p (0, p, p,−2p),
p1 = 0, p2 = p, p3 = 2p, p4 = −3p (0, p, 2p,−3p).

(2.24)

Of utmost importance is configuration (p, p, p,−3p), where in [9], it was shown that this reduced the
number of different possible form factors to three, ensuring that our chosen tensor basis is complete.
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3. Lattice Quantum Chromodynam-
ics

This chapter follows the structure of Chapter 1, providing a review of what lattice QCD is and
how to perform lattice simulation on a computer, applied to the determination of the four gluon
functions. A detailed introduction to the formulation of a QFT on a lattice with applications to
QCD can be found in [26,48,54].

3.1 The Path Integral in Euclidean Space-Time

In the path-integral approach to QCD, the computation of the Green functions requires integrating
over the field configuration space. This calls for a numerical computation that is especially diffi-
cult due to the oscillating behaviour of eiS . The convergence problems due to the nature of the
integrand can be improved by changing from Minkowski to Euclidean space-time by rotating the
time coordinate to the imaginary axis t −→ it, known as Wick rotation. It can be seen that this
analytic continuation leads to

eiS −−−−→
t−→it

e−SE , (3.1)

where SE is the Euclidean action. This removes the oscillating behaviour in the path integral and
allows a convergent exponential decay if the action is real and bounded from below. See [44] for a
proper formulation of how to link Euclidean and Minkowski space-time field theory.

We can now write the Euclidean space-time path integral and Green functions as

⟨ϕ̂α1(x1)...ϕ̂αn
(xn)⟩E =

∫
D[ϕ]e−SE [ϕ]ϕα1(x1)...ϕαn(xn)∫

D[ϕ]e−SE [ϕ] , (3.2)

where we see that this expression can be read as a statistical ensemble average, with a Boltzmann
distribution given by e−SE . Therefore, the Euclidean Green functions can now be interpreted
as correlation functions, and one can use statistical physics methods to compute the correlation
functions, such as Monte Carlo simulations [39]. The lattice formulation developed in this chapter
will allow the practical implementation of this numerical method by constraining the previous
integrations to a discretized space-time in a finite volume. Henceforth, we will work in the Euclidean
space-time and remove E to simplify notation.
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3.2 Lattice Quantum Field Theory
The discretization of space-time on a lattice can be written as

xµ = anµ, nµ ∈ Z4 (3.3)

where a is the lattice spacing. In the commonly used restriction of xµ to a hypercubic lattice of
volume V = L4, we have

nµ ∈ {0, 1, ... , N − 1}µ (3.4)

and L = aN . With this, space-time is defined in a finite volume V and restricted to a finite set of
points separated by the lattice spacing a.

Two immediate consequences can be found by inspecting the restriction of the continuum Fourier
transform,

ϕ(x) =
∫

d4p

(2π)4 ϕ̃(p)eipµxµ , (3.5)

to the discrete space-time domain of field ϕ(x). Due to the finite volume of the hypercube (3.4),
periodic boundary conditions can be imposed,

ϕ(xµ) = ϕ(xµ + aNµ̂), (3.6)

where µ̂ is the unit lattice vector in the direction µ. It follows that

ϕ(x) =
∫

d4p

(2π)4 ϕ̃(p)eipµxµ =
∫

d4p

(2π)4 ϕ̃(p)eipµ(xµ+aNµ̂)

=
∫

d4p

(2π)4 ϕ̃(p)ei(pµxµ+aNpµµ̂) =
∫

d4p

(2π)4 ϕ̃(p)ei(pµxµ+aNpµµ̂+2πlµµ̂), lµ ∈ Z4
(3.7)

which implies that
ei(apµµ̂N+2πlµµ̂) = 1, (3.8)

leading to the discretization of the momenta:

pµ = 2πlµ
aN

. (3.9)

Moreover, since
eipµxµ = ei(pµxµ+2πnµµ̂) = ei(pµ+ 2π

a µ̂)xµ , (3.10)

the Fourier transform (3.5) is periodic in momentum space and can be restricted to − π
a µ̂ < pµ ≤ π

a µ̂.
It then follows that

pµ = 2πlµ
aN

, lµ ∈
{

(−N/2) + 1, ..., N/2
}

µ
. (3.11)

Therefore, not only is the momenta discretized, but also bounded. This serves as the high energy
cut-off, and since the lattice volume V serves as a high distance (low energy) cut-off, a lattice theory
is naturally regularized, such that when the lattice spacing a is given units, the scale ambiguity is
dealt with, as was mentioned at the end of section 1.1.
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The continuous integral over the momenta in Fourier transform (3.5) can now be converted to the
discrete finite sum

ϕ(x) = 1
V

∑
lµ

eipµ·xµ ϕ̃(p). (3.12)

Furthermore, the measure D[ϕ] in (3.2) becomes a finite product over the lattice volume,

D[ϕ] =
V∏
x

dϕα(x), (3.13)

such that the configuration space integration is now of finite dimension and, in principle, one can
perform numerical integration. Due to the high dimension of this integration, a practical approach
is the statistical method of Monte Carlo integration.

We, therefore, see how the lattice formulation leads to the practical possibility of computing the
correlation function. Still, one needs to formulate the gauge invariant quantum field theory on the
lattice, i.e. find the lattice action such that in the continuum limit, it corresponds to the continuum
theory, which in this case will be QCD.

3.3 Quenched Quantum Chromodynamics Lattice Action
To formulate QCD on the lattice, we use colour gauge symmetry as a guiding principle (see Section
1.2) to find an action that, in the continuum limit, corresponds to its physical continuum space-
time version. In what follows, we will not take into account the quarks dynamics and consider only
the pure gauge sector of QCD, known as quenched QCD, which is motivated by the alleviation of
computer resources and reasonable estimates for quenching errors [2].

Start with defining the lattice version of the link variable (1.22) as

Uµ(x) = P
{

exp
(
ig

∫ x+aµ̂

x

dlνAν(x+ dl)
)}

, (3.14)

the link variable Uµ(x) is now a field orientated towards µ and connecting the lattice points between
x and x+aµ̂. By considering a small lattice spacing9, such that the distance between x and x+aµ̂
is small, one can approximate this path-integral by

Uµ(x) = eiagAµ(x+ µ̂
2 ), (3.15)

following the adjoint representation transformation

Uµ(x) −→ V (x)Uµ(x)V (x+ µ̂), (3.16)

with
Vij(x) ≡ exp[iθa(x)ta], (3.17)

9Note that the notion of a ”small” lattice spacing only makes sense in the continuum extrapolation, i.e. a −→ 0.
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Figure 3.1: Graphical representation of the construction of the plaquette Uµν(x), on the µ−ν plane,
by multiplying links in a closed loop.

where Aµ = taAa
µ, just as was done in the continuum case. Although fermions will be neglected in

this work, the link variable serves the same purpose as in the continuum case, where one needs to
be able to compare field values at different sites in a gauge-invariant way.

The link field (3.15) enables one to build the colour gauge symmetric action whose continuum limit
is the Euclidean Yang-Mills action (see 1.34),

SYM[F ] =
∫

d4x
1
2Tr(FµνFµν). (3.18)

The simplest one is the Wilson action [63], and it is built from

Uµν(x) = Uµ(x)Uν(x+ µ̂)U†
µ(x+ ν̂)U†

ν (x), (3.19)

known as a plaquette, pictorially represented in Figure 2.1. By using the link’s gauge transformation
(3.16) in the plaquette, one sees that

Uµν(x) −→ V (x)Uµν(x)V †(x), (3.20)

such that we can build the gauge symmetric colour trace,

Tr [Uµν(x)] −→ Tr [V (x)Uµν(x)V (x)] = Tr [Uµν(x)] . (3.21)

The Wilson action can now be built by applying the Baker-Campbell-Hausdorff formula,

eAeB = eA+B+ 1
2 [A,B]+... (3.22)

in the plaquette (3.19), and Taylor expanding, that leads to

Uµν(x) = exp{ia2gFµν(x) + O(a3)}, (3.23)
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where we find the lattice version of the field-strength tensor,

Fµν(x) ≡ ∂µAν − ∂νAµ − ig[Aµ, Aν ], (3.24)

with ∂µ being the lattice derivative,

∂µAν(x) = Aν(x+ µ̂) −Aν(x)
a

. (3.25)

The new plaquette expression’s exponential (3.23) can now be expanded in powers of a,

Uµν(x) = I + ia2gFµν − a4

2 g
2F 2

µν + O(a5), (3.26)

and seeing as one is trying to reach the discretization of the continuum Yang-Mills action (3.18),
from the previous expression, the Wilson action can be written as the sum over all the lattice’s
plaquettes of one orientation,

SW [U ] = β
∑

x

∑
µ<ν

ReTr (I − Uµν(x))

=
∑

x

∑
µ<ν

a4

2 Tr
(
F 2

µν

)
+ O(a5),

(3.27)

where β = 1/g2 and in the last equality, the discretized version of SYM is identified, with the
integral replaced by the lattice sum with a factor of a4. Thus, the continuum limit of the Wilson
action is the Yang-Mills action. However, there is no reason why the continuum limit requirement
of Wilson’s, or any other action, should ensure that this theory corresponds to QCD. As such, the
continuum extrapolation of the lattice theory, a −→ 0 V −→ ∞, needs further investigation [55,57].

3.3.1 The Continuum Limit and Scale
The Wilson action (3.27) shows that the bare coupling constant g is the free parameter. It serves
as the available fine-tuning for extrapolating the lattice theory to the continuum by removing the
regulator, i.e. when the lattice spacing is set to zero. Physical predictions are independent of this
procedure, i.e. for a given dimensionful lattice computed observable Θ (a, g(a)),

lim
a−→0

Θ(a, g(a)) = Θphys, (3.28)

with Θphys the physical quantity. This gives rise to the renormalization group formalism [61], where
one finds the solution g(a) from the differential equation

dΘ(a, g(a))
d ln a = 0, (3.29)

whose integration constant Λ sets the lattice spacing scale by fixing the value of g for a given a to
achieve the continuum extrapolation.

This work’s lattice calculations reported in Chapter 4 were performed using the Wilson action
(3.27), where the scale is set from the physical data taken from lattice simulation results on the
static quark-antiquark potential [6], corresponding to β = 6.0 and a = 0.1016(25) fm, equivalent to
1/a = 1.943(48) GeV. The uncertainty on the lattice spacing will be discarded in the results of this
work.
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3.3.2 Gauge Fixing
Section 1.2.1 showed the necessity to gauge fix to have a well-defined theory and compute the Green
functions due to the Aµ(x) integration over the gauge orbit (1.36). In the lattice formulation, Uµ(x)
is now the integration variable in the computation of correlation functions,

⟨O⟩ =
∫

D[U ] O(U) e−SW [U ]∫
D[U ]e−SW [U ] . (3.30)

Even though physical predictions are gauge-independent, correlation functions are gauge-dependent.
Therefore, studying these quantities requires specifying a gauge. In Chapter 2, it was seen how the
four gluon vertex is extracted from the four gluon correlation function in the Landau gauge, and
seeing as this work intends to investigate this vertex on the lattice, this requires computing the
correlation functions in this gauge.

The continuum Landau gauge fixing condition, ∂µAµ(x) = 0, is realized on the lattice if Uµ(x) is a
stationary point, with respect to gauge transformations V (x), of the functional

FU [V ] = 1
12V

∑
µ,x

ReTr
(
V (x)Uµ(x)V †(x+ µ̂)

)
, (3.31)

which can be seen by writing V (x) as an infinitesimal transformation in the previous expression and
using the link variable definition (3.14). This gauge condition has multiple solutions [27], i.e. in a
given gauge orbit, the gauge field transformation satisfying the previous expression is not unique.
As was mentioned in Section 1.3, these are known as Gribov copies, and in [40], it is shown that
their presence leads to ill-defined lattice expectation values of gauge-fixed correlation functions due
to the integration over the configuration space being zero. This is known as the Neuberger 0/0
problem.

To overcome this, one can define the lattice region of Landau gauge-fixed configurations

Γ ≡ {Uµ : ∂µAµ = 0}, (3.32)

and the Fundamental Modular Region Λ ⊂ Γ [64], defined by the set of link variables corresponding
to absolute maxima of the functional (3.31). In [14,52] it is seen that the effect of Gribov copies in
this region is small.

3.4 Correlation Functions from Monte Carlo simulations
In Chapter 2, it was seen that one could span the gluon correlation functions on a tensor basis
and how the form factors defined the correlation function on the basis (2.1). Lattice computations
evaluate scalar observables (3.30) and, as such, evaluating a gluon correlation function on the lattice
is equivalent to computing its form factors. In Chapter 2, it was also seen how these form factors
could be found from Lorentz-colour contractions of correlation functions with their respective tensor
basis elements, in particular, for the gluon propagator (2.6) and the four gluon correlation function
(2.22)10. These form factors are the lattice observables to be computed.

10Note that these expressions were defined in the continuum. On the lattice, the (2π)4 factor is replaced by the
lattice volume V and δ(0) = 1 .
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The Euclidean space-time path integral allows the usage of statistical methods to perform such
computations. Having developed the Wilson action, the required functional integration in the
computation of lattice observables (3.30) can now be approximated with Monte Carlo integration,

⟨O⟩ =
∫

D[U ] O[U ] e−SW [U ]∫
D[U ]e−SW [U ] ≈ 1

N

N∑
i=1

O(Ui), (3.33)

since the law of large numbers ensures that

lim
N−→∞

⟨O⟩ = 1
N

N∑
i=1

O(Ui). (3.34)

Here, {Ui} is the ensemble of link variables configurations11 generated by the creation of a Markov
Chain whose equilibrium distribution is

P (U) = e−SW [U ]∫
D[U ]e−SW [U ] . (3.35)

This enables the computation of the gluon correlation function’s form factors. To do so, one needs
to be able to relate the link variables to the gluon fields. This can be done by expanding the link
variable defined in (3.15),

Aµ(x+ µ̂/2) = 1
2ig [Uµ(n) − U†

µ(n)] − 1
6ig Tr[Uµ(n) − U†

µ(n)] + O(a2), (3.36)

where the trace term was added such that Tr(Aµ) = 0 and the lattice spacing has been absorbed
into Aµ. Fourier transforming the gauge fields to momenta space,

Aµ(p) = V
∑

x

e−ip·(x+µ̂/2)Aµ(x+ µ̂/2). (3.37)

Having generated the previous momentum-space gauge fields for each configuration, the form factors
of the gluon propagator (2.6) and four gluon correlation function (2.22) can now be computed.

The computer code used to implement the Landau gauge fixing procedure and generate gauge fields
uses both Chroma [21] and PFFT [46] libraries. Details on these computation methods can be found
in [18,19,43].

3.5 Error Analysis and Correction Methods
Lattice simulation results are affected by different sources of errors, both systematic and statistical.
These must be dealt with.

As seen previously, the computation of observables is carried out using sampling techniques. The
11A link variable configuration is defined by the set of all the values of Uµ(x) on a given lattice, i.e. the assignments

of SU(3) matrices to all the lattice points.
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algorithmic performance and the available computer power limit these. This introduces statistical
errors due to the finite number of configurations since the law of large (3.34) numbers cannot be
verified. Therefore, one is limited by the data required for analysis and forced to improve the
signal-to-noise ratio of the obtained results.

Systematic errors, however, are much more subtle and require a significant investment from lattice
studies to control and reduce them. These become noticeable when computation resources allow
for negligible statistical errors. The systematic errors manifest themselves according to the chosen
lattice action and the continuum extrapolation approach. From the previous sections, the sources
of such errors can be understood to be due to the effects of finite volume, lattice spacing, and the
quenched approximation. This dissertation will consider only errors due to finite lattice spacing,
known as lattice artefacts, and statistical errors.

3.5.1 Lattice Artefacts
Lattice artefacts are expressed in numerous ways. In this work, the lattice-extracted data will be
the aforementioned named form factors. These Euclidean continuum space-time scalar functions
can only depend on the momentum variable p2, such that they are invariant under the orthogonal
transformations of the O(4) group, which preserves the scalar product and, therefore, have p2 as one
of its invariants. When space-time is discretized, the continuous rotational symmetry is broken, im-
posing fewer space-time symmetry constraints on the momenta dependence of the lattice-evaluated
form factors. This is the lattice artefact manifestation that will be considered in this work. Note
that there is a discussion to be had on the effect of this symmetry breaking in the correlation
functions tensor basis description [58]. In Chapter 2, the four gluon correlation function tensor
description was formulated in the continuum. On the lattice, such a prescription is lacking. This
issue will not be considered here due to the high complexity of the four-gluon correlation function
tensor structure.

On the hypercubic lattice, this symmetry breaking reduces the O(4) group to the hypercubic sub-
group H(4), comprised of π/2 rotations and parity transformations. Whilst the former group
transformations preserved p2, the latter preserves12 [1]

p[2n] =
∑

µ

p2n
µ , n ∈ {1, 2, 3, 4}. (3.38)

Therefore, the lattice form factors will not solely be functions of the O(4) invariant p2, as in the
continuum case, but now gain the additional freedom to depend on the H(4) group invariants,

F (p2) −−−−→
lattice

F (p2, p[4], p[6], p[8]). (3.39)

Ergo, after computing the lattice form factors F (p2) for every possible of pµ on the lattice (3.11),
the form factor values corresponding to equal values of p2 will not necessarily be equal due to their
new dependence on the H(4) invariants degrees of freedom

F (p2) ̸= F (p2, p[4], p[6], p[8]). (3.40)
12In d-dimensions, n ∈ {1, 2, ..., d}.
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The previously described effects, associated with the breaking of rotational symmetry, can be han-
dled if the lattice momenta pµ = (p1, p2, p3, p4) are restricted to

pµ ∈
{

(±p1, 0, 0, 0), (±p1,±p1, 0, 0), (±p1,±p1,±p1, 0), (±p1,±p1,±p1,±p1)
}
. (3.41)

It follows that, for two different momenta p′
µ and p′′

µ belonging to the previous set,

p′ 2 = p′′ 2 =⇒ p′ [4] = p′′ [4], p′ [6] = p′′ [6], p′ [8] = p′′ [8], (3.42)

and the new degrees of freedom that rose out of the continuous rotational symmetry breaking
become redundant and can be removed,

F (p2, p[4], p[6], p[8]) = F (p2). (3.43)

A signal-to-noise improvement can be made by considering the degeneracy of the lattice form factors
with the same H(4) invariants, or the same p2 with the momentum-space cut (3.41), and averaging
them.

3.5.2 Bootstrap Method
Due to the finite amount of data and lack of information on the error propagation in the sampling
methods, there is the need for a reliable method for statistical error estimation that deals with
these issues. The bootstrap method, which is a distribution-independent technique that assumes
uncorrelated data, was chosen for statistical error estimation. A comprehensive view of this method
can be found in [22].

Bootstraping starts by performing K = Nb ×N random samplings with replacement of the original
ensemble {O(Ui)}, where i = 1, 2, ..., N and Nb is a chosen number. These bootstrap samples
generate a new ensemble {Oj(Uk)}, where j = 1, 2, ..., K and k is random number between 1 and
N that is allowed to be repeated. This new ensemble now provides an estimation of the original
{O(Ui)} ensemble distribution and one can define average

⟨O⟩B =
K∑

j=1

Oj(Uk)
K

. (3.44)

The error can now be estimated by defining the uncertainty bounds

σu = Ou − ⟨O⟩B , σd = ⟨O⟩B − Od, Od, Ou ∈ {Oj(Uk)}, (3.45)

with Od and Ou satisfying

#{x < Ou : ∀x ∈ {Oj(Uk)}}
K

= C + 1
2 ,

#{x < Od : ∀x ∈ {Oj(Uk)}}
K

= C − 1
2 . (3.46)

Here, #{...} stands for the cardinality of the set and C ∈ [0, 1] expresses the confidence interval, this
work will set C = 0.65. It follows that the lattice computed data can now be given an uncertainty,

⟨O⟩ ± max{|σu|, |σd|}. (3.47)
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4. Form Factors Data and Results

This chapter reports and discusses this work’s lattice-computed four gluon correlation function and
vertex bare form factors, investigated in the specific kinematic configurations (2.24),

(p, p, p,−3p), (0, p, p,−2p), (0, p, 2p,−3p). (4.1)

All the following data statistical errors were estimated with the bootstrap method. The reader is
again reminded that the following form factors do not originate from a complete basis tensor basis,
except for (p, p, p,−3p), and as such, there is a possibility for unknown contributions to this data.

4.1 Lattice Setup
To summarize this work’s lattice simulation setup, the lattice Landau gauge (3.31) constrained
link variable configurations {Ui} were generated by Monte Carlo sampling using the Wilson Action
(3.27), with β = 6.0 and a = 0.1016 fm. These configurations were also used in [18,19,43].

This work computed form factors with 2000 configurations in a lattice volume of 644 points, 1801
configurations in a volume of 804 and 4620 configurations in a volume of 324. Only in the latter
volume was the signal-to-noise ratio acceptable and the data suitable to be discussed, and as such,
the following results are established in this volume, i.e. every form factor was found by performing
an ensemble average over 4620 configurations and in a lattice volume of 324 lattice points.

4.2 Four Gluon Correlation Function Form Factors
This section reports on what is this work’s lattice-accessible data – the four gluon correlation
function form factors. These were computed with the ensemble average expressions found at the
end of Appendix B. Herein, all data is the result of an average over the form factors with equal H(4)
invariants and, due to the small amount of data in the infrared region, only for p > 0.7GeV are the
momenta cuts in (3.41) applied. Ergo, this chapter will not contain the full lattice-extracted data,
i.e. the correlation function form factors. Appendix C provides the full lattice ensemble-averaged
four gluon correlation function form factor data, free from momentum-space cuts and averages over
the H(4) invariants degeneracy. Moreover, Appendix C shows the lack of signal-to-noise ratio that
was improved with the momentum-space cuts.

Due to the large difference in the order of magnitude of the form factors values, a zoomed-in
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version of the full data plots will be used, with the axes of plots next to one another representing
the same quantities and units; therefore, the zoomed-in plot axes labels are omitted. This will be
the convention throughout this work’s plotted data.
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Figure 4.1: The real part of the computed four gluon correlation function bare form factors F (1)(p2),
F (2)(p2), F̃ (1)(p2) and F (3)(p2), on a lattice of volume 324. The plot on the left contains all the
computed data, whilst the plot on the right is a zoom-in version of the left plot.

When the average over the form factor with the same H(4) invariants is performed, the imaginary
part of the form factors vanishes; therefore, the plotted data only shows their real part.
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The form factor F (3), of the basis tensor t(3), is found from the linear combination (2.17) to be

F (3)(p2) = c1F̃
(1) − c2F

(1) − c3F
(2), (4.2)

where c1, c2 and c3 are real numbers found from tensor contractions, see Appendix B. Due to F (1),
F (2) and F̃ (1) being of the same order of magnitude, and equally for c1, c2 and c3, the previous
expression explains the heavy suppression of F (3) in figure 4.1, in comparison to F (1) and F (2).

The plotted data shows significant statistical errors, and by comparing data points of equal order
of magnitude, one sees that the error bars are, in general, particularly big for the (p, p, p − 3p)
configuration. This can be understood by inspection of the expressions in Appendix B, where
the ensemble average for this kinematic configuration requires fewer terms than the others, giving
rise to more significant statistical fluctuations, since by including a higher number of terms in the
ensemble averaging, the statistical fluctuations are expected to be averaged out. This statistical
error can be diminished by increasing the number of configurations in the ensemble.

The data shows an acceptable signal for p < 1 GeV, which is lost for higher momenta values.
F (1)(p2) showed the better signal in this momenta range. The overall form factors signal can be
improved by considering a larger lattice volume, whereby increasing the number of lattice points,
the available data in the previously plotted momenta range would also increase.

4.3 Four Gluon Vertex Form Factors

This section presents and discusses the data of main importance to this dissertation – the four
gluon vertex function form factors. In section 2.3.2, it was seen that these are found by dividing
the previous four gluon correlation form factors by the gluon propagator form factors associated
with the external legs,

F̄ (i)(p2) = F (i)

gµ′µgν′νgη′ηgζ′ζDaa′
µµ′(p1)Dbb′

νν′(p2)Dcc′
ηη′(p3)Ddd′

ζζ′ (p4)t(i)abcd
µ′ν′η′ζ′t

(i)µ′ν′η′ζ′

a′b′c′d′

. (4.3)

The tensor contractions in the denominator are computed in Appendix B. Appendix C presents
the gluon propagator form factors, also computed in the 324 lattice volume and with the 4620
ensemble average. The propagator form factor statistical errors are minute compared to the four
gluon correlation function form factors errors and were therefore ignored in this work.
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Figure 4.2: The real part of the computed four gluon vertex function bare form factors F̄ (1)(p2),
F̄ (2)(p2) and F̄ (3)(p2), on a lattice of volume 324. The plot on the far left contains all the computed
data, whilst the two plots on the right are a zoom-in version of the far left plot.

In the last section, it was seen that the four gluon correlation function form factors decreased with
increasing momenta scale, but here, the vertex form factors increased with the momenta. This can
be understood due to the propagator form factors in (2.23) and their behaviour in the momenta
scale, see Appendix C.

Although this data should be read carefully due to the weak signal and high statistical errors, it
is clear that the vertex form factor F̄ (3) is heavily suppressed in this momenta range and in all
kinematic configurations. This suppression is even more evident in the configuration of particular
interest, (p, p, p,−3p). F̄ (1) data shows that it is heavily suppressed in the kinematic (p, p, p,−3p),
and only contributions in the (0, p, p,−2p) and (0, p, 2p,−3p) configurations. In these kinematics,
the form factors appear to rise with the momenta, although only in the (0, p, p,−2p) is the signal-
to-noise ratio good enough to draw decisive conclusions.

Relative to F̄ (1), the form factor F̄ (2) displays a contrast difference in its dependence on the cho-
sen kinematic configuration. Here, the data shows that F̄ (2) is suppressed in (0, p, p,−2p) and
(0, p, 2p,−3p), with the only contribution coming in (p, p, p,−3p), where the the acceptable signal-
to-noise ration shows that it rises with increasing momenta. The difference between the behaviour
of F̄ (1) and F̄ (2) in the kinematic (p, p, p,−3p) is of utmost interest, seeing as in this kinematic
configuration, the tensor basis is complete.

To end this chapter, notice that the lattice gauge fields Aµ contain a factor of the lattice spacing a
(3.36). It follows that a can be factored out of the ensemble average in the lattice four gluon vertex
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computations,
a4⟨AAAA⟩
(a2⟨AA ⟩)4 = ⟨AAAA⟩

a4 (⟨AA ⟩)4 (4.4)

To make a connection to non-lattice studies, this factor can be cancelled by the redefinition

a4⟨AAAA⟩
(a2⟨AA ⟩)4 −→ a4 a

4⟨AAAA⟩
(a2⟨AA ⟩)4 , (4.5)

i.e. a constant global factor in the form factor data.
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5. Summary and Conclusions

Non-perturbative information on the behaviour of the four gluon vertex is severely lacking. This
dissertation aimed to investigate the four gluon vertex from Lattice QCD. This formalism can only
access the four correlation function form factors. Hence, Chapter 2 was dedicated to formulating
the needed expressions and conditions to allow us to do these computations. After establishing the
required lattice formalism in Chapter 3, the following chapter showed and discussed our results.

This was exploratory research and proof that one could study the four gluon vertex from lattice
QCD. The data reported is novel, and as such, considerations must be taken lightly, not only due
to the small number of other works to compare the data but also because statistical errors and
signal-to-noise ratio problems hinder the results. Nevertheless, the data showed the effectiveness
of our lattice simulations and results of satisfactory quality, from which conclusions can be drawn.
This data shows that two of the form factors F̄ (1) and F̄ (2)) contribute vastly more than F̄ (3) to
the vertex. The interplay between the form factor values and the chosen kinematic configuration
can also be analyzed. Moreover, the external legs gluon propagators’ contribution is evident when
comparing the four gluon correlation function and vertex form factors. Special emphasis is put on
the considered tensor basis being only complete for the kinematic (p, p, p,−3p).

Not only can our data gathered on the four gluon vertex be improved by upgrading the lattice
setup, i.e. by using more ensemble configurations and a larger lattice volume, but other studies can
build on or supplement the data found in this work. Self-imposed limitations were set in the form of
kinematic configurations and basis tensor structures that allowed the practical implementation of
lattice simulations, and future coverage over a more complete set of kinematics and tensors may be
possible. Nevertheless, lattice data on this vertex is first needed before delving into more intricate
and realistic degrees of freedom.
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[59] Milan Vujinović and Tereza Mendes. Probing the tensor structure of lattice three-gluon vertex
in Landau gauge. Physical Review D, 99(3), feb 2019.

[60] Stefan Weinzierl. Feynman Integrals, 2022.

[61] Peter Weisz. Renormalization and lattice artifacts. arXiv: High Energy Physics - Lattice, 2010.

[62] A.G. Williams. QCD, gauge-fixing, and the gribov problem. Nuclear Physics B - Proceedings
Supplements, 109(1):141–145, may 2002.

[63] Kenneth G. Wilson. Confinement of Quarks. Phys. Rev. D, 10:2445–2459, 1974.

[64] D. Zwanziger. Renormalization in the Coulomb gauge and order parameter for confinement in
QCD. Nucl. Phys. B, 518:237–272, 1998.

34

https://arxiv.org/abs/1612.04078
https://www.sciencedirect.com/science/article/abs/pii/S0550321304003037?via%3Dihub
https://link.springer.com/article/10.1007/BF01090719
https://arxiv.org/abs/hep-th/0603151v1
https://arxiv.org/abs/0807.5118
https://arxiv.org/abs/1501.04215
https://arxiv.org/abs/1905.00651
https://arxiv.org/abs/1807.03673
https://arxiv.org/abs/1807.03673
https://arxiv.org/abs/2201.03593v2
https://arxiv.org/abs/1004.3462
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.10.2445
https://www.sciencedirect.com/science/article/pii/S0550321398000315?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0550321398000315?via%3Dihub


A. SU(N) and Colour algebra

SU(N), the special unitary group, is an (N2 − 1)-dimensional group of N × N unitary matrices
with determinant equal to 1. It is a Lie group, so any of its elements can be continuously generated
from the identity by the exponential map

V ≡ exp[iθaT a
R], (A.1)

where θa are real numbers that parameterize the transformation and T a
R are the generators in the

representation R. The latter are hermitian and traceless matrices that form the Lie algebra, which
is the mapping defined by the commutation relation[

T a
R, T

b
R

]
= ifabcT c

R, (A.2)

where fabc are real numbers known as the structure constants. In the fundamental representation,
these generators are N ×N matrices, and for N = 3 they expressed as

ta = λa

2 , (A.3)

where λa are the 8 Gell-Mann matrices. The generators of the adjoint representation are (N2 −
1) × (N2 − 1) matrices determined by the structure constants,(

T a
adj

)bc = −ifabc. (A.4)

As seen in section 1.2, for SU(3), the generators of these representations define the gauge field and
field-strength tensor, and as such, they will be present in QCD’s calculations. Ergo, it is useful
to introduce relations between these that facilitate and set conventions for computations involving
them, i.e. defining the colour algebra. Here, only the most fundamental relations will be mentioned.
See [31] for a more complete review of this subject.

The convention in physics is to define the normalization of the fundamental representation as

Tr(tatb) = 1
2δ

ab. (A.5)

From this, one can write the relation

tatb = 1
2

(
δab

N
I +

(
dabc + ifabc

)
tc
)
, (A.6)
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where I is the N ×N identity matrix and

fabc = −2iT r
([
ta, tb

]
tc
)
, dabc = 2Tr

(
{ta, tb}tc

)
. (A.7)

Finally, these relations enable one to derive

fabcfabd = Nδcd, dabcdabd =
(
N2 − 4
N

)
δcd. (A.8)

Expressions (A.5)-(A.8) are the underlying relations for every calculation performed in this work
that involved colour indices, notably the tensor contractions of Chapter 2 and Appendix B.
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B. Gluon Vertices Tensor Bases and
Form Factors

B.1 Three Gluon Vertex Basis

In the Ball-Chiu construction of the three-gluon vertex basis [7], the Lorentz-space structure reads:

Γµ1µ2µ3(p1, p2, p3) = ΓL
µ1µ2µ3

(p1, p2, p3) + ΓT
µ1µ2µ3

(p1, p2, p3), (B.1)

with

ΓT
µ1µ2µ3

(p1, p2, p3) = F
(
p2

1, p
2
2; p2

3
) (
gµ1µ2p1 · p2 − p1µ2

p2µ1

)
B3

µ3

+H
(
p2

1, p
2
2, p

2
3
) [

−gµ1µ2B
3
µ3

+ 1
3
(
p1µ3

p2µ1
p3µ2

− p1µ2
p2µ3

p3µ1

)]
+ cyclic permutations,

(B.2)

where
B3

µ3
= p1µ3

p2 · p3 − p2µ3
p1 · p2 (B.3)

and

ΓL
µ1µ2µ3

(p1, p2, p3) = A
(
p2

1, p
2
2; p2

3
)
gµ1µ2

(
p1µ3

− p2µ3

)
+B

(
p2

1, p
2
2; p2

3
)
gµ1µ2

(
p1µ3

+ p2µ3

)
+ C

(
p2

1, p
2
2; p2

3
) (
p1µ2

p2µ1
− gµ1µ2p1 · p2

)
(p1 − p2)µ3

+ 1
3S
(
p2

1, p
2
2; p2

3
) (
p1µ3

p2µ1
p3µ2

+ p1µ2
p2µ3

p3µ1

)
+ cyclic permutations,

(B.4)

where the ; notation in the form factors momenta dependence stands for their possible symmetry
or anti-symmetry under exchange of the arguments13.

In the proportional momenta kinematic configuration (2.11), one immediately sees that ΓT
µ1µ2µ3

=
0. The remaining term, ΓL

µ1µ2µ3
, is also seen to vanish in this momenta configuration by taking

13This ensures that the three gluon vertex, in its Lorentz-colour basis, remains Bose-symmetric. Once more, the
reader is pointed to [7].
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into account that in the four gluon correlation function decomposition, found in (2.10), we have
contractions of the form

Pµ′
1µ1(p1)Pµ2µ′

2(p2)Γµ1µ2µ3(p1, p2, p3)Pµ3µ′
3(p3), (B.5)

where

Pµµ′
(p) =

(
gµµ′

− n
pµpµ′

p2

)
(B.6)

is the momenta-orthogonal projector (2.5), with

pµP
µµ′

(p) = 0 (B.7)
and

Pµµ′
(λp) = Pµµ′

(p). (B.8)
From these last two expressions, one directly sees by inspection of (B.4) that we get

Pµ′
1µ1(p1)Pµ2µ′

2(p2)Γµ1µ2µ3(p1, p2, p3)Pµ3µ′
3(p3) = 0. (B.9)

This leads to the crucial vanishing of the three gluon vertex contribution to the four gluon correlation
function (2.10) in our chosen momenta kinematic configuration.

B.2 Four Gluon Vertex Form Factors
Here, we report on the four gluon correlation function and vertex form factors expressions (2.22)
and (2.23), for the chosen kinematic configurations (2.24), with the gluon form factors D(p2) given
by (2.6). Note that the following expressions, though derived from the continuum, are computed
on the lattice. Hence, δ(0) = 1 and V is the lattice volume, whereas in the continuum, V = (2π)4.
As stated in Chapter 3, these vacuum expectation values are computed with lattice simulations.
Note that in the following, expressions N = 3.

p1 = p, p2 = p, p3 = p, p4 = −3p



F (1) = 1
V 24⟨Tr ([Aµ(p), Aν(p)]tr)Tr ([Aν(p), Aµ(−3p)]tr)⟩

F̄ (1) = F (1)

[D(p2)]3D(9p2)k11

k11 = Pµ
µ (p)P ν

ν (p)P η
η (p)P ζ

ζ (p)t(1)abcd
µνηζ t

(1)µνηζ
abcd = 8748N2 (N2 − 1

)
(B.10)



F (2) = 1
V 12

[
⟨Tr (Aµ(p)Aµ(p))Tr (Aν(p)Aν(−3p))⟩

+2⟨Tr (Aµ(p)Aν(p))Tr (Aµ(p)Aν(−3p))⟩
]

F̄ (2) = F (2)

[D(p2)]3D(9p2)k22

k22 = Pµ
µ (p)P ν

ν (p)P η
η (p)P ζ

ζ (p)t(2)abcd
µνηζ t

(2)µνηζ
abcd = 157464

(
N4 − 1

)
(B.11)
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

F (3) = 1
k̃11
F̃ (1) − 1

k11
F (1) − k̃12

k22k̃11
F (2)

F̃ (1) = 1
V 24⟨Tr ({Aµ(p), Aν(p)}tr)Tr ({Aν(p), Aµ(−3p)}tr)⟩

k̃11 = Pµ
µ (p)P ν

ν (p)P η
η (p)P ζ

ζ (p)t̃(1)abcd
µνηζ t

(1)µνηζ
abcd = −2916N4 + 14580N2 − 11664

k̃12 = Pµ
µ (p)P ν

ν (p)P η
η (p)P ζ

ζ (p)t̃(1)abcd
µνηζ t

(2)µνηζ
abcd = 69984N3 − 349920N + 279936

N

F̄ (3) = F (3)

[D(p2)]3D(9p2)k33

k33 = Pµ
µ (p)P ν

ν (p)P η
η (p)P ζ

ζ (p)t(3)abcd
µνηζ t

(3)µνηζ
abcd = 3

4N2(N2−4)2(N2−1)

(
457019805007872N18

−4113178245070848N16 + 9597415905165312N14 + 5027217855086592N12

−544195584N11 − 31534366545543168N10 + 2176782336N9

+9597415905165312N8 + 1088391168N7 + 32448406155558912N6

−4353564672N5 − 17823772395306845N4 − 544195584N3

−10968475320188774N2 + 2176782336N + 7312316880125968)
(B.12)

p1 = 0, p2 = p, p3 = p, p4 = −2p



F (1) = − 1
V 8
[
⟨Tr ([Aµ(0), Aν(p)]tr)Tr ([Aµ(p), Aν(−2p)]tr)⟩

−⟨Tr ([Aµ(0), Aν(p)]tr)Tr ([Aν(p), Aµ(−2p)]tr)⟩
+⟨Tr ([Aµ(0), Aν(−2p)]tr)Tr ([Aµ(p), Aν(p)]tr)⟩

]
F̄ (1) = F (1)

D(0)[D(p2)]2D(4p2)k′
11

k′
11 = 4

3k11

(B.13)
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

F (2) = 1
V 4
[
2⟨Tr (Aµ(0)Aµ(p))Tr (Aν(p)Aν(−2p))⟩

+2⟨Tr (Aµ(0)Aν(p))Tr (Aµ(p)Aν(−2p))⟩
+2⟨Tr (Aµ(0)Aν(−2p))Tr (Aµ(p)Aν(p))⟩
+2⟨Tr (Aµ(0)Aν(p))Tr (Aν(p)Aµ(−2p))⟩
+⟨Tr (Aµ(0)Aµ(−2p))Tr (Aν(p)Aν(p))⟩

]
F̄ (2) = F (2)

D(0)[D(p2)]2D(4p2)k′
22

k′
22 = 4

3k22

(B.14)



F (3) = 1
k̃′

11
F̃ (1) − 1

k′
11
F (1) − k̃′

12

k′
22k̃′

11
F (2)

F̃ (1) = 1
V 8
[
⟨Tr ({Aµ(0), Aν(p)}tr)Tr ({Aµ(p), Aν(−2p)}tr)⟩

+⟨Tr ({Aµ(0), Aν(p)}tr)Tr ({Aν(p), Aµ(−2p)}tr)⟩
+⟨Tr ({Aµ(0), Aν(−2p)}tr)Tr ({Aµ(p), Aν(p)}tr)⟩

]
k̃′

11 = 4
3k11

k̃′
12 = 4

3k12

F̄ (3) = F (3)

D(0)[D(p2)]2D(4p2)k′
33

k′
33 = 4

3k33

(B.15)

p1 = 0, p2 = p, p3 = 2p, p4 = −3p

F (1) = − 1
V 4
[
⟨Tr ([Aµ(0)Aν(p)]tr)Tr ([Aµ(2p), Aν(−3p)]tr)⟩

−⟨Tr ([Aµ(0), Aν(p)]tr)Tr ([Aν(2p), Aµ(−3p)]tr⟩
+⟨Tr ([Aµ(0), Aν(2p)]tr)Tr ([Aµ(−3p), Aν(p)]tr)⟩
−⟨Tr ([Aµ(0), Aν(2p)]tr)Tr ([Aν(−3p), Aµ(p)]tr)⟩
+⟨Tr ([Aµ(0), Aν(−3p)]tr)Tr ([Aµ(p), Aν(2p)]tr)⟩
−⟨Tr ([Aµ(0), Aν(−3p)]tr)Tr ([Aν(p), Aµ(2p)]tr)⟩

]
F̄ (1) = F (1)

D(0)D(p2)D(4p2)D(9p2)k′
11

(B.16)
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

F (2) = 1
V 4[⟨Tr (Aµ(0)Aµ(p))Tr (Aν(2p)Aν(−3p))⟩

+⟨Tr (Aµ(0)Aν(2p))Tr (Aµ(p)Aν(−3p))⟩
+⟨Tr (Aµ(0)Aν(−3p))Tr (Aµ(p)Aν(2p))⟩
+⟨Tr (Aµ(0)Aν(p))Tr (Aµ(2p)Aν(−3p))⟩
+⟨Tr (Aµ(0)Aµ(2p))Tr (Aν(p)Aν(−3p))⟩
+⟨Tr (Aµ(0)Aν(−3p))Tr (Aν(p)Aµ(2p))⟩
+⟨Tr (Aµ(0)Aν(p))Tr (Aν(2p)Aµ(−3p))⟩
+⟨Tr (Aµ(0)Aν(2p))Tr (Aν(p)Aµ(−3p))⟩
+⟨Tr (Aµ(0)Aµ(−3p))Tr (Aν(p)Aν(2p))⟩]

F̄ (2) = F (2)

D(0)D(p2)D(4p2)D(9p2)k′
22

(B.17)



F (3) = 1
k̃′

11
F̃ (1) − 1

k′
11
F (1) − k̃′

12

k′
22k̃′

11
F (2)

F̃ (1) = 1
V 4
[
⟨Tr ({Aµ(0)Aν(p)}tr)Tr ({Aµ(2p), Aν(−3p)}tr)⟩

+⟨Tr ({Aµ(0), Aν(p)]tr)Tr ([{Aν(2p), Aµ(−3p)}tr⟩
+⟨Tr ({Aµ(0), Aν(2p)]tr)Tr ({Aµ(−3p), Aν(p)}tr)⟩
+⟨Tr ({Aµ(0), Aν(2p)]tr)Tr ({Aν(−3p), Aµ(p)}tr)⟩
+⟨Tr ({Aµ(0), Aν(−3p)]tr)Tr ({Aµ(p), Aν(2p)}tr)⟩
+⟨Tr ({Aµ(0), Aν(−3p)]tr)Tr ({Aν(p), Aµ(2p)}tr)⟩

]
F̄ (3) = F (3)

D(0)D(p2)D(4p2)D(9p2)k′
33

(B.18)
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C. Additional Results

This Appendix provides additional data that was used in the computation of the four gluon vertex
in a volume of 324 lattice points and averaged over an ensemble of 4620 configurations.

C.1 Gluon Propagators

The gluon propagator form factor data was used to compute the four gluon vertex form factors
(2.23) and are therefore given here. These are computed from the expression (2.6), with its lattice
version being the ensemble average

D(p2) = ⟨Tr [Aµ(p1)Aµ(p2)]⟩
V (16 − 4n) . (C.1)

Note that the gluon propagator form factors statistical errors were considered when plotting this
data, despite not being visible due to their small values.
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Figure C.1: The bare gluon propagator form factors D(p2), D(4p2) and D(9p2), computed on a
lattice of volume 324. The plot on the left contains all the computed data, whilst the plot on the
right is a zoom-in of the left plot.
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C.2 Full Results for the Four Gluon Correlation Function
Form Factors

Most of the computed data of the four gluon correlation function form factors was omitted in
Chapter 4 due to momentum-space cut and form factor average due to their H(4) invariants de-
pendence. Here, the ensemble average of all the lattice extracted data is presented, showing the
lack of signal-to-noise ratio that led to the momentum-space cuts.
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Figure C.2: The bare F 1(p2) form factor data for the kinematic configurations used in this work,
computed on a lattice of volume 324. The plot on the left contains all the computed data, whilst
the plot on the right is a zoomed-in of the left plot.
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Figure C.3: The bare F 2(p2) form factor data for the kinematic configurations used in this work,
computed on a lattice of volume 324. The plot on the left contains all the computed data, whilst
the plot on the right is a zoom-in of the left plot.
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Figure C.4: The bare F̃ 1(p2) form factor data for the kinematic configurations used in this work,
computed on a lattice of volume 324. The plot on the left contains all the computed data, whilst
the plot on the right is a zoom-in of the left plot.
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