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Abstract

5G-beyond technology is seen as the future of telecommunications, with the abil-
ity to meet customer demands for high-quality service. In order to achieve this,
the physical network infrastructure must be divided into multiple isolated logical
networks, known as network slicing, each dedicated to different types of services
based on their specific requirements. This approach allows for efficient and flex-
ible use of network resources, enabling the support of a wide range of services
such as Enhanced Mobile Broadband (eMBB), Ultra-reliable, low-latency commu-
nications (URLLC), and Massive Machine-Type Communications (mMTC) on a
single network infrastructure.

Our goal is to optimize network slicing by implementing a model to make bet-
ter use of available resources and to enhance the overall performance of net-
work slicing. To achieve this, we have developed a comprehensive framework
that enables the simulation of various types of networks. This framework allows
users to specify the network details, such as the number of slices, services, nodes,
and link attributes, and utilizes an optimization model to find the best solution
for allocating services in each slice of the network in a fair manner.
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Chapter 1

Introduction

5G Network, also known as the fifth generation of cellular mobile communica-
tions, is a highly advanced technology that offers a range of benefits over previ-
ous generations of mobile networks. One of the critical advantages of 5G is its
faster speed, which enables a wide range of new and innovative use cases and
services. Additionally, 5G networks offer lower latency, which is critical for ap-
plications that require real-time responsiveness, such as self-driving cars. Finally,
5G networks provide increased capacity, allowing them to support a large num-
ber of devices and high traffic volumes, making them suitable for use cases such
as smart cities and Internet of Things (IoT) applications.

5G network slicing is made possible by the advanced capabilities of 5G networks.
This allows operators to create multiple virtual networks on a single physical
infrastructure and allocate resources flexibly and efficiently. This concept enables
operators to efficiently allocate network resources and configure their services to
meet the needs of their customers. The allocation of resources and configuration
of the slices are made possible by orchestrators, which offer a reliable and efficient
functioning of network slices.

Orchestrators can be physical devices or software programs that use algorithms
and other tools to automate the process of slice creation and management. With
a comprehensive view of the network architecture, orchestrators can effectively
manage the network, increasing its efficiency while reducing the cost and com-
plexity of managing multiple virtual networks.

1.1 Objectives

This thesis is carefully designed to meet its goals by thoroughly investigating
both traditional and modern solutions for network slicing using Software Defined
Networking (SDN).

The thesis takes a deep dive into various strategies used in network slicing. A key
focus is the validation of a fairness model tailored to enhance resource allocation
within network slicing. This model emphasizes fairness, aiming to ensure that
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each network slice gets a fair share of resources like bandwidth and CPU. The
importance of fairness is highlighted as we’re committed to making sure every
slice gets the right amount of resources without any imbalance.

It’s important to clarify that the focus of this thesis does not lie in creating the
fairness model. The structure and formulation of this model have already been
established by Noé Godinho. Initially conceptualized with the main aim of fur-
nishing a proficient resource allocation solution in network contexts, this model
was developed as part of the project Orchestration and Resource optimization for
Reliable and low-latency Services (OREOS).

The objective at hand is to assess and affirm the suitability of this model for in-
tegration into the current project, which calls for a resource allocation algorithm.
This validation process aims to confirm the applicability and effectiveness of the
existing model within the specific context of this project.

1.2 Contributions

This work contributes to a novel network resource allocation framework, specif-
ically tailored to address the challenges of the OREOS project. These challenges
center around the necessity for a resource allocation model that optimally dis-
tributes resources within network slicing.

The objective of the OREOS project is to design and implement an end-to-end
orchestration platform for provisioning and managing critical services, such as
vehicle communications, electrical distribution networks, and emergency com-
munications for public safety [OREOS: Estudos Preliminares na área do Projeto].

The framework presented in this thesis provides a powerful tool to simulate di-
verse network scenarios, optimizing resource allocation while minimizing costs
and adhering to specific constraints. The Fairness model presented in this frame-
work provides the OREOS project valuable insights into efficient resource alloca-
tion, enhanced service provisioning, and ensuring fairness among network slices.
The validation process confirms the framework’s efficiency and reliability, estab-
lishing its applicability to real-world network environments.

Through integration into the OREOS project, our developed framework enables
the effective orchestration of critical services (such as vehicle communications,
electrical distribution networks, or emergency communications for public safety).
By leveraging the capabilities of the fairness model, the project can achieve im-
proved performance, reliability, and low-latency communication, making signif-
icant advancements in critical services management and provisioning.

Another significant contribution of this thesis lies in the creation of a scientific
article that provides an exhaustive exposition of the 5G network, elucidating its
intricacies and operational dynamics. This article will serve as a comprehensive
guide aimed at rendering the complexities of 5G comprehensible to a broader au-
dience. Additionally, it will demonstrate the practical application of the network
resource allocation framework developed within the framework of network slic-

2



Introduction

ing. This demonstration will be conducted in a manner that is transparent and
straightforward, ensuring that the essential concepts and methodologies are ac-
cessible to both experts and newcomers in the field.

1.3 Structure

This document is organized as follows:

• Chapter 2 - This chapter provides an overview of key topics such as Net-
work Function Virtualization (NFV), Multi-Access Edge Computing (MEC),
and network slicing. It also reviews graph analysis and optimization tools,
orchestration platforms, and the concept of fairness in resource allocation
in network slices.

• Chapter 3 - This chapter reviews related work related to models for Fairness
and several works for 5G.

• Chapter 4 - This chapter describes the research objectives of the work and
introduces the approach and methodology used throughout the disserta-
tion.

• Chapter 5 - This chapter explains our Fairness Model.

• Chapter 6 - This chapter delves into our framework. How it works, which
components are used in its creation and why.

• Chapter 7 - This chapter refers to the process of validation of the fairness
model. The metrics used and the test cases that we conducted.

• Chapter 8 - Provides the main conclusions and the future work that will
follow.

3





Chapter 2

Background and Terminology

This chapter provides an introduction to the latest network communication tech-
nology, the 5G network. The functionalities and characteristics of 5G technology
are detailed, along with its applications in modern network methods. Under-
standing these concepts is essential for comprehending the topics covered in this
thesis.

The chapter begins by introducing some of the key technologies used in network
slicing. Each technology is briefly defined, along with its contributions to net-
work slicing. These technologies play a crucial role in enabling the implementa-
tion of network slicing and optimizing resource allocation.

Network slicing is a fundamental concept explored in this section. The term "net-
work slicing" is defined, and its significance in the context of 5G networks is ex-
plained. Network slicing allows network operators to partition the infrastructure
into multiple virtual networks, each tailored to specific services or applications.
This flexibility in network customization is a critical feature of 5G networks.

To implement network slicing effectively, specific components are essential. This
chapter delves into the components required for network slicing, such as Net-
work Function Virtualization (NFV) and Software Defined Networking (SDN).
These components enable dynamic resource allocation and service isolation, con-
tributing to the success of network slicing in 5G environments.

In addition to the technical aspects of network slicing, this chapter also addresses
the concept of fairness. Fairness in resource allocation is a vital consideration in
multi-slice networks, as it ensures that all services and users receive equitable
access to network resources. The chapter discusses how fairness is achieved in
network slicing and the role it plays in optimizing overall network performance.

Finally, the chapter introduces two important orchestrators, Open Networking
Automation Platform (ONAP) and MOSAIC5G, which play a key role in net-
work slicing. An overview of their components and functionalities is provided.
Orchestrators act as central management systems that coordinate and automate
various network operations, including resource allocation, service deployment,
and network configuration. Their importance in network slicing lies in their abil-
ity to efficiently manage the diverse and dynamic requirements of multiple net-
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work slices.

2.1 Basic Concepts

It is vital to comprehend a few principles before discussing the 5G network and
network slicing concepts. In this section, a variety of technologies are presented
to give the reader a few notions on how these technologies are essential to im-
plementing 5G network slicing. The principles that follow in this section were
written with the aid of a survey about 5G network slicing [Barakabitze et al.,
2020], which thoroughly clarified them.

2.1.1 Software defined Networking

SDN aims to increase the flexibility and agility of networks. SDN is an approach
to plan, deploy, and administer networks, that separate the control and data/forwarding
planes. This separation results in flexibility and centralized control with a global
view of the entire network, along with the capability to respond rapidly to chang-
ing network conditions, business, market, and end-user needs. As shown in the
image below, SDN bridges the gap between service provisioning and network
management by establishing a virtualized control plane. This virtualized control
plane, executes intelligent management decisions among network operations, as
illustrated in figure 2.1.

Figure 2.1: SDN implementation[Barakabitze et al., 2020]

Some of the SDN solutions that can support network slicing in 5G systems are
known as OpenDayLight (ODL) [ODL] and Mobile Central Office Re-architected
as a Datacenter (M-CORD) [M-CORD].

ODL can optimize softwarized and virtualized networks, to provide dynamic
services.

M-CORD uses SDN and NFV to offer services to operators in the context of set-
ting up 5G mobile wireless networks. The end-to-end slicing provided by M-
CORD includes the option of a virtualized and programmable Radio Access Net-
work (RAN).
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2.1.2 Network Function Virtualization

NFV corresponds to a software implementation of a dedicated function, normally
implemented in hardware like routers, firewalls, and load balancers. A NFV runs
on a virtual machine, using the physical hardware’s available processor, memory,
and storage as if it were its computer.

The NFV paradigm decouples software from the hardware platform, allowing
independence between NFVs. The NFV paradigm offers more freedom in the
implementation of network services because software components are not cou-
pled to hardware and can carry out a variety of tasks at different times. Network
operators can therefore launch innovative or new services while continuing to
use the same hardware platform. Due to this decoupling feature, NFV offers dy-
namic network operation and service delivery since network operators can pro-
vide customized services while dynamically scaling NFV performance by cus-
tomer preferences. In addition, network resources can be efficiently allocated to
NFVs through dynamic scaling.

This feature of decoupling software from hardware, results in low latency and
low failure rates for NFV operations, as well as optimized resource provisioning
to end users with high Quality of Service (QoS).

2.1.3 Cloud Computing

According to the National Institute of Standards and Technology (NIST), cloud
computing is a "model for enabling convenient, on-demand network access to
a shared pool of configurable computing resources (e.g., networks, servers, stor-
age, applications, and services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction." [Mell et al., 2011]

Cloud computing allows for the ability to scale up or down according to the busi-
ness needs, which helps to reduce operational expenses. The pay-per-use model
for providing resources eliminates the need for costly hardware investments, as
users only pay for the workloads and resources that they use. This detailed mea-
surement of compute resources ensures that businesses can adapt to changing
demands and lower their operational expenses by only paying for what they use.

In a cloud computing environment, two categories build the typical service provider
roles:

• Infrastructure Providers (InPs): Handle cloud platforms and resource leas-
ing with the use of a pricing scheme.

• Service Providers (SPs): To serve end users, one or more InPs may lease
resources.

The services that cloud computing offers, are divided into three main categories
or types of cloud computing:
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• Software as a Service (SaaS): Is a method of distributing programs (web
services) via the Internet. Users can use a computer or mobile device with
internet connectivity to access SaaS applications and services from any lo-
cation.

• Platform as a service (PaaS): It offers a platform that enables users to create,
use, and manage different apps without having to deal with the complexity
of setting up and managing cloud infrastructure.

• Infrastructure as a service (IaaS): It offers self-service approaches for ad-
ministering, accessing, and managing the network, computing, and stor-
age services found in remote data centers. For example, Amazon Web Ser-
vices supply a virtual server instance and storage, as well as Application
Programming Interface (API) that lets users migrate workloads to a Virtual
Machine (VM). Users have an allocated storage capacity and can start, stop,
access and configure the VM and storage as desired.

We may better understand these principles by using the practical examples in
figure 2.2.

Figure 2.2: Cloud Computing Services categorized[Barakabitze et al., 2020]

2.1.4 Multi-access edge computing

Multi-Access Edge Computing (MEC) relocates traffic and service processing from
a centralized cloud to the network’s edge, bringing it closer to the user. The net-
work edge processes, stores, and analyzes data instead of sending it all to a cloud
for processing, allowing high-bandwidth applications to operate in real-time by
reducing latency and bringing data collection and processing closer to the client
[MEC].

The MEC platform, and MEC apps share communication interfaces through MEC
services which function as a middleman API between them, and also can provide
services to the applications. MEC Services nodes can operate locally in the de-
ployed data center or remotely in the cloud.
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2.2 Graph Analysis and Optimization Tools

In this section, we explore the essential graph analysis and optimization tools that
form the foundation of our resource allocation framework for network slicing.
These tools enable us to model, analyze, and optimize the allocation of resources
in multi-slice networks. We introduce NetworkX, a versatile Python package for
graph analysis, MiniZinc, a powerful constraint modeling language, and Mat-
plotlib, a plotting library that aids in visualizing resource allocation outcomes.

2.2.1 NetworkX: Comprehensive Network Analysis

"NetworkX is a Python package for the creation, manipulation, and study of the
structure, dynamics, and functions of complex networks" [NetworkX].

Its comprehensive set of tools and functionalities make it an invaluable resource
for researchers working with network data. With a focus on efficiency, versatil-
ity, and seamless integration with the Python ecosystem, NetworkX serves as a
powerful graph analysis library that has played a fundamental role in the devel-
opment of our resource allocation framework for network slicing.

One of the key strengths of NetworkX lies in its support for various graph data
structures, including directed graphs (DiGraphs), undirected graphs, and multi-
graphs. These structures efficiently represent the intricate relationships between
nodes and edges in real-world networks, enabling us to model complex systems
with ease.

To delve more profoundly into NetworkX’s capabilities and its potential as an en-
riching tool for network simulation, our exploration draws from a range of schol-
arly works, including references like [5G Dataset Network Slicing CRAWDAD
Shared], [Nerini, 2020], and [Resilient service chains through smart replication].
Through these sources, we gain deeper insights into the tool’s functionalities and
its significance within the context of network analysis and simulation.

2.2.2 MiniZinc: Modeling Resource Allocation

MiniZinc is a versatile constraint modeling language that facilitates mathematical
modeling and the solution of combinatorial optimization problems. By serving
as an intermediary layer between users and solvers, MiniZinc allows for a focus
on problem logic rather than solver implementation details.

MiniZinc employs a declarative syntax, enabling concise expression of optimiza-
tion problems without specifying solution algorithms explicitly. This approach
enhances problem-solving simplicity and model readability.

At its core, MiniZinc adopts constraint-based modeling, employing constraints
to define variable relationships and limit their potential values. This flexibility
enables the expression of problem-specific rules, preferences, and logical condi-
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tions. With support for various constraint types, such as arithmetic, logical, and
global constraints, MiniZinc offers an expressive framework for diverse combi-
natorial problem formulations.

A prominent advantage of MiniZinc is its solver independence, allowing users to
model a problem once and then utilize multiple solvers for solution finding, such
as Choco and Gecode which are used in constraint programming. This adaptabil-
ity facilitates effortless experimentation and comparison of various solver strate-
gies and algorithms, integrating a range of state-of-the-art solvers for tackling
diverse optimization challenges.

Gecode is renowned for its outstanding efficiency in solving combinatorial opti-
mization and constraint satisfaction problems. Given the complex nature of our
fairness model, involving various constraints and objectives, a solver with exper-
tise in constraint programming was essential, and Gecode fit the bill perfectly.

2.2.3 Matplotlib: Visualizing Resource Allocation

Matplotlib is a highly popular Python library used for creating static, interac-
tive, and animated data visualizations. It offers a wide range of Two Dimention
(2D) and Three Dimention (3D) plots and is widely regarded as one of the top
plotting libraries in the Python ecosystem. The best part about Matplotlib is its
user-friendly interface, making it accessible to both beginners and experienced
developers. You can generate plots with just a few lines of code, but it also allows
advanced users to customize their visualizations extensively.

With Matplotlib, you can create various plot types such as line plots, scatter plots,
bar plots, histograms, pie charts, and 3D plots, among many others. This versa-
tility makes it suitable for visualizing different types of data.

One of the great things about Matplotlib is its seamless integration with Nu-
merical Python (NumPy), the fundamental package for scientific computing in
Python. This integration lets you plot data directly from NumPy arrays and per-
form mathematical operations with ease.

Matplotlib plays a vital role in data analysis, exploratory data visualization, and
communicating insights in various domains, including data science, engineering,
finance, and academia. Its ease of use, wide adoption, and ability to create vi-
sually appealing data visualizations have made it an essential tool for Python
programmers.

2.3 5G Network

The construction of Fifth-Generation (5G) mobile and wireless communication
systems has been sparked globally by the expanding use of mobile video ser-
vices (such as YouTube and mobile TV) on smart devices and developments in
the Internet of Things. This section will address this subject by identifying the

10



Background and Terminology

key features that the 5G Network has to offer customers that set it apart from its
predecessors [Barakabitze et al., 2020].

2.3.1 An introduction to 5G

The most recent technology, known as 5G, is designed to significantly speed up
and improve the responsiveness of wireless networks making businesses market
more efficient and giving consumers access to more information faster than ever
before.

This kind of network can be applied to a variety of commercial settings where
services must be delivered reliably, including smart grids, public safety, water
delivery, and natural gas networks. Every 5G application has a unique set of
performance requirements. Taking this into consideration, 5G Network has a
variety of quality and business requirements, based on the article [Afolabi et al.,
2018].

Data Rate and lower Latency

The 5G network is expected to provide 1–10 Gigabytes per second data rates,
which are almost ten times of Fourth-Generation (4G) Long Term Evolution (LTE)
network’s theoretical peak data rate of 150 Megabytes per second, which for ap-
plications like 3D gaming, for example, will be mandatory.

By utilizing terminals with Artificial Intelligence (AI) capabilities, 5G will be able
to supply high-level services with guaranteed end-user service quality and mo-
bile broadband without the chance of failing even in crowded areas (such as sta-
diums, cars, trains, concerts, or shopping malls). Another goal of 5G is to support
connectivity available anytime and anywhere with a 1-millisecond round-trip la-
tency. These values were taking into account the article [Barakabitze et al., 2020]

Enhanced service availability, security, and mobility

To facilitate fast communications for emergency and public safety situations, 5G
must have a strong, reliable, and resilient network. As mentioned before, 5G will
support communication that cannot fail, like public safety, and smart grids. Thus,
we need an enhanced service availability with high-speed connections.

Mobility Management is necessary to make sure that the user can "reach" the
network, for example, to inform them of incoming calls and messages or a user’s
ability to start a conversation with other users or services like Internet access.

Centralized Mobility Management (CMM) is the universal mobility management
system that is frequently used in LTE. However, CMM has significant problems
[Akkari and Dimitriou, 2020], particularly in crowded networks where a greater
proportion of mobile users would lead to more frequent handover requests and,
as a result, a greater proportion of signaling messages.

The newly introduced Distributed Mobility Management (DMM) proposals for
5G, have the potential to overcome the current mobility management limitations
[Cominardi et al., 2017]. The key differentiator of DMM is a simple distribution
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of mobility anchors by positioning a few of them closer to the user’s location.

Finally, for mission-critical applications like smart grids, public safety, water dis-
tribution, and natural gas networks, the 5G network will need to ensure and
can protect against security threats, such as, Denial of Service (DoS) in which re-
sources remain unavailable causing a significant impact on organizations [Barak-
abitze et al., 2020].

Quality of Experience (QoE)-based service billing and pricing

Billing/charging policies by service providers must be based on the QoE off the
service. For example, a premium (Internet Protocol television (IPTV) customer
who pays more for a service expects a better service quality, as a result, it is im-
portant to develop appropriate QoE-based service billing and pricing methods
that will directly impact the quality of business while also offering a QoE differ-
entiator in future 5G networks.

Longer battery life, seamless user experience, and context-aware networking

Sensor networks based on 5G deployment can only be feasible if everyday op-
erations support several years of significantly longer battery life and decreased
energy usage for 5G devices. Future 5G networks should be able to maintain the
quality of possible latency and data rate while delivering and providing a con-
sistent user experience regardless of the user’s location. The characteristics of 5G
solutions should also allow the network to adjust to the demands of applications
and connected smart devices.

2.3.2 4G Network vs 5G Network

As stated previously, the rising customer demand for high-quality services and
the expanding consumption of multimedia services have led to a fundamental
shift in how we manage networks in terms of abstraction, segregation, and map-
ping of forwarding, control, and management aspects of services.

Faster speeds, more bandwidth, and lower "latency" or lag time in communica-
tions between devices and servers, are the three main distinctions between 4G
and 5G. The 5G network is expected to provide the fastest data rates in compar-
ison with the 4G LTE network. 5G also delivers a latency time under 5 millisec-
onds, while its predecessors 4G can only deliver 60 milliseconds to 98 millisec-
onds [5G vs 4G: Learn the key differences between them].

Another feature that must be considered is security, 4G networks provide safety
at the user level, such as data encryption and network-level security. 5G Network
works at a more advanced level like business, delivery models, services, etc. This
means that 5G needs to be able to offer multiple layers of security assuring that
attacks like Denial of Service never happen.

However, what is known as "softwarization" is the most novel feature. Soft-
warization in 5G networks will allow the implementation of Network Slicing by
giving the possibility to virtualize a piece of hardware. In other words, a spe-
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cific functionality will, for instance, be executed by a virtual machine in software
as opposed to hardware. To create, deploy, administer, design, and maintain
network components and services, this functionality makes use of software pro-
gramming enabling 5G Network to provide its users with services that are higher
quality and more cost-effective.

In the 5G era, developers and operators may quickly create application-aware
networks (Network keeps up-to-date records of the applications that connect to
it, maximizing both its performance and that of the applications or systems it
governs) and network-aware (Capacity to keep an eye on factors affecting the net-
work, such as available bandwidth, network capacity, packet loss rate, and delay,
allowing the application to modify its performance for better resources’ usage)
apps to meet their business objectives thanks to the strength of softwarization
and virtualization technologies.

2.3.3 5G Network Architecture

Before discussing Network Slicing and what it entails, it is necessary to compre-
hend how a 5G network operates inside, what its components are, and why they
are significant. 5G has 3 main components domains: New Generation Radio Ac-
cess Network (NG-RAN), 5G Core Network (CN) and Packet Data Transport.

These 3 domains are what needs to be in place to support network slicing, as
depicted in figure 2.3.

Figure 2.3: 5G Main Components [MPIRICAL 5G Core Network]

New Generation Radio Access Network

Modern technology integrates cutting-edge technological advances in 5G new ra-
dio air interface and 5G next-generation core network designs, making it substan-
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tially more sophisticated than 4G networks. Fast, low-latency, high-bandwidth
5G Radio Access Networks (RANs) that can connect anything to anywhere with
unmatched performance, efficiency, and cost are the end consequences, as we’ve
seen before.

NG-RAN, is the newest wireless communication architecture that uses 5G radio
frequencies to give devices wireless connectivity. A crucial element of a mobile
communications system that uses radio links to link devices like smartphones to
a network is the RAN. To do this, voice and data are converted into digital signals
that are then transmitted as radio waves to RAN transceivers, who then forward
them into the core network.

Core Network

In this sub-section, we present information about the composition of a core net-
work, based on the educational videos provided by [MPIRICAL 5G Core Net-
work].

The 5G Core Network manages all the internet and data connections. It is de-
signed to integrate with the internet much more efficiently and manages the ad-
vanced features of 5G, like network function virtualization and network slicing.

To carry out network user traffic, 5G uses what is called a Protocol Data Unit
(PDU) session, that runs from the device through the Next Generation NodeB
(gNB), User Plane Function (UPF) and then on to the data network. This is shown
in figure 2.4. In other terms, the connection between the device and the Data
Network is made possible through PDU sessions.

gNB and UPF are two components of the 5G Core Network as we can see in figure
2.4, which we will discuss further in this section.

Based on what the service requires, PDU sessions can offer different degrees of
service quality by using Quality of Service Flows (QoS Flow). There are numer-
ous QoS flows in a PDU session, and each one has a distinct ID to set it apart
from the others, once traffic can have varied QoS requirements. When no filters
are required to be applied, a default QoS flow is always present in a PDU session,
allowing all packets to pass through. Latency and priority are examples of QoS
requirements.

As we can see in figure 2.4, there are various elements designed to keep that PDU
session active for the subscriber and to ensure that the PDU session follows the
subscriber’s moves around the network.

Core Access and Mobility Management Function

As its name suggests, this component handles mobility management, allowing
the Core Access and Mobility Management Function (AMF) to constantly be
aware of the subscriber’s location in a given traffic area.

The AMF also has a major role in security because it must communicate with
other subscriber databases to confirm that the subscriber is authorized to use the
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Figure 2.4: 5G Core Architecture[MPIRICAL 5G Core Network]

network.

Session Management Function

In LTE the Mobility Management Entity (MME) is responsible for the Session and
Mobility Management, in 5G that functionality is being split so that the Mobility
Management is left for the AMF and the Session Management is made in the
Session Management Function (SMF).

SMF is responsible for communicating with the Policy Control Function (PCF) to
determine whether or not a particular user data session is allowed to proceed in
the network.

The actual PDU session connectivity, which involves setting up several different
connections in the network, is another function that the SMF is concerned with.
These connections go through the UPF, and the SMF is responsible for deciding
which UPF to use.

User Plane Function

As we stated earlier a PDU Session runs from the device through the gNB, UPF,
and then on to the data network.

The UPF is important in the data transfer process interconnecting the Data Net-
work (DN) in the 5G architecture. Additionally, it handles packet inspections, and
QoS handling, and acts as an anchor point for Inter-Radio Access Techonology
mobility (Inter-RAT) and Intra-Radio Access Techonology mobility (Intra-RAT)
mobility. UPF provides a high-performance forwarding engine for user traffic.

On the other hand, gNB enables devices wireless communication. It is in charge
of controlling the wireless connectivity between devices and the 5G Network.

Unified Data Management

Unified Data Management (UDM) is a central database with subscriber data that
focuses on three key areas:

• Access Authorization: Holds security keys.
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• Registration and Mobility Management: Keeps track of the AMF to which
our subscriber is allocated.

• Data Network Profile(s): Contains the subscriber’s profile containing in-
formation about what the subscriber is allowed to do, which data networks
it can connect and what kind of QoS profile he can expect to be granted
when they connect to those data networks.

Policy Control Function

The PCF provides policy control for sessions’ management, access and mobility,
and PDU Session selection. The SMF and application functions work together
with the PCF to offer permitted QoS for session management. When choosing a
PDU Session, PCF also consults the SMF to see if any network issues could affect
how the subscribers can use the services. The PCF communicates with the AMF
to monitor service area restrictions and control access and mobility policies.

All of these elements come together to form the 5G Core, and a number of them
can be virtualized as part of the NFV infrastructure. This indicates that instead of
being used as standalone devices, these components are now running as software
processes on Commercial off the Shelf (COTS) servers. Therefore, the concept
behind Network Functions Virtualization is that we may create an NFV Infras-
tructure that offers these software processes the compute, storage, and network
resources they will eventually need. The benefits of employing NFV include the
fact that this infrastructure is based on COTS hardware, which significantly re-
duces the cost of deploying the Core Network, and the ease with which these
processes can be scaled up or down because they can run as software processes. It
requires a Management and Orchestration (MANO) to support an efficient man-
agement of NFVs.

2.4 Network Slicing

The industry has adopted 5G as the next-generation network that can handle ver-
tical applications (pieces of software designed to fit the needs of a specific mar-
ket, industry, or company) with a variety of service requirements. The physical
network has to be sliced into multiple isolated logical networks of varying sizes
and structures which are dedicated to different types of services based on their
requirements, to implement this vision in 5G network [Barakabitze et al., 2020].

2.4.1 Network Slicing Introduction

A network slice is an End-to-End (E2E) logical network, running on a shared
underlying (physical or virtual) infrastructure, that offers certain network capa-
bilities and network characteristics to fulfill a given business goal of a customer.

When we create a network slice, that slice is logically separated from all other
network slices and will support a set of attributes, qualities, and characteristics.
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We can create multiple network slices, but does require very comprehensive slice
orchestration. We need to be able to manage the network slices’ life cycle man-
agement. Instantiate, maintain, and tear them down when they’re no longer re-
quired. We need to independently monitor them.

As we can see in figure 2.5, we can have multiple slices in which one network
slice is for mobile broadband and another slice is for connected vehicles. Mobile
Broadband’s slice in this scenario must have certain qualities, such as reliabil-
ity and high data throughput, while the connected vehicle’s slice must have ex-
tremely low latency and great reliability. Briefly, we can specify the characteristics
we desire in each network slice to serve a specific function.

Figure 2.5: Cloud Computing Services categorized[Barakabitze et al., 2020]

In the context of 5G network slicing, three main categories have been defined:

• Enhanced Mobile Broadband (eMBB): This category focuses on delivering
high-speed, high-capacity data connectivity to meet the escalating demands
of data-intensive applications. eMBB aims to facilitate activities like high-
definition video streaming, virtual and augmented reality experiences, and
large file transfers, all requiring substantial data throughput and reliable
connections. By allocating resources efficiently and optimizing data deliv-
ery, eMBB enhances user experiences and supports the growing appetite for
bandwidth-intensive applications.

• Massive Machine-Type Communications (mMTC): In contrast to eMBB’s
emphasis on high data rates, mMTC targets the pervasive connectivity of
a massive number of devices, often seen in the Internet of Things (IoT)
domain. This category accommodates scenarios where a multitude of de-
vices, sensors, and objects need to communicate seamlessly, requiring effi-
cient resource allocation, minimal energy consumption, and low data rates.
mMTC lays the foundation for smart cities, industrial automation, and var-
ious sensor-driven ecosystems, transforming how devices interconnect and
exchange data.

• Ultra-reliable, low-latency communications (URLLC): This category is tai-
lored for applications demanding instantaneous response times and excep-
tional reliability, crucial for tasks such as real-time control, industrial au-
tomation, and mission-critical communication. URLLC ensures that latency
is minimized to a fraction of a millisecond, and packet loss is virtually
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nonexistent. This reliability is essential for applications where even the
slightest delay or data loss can have significant consequences, underscoring
URLLC’s significance in fields such as autonomous driving, remote surgery,
and advanced industrial processes.

.

2.4.2 Network Slicing Orchestration

As stated previously we need to be able to monitor all of the network slices life cy-
cle management independently. Instantiate them, maintain them, and tear them
down when they’re no longer required. An orchestrator who has a broader un-
derstanding of the network is in charge of such functionality so that a Network
Slice can be managed by its needs.

The orchestrator is required to realize the Network Slicing vision. It is respon-
sible for automating the creation, monitoring, and implementation of resources
and services in adjacent software and virtualized environments. The 5G architec-
ture is quite complicated, as we have previously seen, and we require software
that can understand the "big picture" of this architecture to deploy resources in
specific components as necessary, depending on the resources that a particular
slice needs.

Different types of orchestrators

The orchestrator provides orchestration of Network Function Virtualization In-
frastructure (NFVI) across multiple Virtual Infrastructure Managers (VIMs) and
lifecycle management of the network services, including instantiation, scale in/out
(known as elastic scaling), performance measurements, event correlation, resource
management, validation and authorization for resource requests, and policy man-
agement [Zhang and Meddahi, 2017].

Resource Orchestrator

The management and coordination of resources under the control of various
VIMs is accomplished via resource orchestration. This kind of orchestrator man-
ages NFVI resources within the Network Function Virtualization Infrastructure -
Point of Presence (NFVI-PoP) or across other NFVI-PoPs (physical location where
the infrastructure and resources needed to support the operation of virtualized
network functions are deployed) by coordinating, authorizing, releasing, and en-
gaging them.

Network Services Orchestrator

Network services orchestration manages and coordinates multiple network func-
tions and services used to deliver the different slices. This type of orchestrator
performs tasks such as allocating resources, such as bandwidth and processing
power, to different slices and managing the communication between the slices
and other network elements.
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2.5 Orchestration platforms

This subsection provides an overview of diverse orchestration platforms, includ-
ing ONAP and MOSAIC5G, which play a vital role in the administration of dy-
namic network slices and resource orchestration in 5G networks. These platforms
are open-source and have been specifically developed to cater to the complexities
of modern network environments.

For our work, we will focus solely on the orchestrators mentioned above, as the
project Orchestration and Resource optimization for Reliable and low-latency
Services (OREOS) is directly involved in the activities outlined in this disserta-
tion. According to the project documentation, OREOS leverages the orchestra-
tion functionalities offered by ONAP and OSM, both of which are considered
comprehensive solutions supporting various infrastructures, such as OpenStack
and VMWare [OREOS: Estudos Preliminares na área do Projeto].

While ONAP is recognized as a highly complete orchestration solution, its com-
plexity may pose resource challenges. Therefore, the study on MOSAIC5G aims
to investigate how a less complex orchestrator can effectively orchestrate a net-
work like ONAP. This analysis will provide valuable insights into different or-
chestrator platforms and their capabilities.

The information presented in this section is based on reputable sources, including
articles and published materials available in references [Open Network Automa-
tion Platform] and [MOSAIC5G]. These references have been crucial in compiling
the documentation for this research.

2.5.1 Open Networking Automation Platform

ONAP provides network operators, cloud providers, and businesses to orches-
trate, manage, and automate network and edge computing services synchronously.
The rapid automation of new services and comprehensive lifecycle management
necessary for 5G and next-generation networks are made possible by real-time,
policy-driven orchestration and automation of physical, virtual, and cloud-native
network functions.

The ONAP project responds to the growing demand for a common automation
platform that enables telecommunication, cable, and cloud service providers, as
well as their solution providers, to deliver differentiated network services on de-
mand, profitably, and aggressively, while leveraging existing investments.

Previous architectures, such as Operations Support Systems (OSS)/management
software platforms required a longer cycle of software development and integra-
tion. Since ONAP is a cloud-native application composed of several services,
requires a complex initial deployment as well as post-deployment management.
The ONAP Operations Manager (OOM) manages and controls the full lifetime
of ONAP components. In addition, OOM helps enhance ONAP platform matu-
rity by providing scalability and resiliency enhancements to the components it
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manages.

The ONAP platform enables a closed control loop approach that supports real-
time response to responsive events, enabling end-user organizations and their
network/cloud providers to cooperatively instantiate network components and
services quickly and dynamically. There are three main prerequisites to develop,
engineer, plan, bill, and ensure these dynamic services:

• A strong design framework that enables the specification of the service in
all its aspects like modeling resources, and describing policy rules, among
others.

• An orchestration and control framework (Service Orchestrator and Con-
trollers) that follows recipes and policies to manage service demands elas-
tically and enable automated service instantiation when necessary.

• An analytical framework that carefully examines the performance of the
service throughout its life cycle based on the specified design, analytics,
and policies

The ONAP architecture consists of Design-Time and Run-Time functions, as well
as functions to manage ONAP itself. The design time framework is a full-featured
development environment with tools, methods, and repositories for defining and
specifying resources, services, and products. The rules, regulations, and other
models distributed by the design and creation environment are carried out via
the run-time execution framework. figure 2.6 gives us a clearer understanding of
the ONAP components and how they are divided.

Figure 2.6: ONAP Overview [Open Network Automation Platform]
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Service Design and Creation

Service Design and Creation (SDC) provides service design and creation func-
tionality for an automation platform including:

• Resource onboarding: provides the ability to design NFV resources includ-
ing NFVs, Services, and products.

• Service Design: creates all artifacts (models) that are required to instantiate
and manage resources, services, and products on the ONAP platform.

• Launch resource and service testing.

• Deploy provided services into the network.

• Provides design time catalog capabilities.

• Process workflow support for talking the NFV or other resources and ser-
vices through the process steps(design, test, deploy).

As shown in figure 2.7, SDC provides 3 functionally distinct layers with modu-
lar software, integrated with internal API. SDC offers a robust design time user
experience to the service provider, by allowing:

Figure 2.7: SDC Component [Open Network Automation Platform]

• Service Providers to configure its design environment including user roles
and design workflows.

• Import generic ONAP management functions like, management system flows
and policies from ONAP developed software and SP’s adaptations.

• Onboard and Design resource level network functions (NFV, Physical Net-
work Function)

• Add resources to service model composition.

• Design Service Provider-specific Management Flows and Policies for the
Resource or Service Model.
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• SDC unifies several design tools into a single platform, giving ONAP de-
velopment a "Pluggable framework" for simple design tool integration.

• Provides design objects a common catalog with cataloging capabilities for
storage and management of data models that follow the ONAP standard.

• Distributes models to runtime for execution.

Service Orchestration

The orchestration of network services and resources is the responsibility of the
Service Orchestration (SO) component. Technology is based on the Business Pro-
cess Model and Notation (BPMN) model. BPMN workflows can be separated into
main processes and sub-processes. A BPMN workflow is a description, mainly
composed of "tasks". Each task in a workflow is linked to a piece of code (Groovy
or Java) that implements the task and they are executed by SO using the Ca-
munda BPMN engine.

Figure 2.8: Service Orchestration Architecture [Open Network Automation Plat-
form]

The architecture of this component can be viewed in figure 2.8 which consists of:

• API Handler

Is a Representational State Transfer (RESTful) interface to northbound clients,
which could be an external API, portal, etc., that handles service-level and
infrastructure (NFV and network) requests. It is used to connect input re-
quests to BPMN flows.
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It is possible to keep track of open and finished requests by accessing Re-
quest BD allocated in Data Stores which will be explained further in the
document.

• BPMN Execution Engine

The main purpose of this component is to execute BPMN service recipes
that are sent from the service orchestration. Sequence orchestration steps
for each Resource in the recipe:

– Request and configure network resources via Software-Defined Net-
working Controller (SDN-C);

– Manage cloud resources via OpenStack;

– Configure Application NFVs via Application Controller (APP-C);

– Configure Network services via Virtual Function Controller (VFC);

– Update inventory via Active and Available Inventory (AAI);

BPMN Execution Engine also performs additional orchestration steps (con-
sult policy, etc.) per individual recipes and error handling/rollback.

• Resource Adapters

Resource adapters are components that are responsible for communicating
with external systems and devices to provision and manage network re-
sources.

The Resource Adapters provide interfaces to lower-level controllers and
other ONAP components, like:

– Platform Orchestrator, SDN-C,APP-C, VFC, Multi-Cloud;

– Hides the details of complex interfaces (e.g. OpenStack APIs) via higher-
level calls;

– Expose interfaces to BPMN flows as Simple Object Access Protocol Ap-
plication Programming Interface (SOAP API) or Representational State
Transfer Application Programming Interface (rest API);

SO Catalog is used to map resource requests to a recipe/template. Catalog
templates may be updated via self-service (outside of release cycles) and
can be merged with input parameters at run-time.

• Data Stores

Several different types of data stores can be used within ONAP, including
relational databases, Not Only SQL (NoSQL) databases, and file-based stor-
age systems. The specific data store that is used will depend on the needs
of the particular ONAP deployment and the requirements of the various
ONAP components that need to access the data. Data Stores are constituted
by:

– Request Database (DB): Tracks open and completed requests.

– SO Catalog: enables service providers to more easily manage and de-
ploy services
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* SO view of the SDC Catalog: Service and resource models, recipes,
and templates;

* Populated via SDC distribution service from TOSCA models;

– Camunda DB: Maintains state for BPMN flows and can support multi-
ple active engines.

• SDC Distribution Client

The Service Design and Creation (SDC) component, which enables service
providers to design and develop new network services using a visual de-
signer tool, is often used in conjunction with the SDC Distribution Client.

The SDC component creates a service artifact after a service provider com-
pletes developing a new service that includes all relevant data. The distribu-
tion of this artifact to the proper target environment, such as a development
or production environment, is subsequently the responsibility of the SDC
Distribution Client.

SDC distribution client also receives distributions as Topology and Orches-
tration Specification for Cloud Applications (TOSCA) models, populates SO
Catalog, and supports self-service updates to models and artifacts.

Active and Available Inventory

AAI has a centralized view of inventory data which includes changes from or-
chestrators, controllers, and assurance systems. The following things are under
the control of AAI:

• Data Management: Giving the ONAP components access to the system’s
data, including its integrity, chronology, and sources, in addition to the cur-
rent "as-built" view of the services. AAI includes information about the re-
sources that are being used by the service provider, including details about
the type, location, and status of each resource. This information is typically
used to track the usage of resources, to monitor the performance of services,
and to identify potential issues or problems.

• Inventory and Topology Management: As updates are made in the cloud,
data in AAI is constantly updated in real-time.

Because AAI is metadata-driven, new resources and services can be readily added
with the help of the Service Design and Creation (SDC) catalog definitions and
the AAI model loader. A representation of AAI architecture is represented in
figure 2.9

• AAI is updated with the details of new network or data center resources
using REST APIs as they become available.

• Systems inform AAI at every stage of the deployment of new service types
when they are created or new services are launched.
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• The health and analytics findings are recorded in AAI as state information
as telemetry for the services and their supporting infrastructure is gathered.

• The impact of a failure is evaluated using AAI when assurance systems
identify it.

Figure 2.9: AAI[Open Network Automation Platform]

AAI must be ready to respond to a wide range of queries given the volume and
diversity of the data, including:

• Real-time search, to quickly find specific items in all the information stored;

• Relationships to determine impacts and consequences;

• Aggregations and counts to investigate availability and consumption;

• Validation and Integrity to determine whether systems are acting on reliable
information;

• History and provenance to reconstruct the current view and its context, and
enrichment out to legacy systems.

Data Collection, Analytics, and Events

Data Collection, Analytics, and Events (DCAE) facilitate automation by collecting
network data, performing analytics and correlation, and triggering events that
can be used to identify root causes.

All of the microservices (collectors, analytics, and event processors) that provide
active data flow and processing are included in the DCAE services components.
These service components include functional entities that fulfill:

• A variety of data collection requirements;

• Event processors for data standardization;

• Analytics that evaluate acquired data;

• Supporting auxiliary microservices for automated closed loop flows.
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2.5.2 MOSAIC5G

The established MOSAIC5G (M5G) PROJECT GROUP seeks to convert RAN and
CN into open, flexible platforms for network-service delivery. With the help of
such a platform, new use cases that would be interesting to various vertical busi-
nesses might be explored.

MOSAIC5G relies on 3 layers:

• Trirematics (Orchestration and Management);

• FlexRIC (RAN Platform);

• OpenAirInterface Radio Access Network (OAI-RAN) and OpenAirInter-
face Core Network (OAI-CN) (Infraestructure)

"On top of OpenAirInterface RAN and CN, this PROJECT GROUP will create a
set of extensible control and orchestration frameworks with extensible APIs to
allow for a fine-grained network infrastructure monitoring and programmabil-
ity" [MOSAIC5G].

Figure 2.10: MOSAIC5G Architecture [MOSAIC5G]

In figure 2.10 we can have a better view of the MOSAIC5G architecture.

Since orchestration is the main emphasis of our topic, let’s talk more specifically
about trirematics. It is a cloud-native orchestration and management framework
allowing to operate the lifecycle of diverse RAN and CN deployment scenarios
in the form of blueprints.

In triremetrics, each network slice is independently optimized using distinct MO-
SAIC configurations for its resources, network functions, and service chains. Us-
ing several namespaces, these network slices are kept distinct from one another.
Using REST northbound APIs, each slice may be managed and monitored simi-
larly to ONAP.

The features of trirematics include:

• Intelligence and Agility
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In instances requiring decision-making during deployment, the Trirematics
operator demonstrates its intelligence by offering solutions for a range of
tasks. These tasks encompass day-1 operations such as placement, resource
allocation, and deployment, as well as day-2 operations which include ac-
tivities like migration, fault recovery, parameter reconfiguration, and ongo-
ing optimization.

• Automation and Abstraction

The lifecycle of the network entities is fully automated by the Triremetric
operator.

• Maintenance and Observability

A 4G/5G network is anticipated to operate dependably for extended pe-
riods of time once it has been installed. With a wide range of observabil-
ity features, such as log processing, alerting, metric processing, and health
monitoring, the Trirematics operator could carry out automatic day-0, day-
1, and day-2 operations.

AI Operator

Operators are software components that make operating another piece of soft-
ware less complicated. They oversee a Kubernetes environment and use its present
state to make decisions in real time, acting as an extension of the software ven-
dor’s technical team. Specifically, an operator automates the deployment of the
services, upgrades, and (re)configures them.

This operator is developed using Openshift Operator Software Development Kit
(SDK), which offers the resources needed to create, test, and evaluate them. SDK
makes it easier to combine the business logic of an application (how to scale,
upgrade, or backup), with the Kubernetes API to carry out such activities.

Different AI methods could be used for resource optimization and monitoring.
After gathering and analyzing data from the deployed network, a decision on the
provision or preemption of resources to/from particular slices can be made.

Kubernetes

Kubernetes is an open-source system to deploy, scale, and manage containerized
applications anywhere.

As shown in figure 2.11, organizations used to run their programs on physical
servers back in the traditional deployment period. With this method, the orga-
nizations are unable to define the amount of resources certain apps need to fulfil
their requirement leading to problems with resource allocation. For instance, if
multiple apps are running on a physical server, there may be times when one ap-
plication uses up the majority of the resources, which lowers the performance of
the other applications. A solution for this would be to run each application on
a different physical server which was very expensive to organizations and was
unable to scale if there were resources still available.

As a solution to this problem, virtualized deployment was introduced, allowing
to run Multiple Virtual Machines on a single physical server’s CPU. Because the
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Figure 2.11: Deployment Evolution [KUBERNETES]

information of one application cannot be freely accessible by another application,
virtualization enables applications to be segregated between VMs and offers a
level of security. This method allows a more effective use of resources lowering
hardware costs and making it easier to add or update applications.

With the exception of being able to access data between apps, Kubernetes’ func-
tion is to manage containers, which is similar to virtual machines. Kubernetes
provides a framework to run distributed systems. The applications deployed on
a container are orchestrated by Kubernetes which takes care of the scaling and
failover of these applications, provides deployment patterns, etc.

In the context of MOSAIC5G, the use of containers begins with the deployment of
this project in a container orchestrated by Kubernetes which then we can provide
auto-configuration, reconfiguration, and fault-tolerance.

The deployment of MOSAIC5G on Kubernetes is demonstrated in figure 2.12 us-
ing the M5G operator to allow the deployment of all MOSAIC 5G inside its own
pods, Custom Resource Definition (CRD) which will define the composition of an
Operator and an Operator life cycle that manages the installation, updates, and
other stages of an operator’s life cycle.

Figure 2.12: MOSAIC5G Architecture using M5G operator [Mosaic 5G on Kuber-
netes with M5G operator]
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Custom Resource Definition

CRD provides the ability to add special objects or types to the Kubernetes cluster
in order to satisfy their specific requirements. A Kubernetes CRD behaves ex-
actly like any other Kubernetes object would: it makes use of all the ecosystem’s
features, its command-line interface, security, API services, and role-based access
control.

CRDs are defined as blocks of data, that have the ability to offer a way to build,
store, and expose Kubernetes API objects with data that meets any requirements
that aren’t automatically satisfied.

With the help of Mosaic5G Operator’s auto-pilot function and custom resource
definition CRD Kubernetes, we will be able to manage your services dynamically,
including service upgrades and downgrades, network (re)configuration, etc.

Store Image Hub and Blueprints

These components are an NFV element manager, which is responsible for manag-
ing one NFV as a service while containing all the necessary interfaces to control
the NFV’s full lifetime and its connections to other NFVs and services.

The role of a blueprint, in particular, is to provide a detailed explanation of the
organization, settings, and processes involved in setting up and maintaining a
Network Slice Instance over its lifetime. A Network Slice Blueprint enables the
design of a Network Slice that delivers particular network properties (e.g., ultra-
low latency, ultra-reliability, value-added services for enterprises).

2.5.3 ONAP vs MOSAIC5G

Upon conducting a thorough study to understand both ONAP and MOSAIC5G
platforms, we undertook a detailed comparison between them to explore alter-
native options for our implementation. In light of our analysis, we sought to
find an orchestrator that could effectively handle network slicing without the
excessive computational resource requirements of ONAP, leading us to explore
MOSAIC5G as a potential solution.

The primary driver behind this exploration was the substantial difference in com-
putational resource demands between ONAP and MOSAIC5G. ONAP, being a
comprehensive platform for handling numerous network functions and services,
necessitates a significant amount of computing resources, including CPU, mem-
ory, and storage, to ensure efficient and real-time data processing.

On the other hand, MOSAIC5G offers a lighter-weight approach, requiring fewer
computational resources for orchestrating network slicing. This reduced resource
footprint makes MOSAIC5G an attractive candidate, especially considering its
potential to efficiently manage network-slicing tasks without overburdening the
system.

While MOSAIC5G may have its own set of limitations and complexities based
on the size and intricacy of the network being managed, it presents a viable and
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promising option for our specific project requirements.

By exploring alternative orchestrators like MOSAIC5G, we aim to strike the right
balance between efficiency and resource utilization, ultimately enabling us to
achieve a robust and scalable network-slicing solution tailored to our needs.

2.6 Concept of fairness in resource allocation in net-
work slices

The popularity of wireless technology has revolutionized our world by integrat-
ing almost everything into the Internet. This transformation can be observed
through the beginning of technologies such as the Internet of Things (IoT), which
involve the cooperation of a massive number of intelligent devices to provide a
wide range of intelligent services. Ensuring fairness among these devices in this
era of connectivity has emerged as a critical topic that must be examined from
a variety of angles, including energy consumption, QoS, spectrum sharing, and
more.

Due to their widespread use and the limited supply of resources, wireless net-
works in particular are a focus when we address the topic of fairness. With the
exponential rise of wireless technology, the number of networked devices has ex-
panded substantially, increasing the issues associated with resource allocation,
especially when resources such as the wireless spectrum are few. Consequently,
the issue of fair resource allocation and sharing becomes even more significant.

The problem of fair resource distribution in wireless networks is the focus of this
section. We explore fairness research in the context of wireless networks, draw-
ing ideas from the study [Fairness in wireless networks: Issues, measures, and
challenges]. The paper offers a comprehensive look into fairness research, high-
lighting the subtleties involved in defining fairness and posing important queries
about fairness measurement and system design.

2.6.1 Definition of fairness

Fairness in wireless networks is typically related to resource allocation or sharing.
It ensures that resources are distributed equitably while considering the various
needs and expectations of system users.

Unfair resource distribution can prevent some users or nodes from receiving es-
sential resources (Resource starvation), which can have a negative impact on per-
formance or the efficient use of resources. Fairness research has attempted to
address this problem by creating plans and procedures that support equitable
resource distribution. Depending on the needs and network architecture, these
tactics can be applied to both centralized and distributed systems. With central-
ized methods, decisions about how to allocate resources are made by a central
body using predetermined standards or formulas. Distributed systems, on the
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other hand, provide each node the ability to bargain and work together to decide
how to divide resources, providing fairness through group decision-making.

Establishing a fair resource allocation mechanism is the goal of fairness solutions.
This mechanism should consider the various needs, preferences, and priorities of
system users. Developing algorithms and protocols that consider elements like
user requirements, resource availability, system limits, and network conditions is
frequently required for this. Fairness solutions aim to balance increasing individ-
ual user pleasure with improving system performance as a whole.

2.6.2 Classification of Fairness Definition

Equal resource distribution among people is not a need for fair resource sharing
or allocation. The concept of fairness can be categorized under some categories
like equal opportunity, targeted fairness, resulting fairness, temporal fairness,
and fairness for each task individually.

• Equal opportunity: Fairness in terms of equal opportunity focuses on mak-
ing sure that everyone has an equal opportunity to acquire and use re-
sources, however, does not ensure a fair distribution of resources. In a
wireless network, for example, every node may have an equal chance to
access a shared channel, but the actual channel time allocation may change
depending on variables like network congestion or user demand.

• Targeted fairness: Targeted fairness, distributes resources in a way that ful-
fills particular demands or goals. For instance, in a network with several
services, targeted fairness can demand giving priority to the allocation of
resources to essential services or guaranteeing that each service satisfies a
set minimum standard for quality of service.

• Resulting fairness: Resulting fairness refers to the fairness that was accom-
plished as a result of the resource distribution procedure. Instead of em-
phasizing opportunity equality, it concentrates on the final allocation out-
come. To provide an equitable distribution of resources across nodes in the
wireless network scenario, the resource allocation might be dynamically ad-
justed based on the current network conditions.

• Temporal Fairness: It is acknowledged by temporal fairness that resource
distribution in dynamic systems can change over time. It considers fair-
ness in various temporal situations and recognizes the dynamic nature of
resource availability. For instance, in a wireless network, temporal fairness
may entail assigning resources based on changing user needs throughout
the day or periodically redistributing resources to respond to changing traf-
fic patterns.

• Fairness per service: Fairness can be assessed separately for each task in a
network where nodes carry out multiple functions or offer diverse services.
For instance, in a wireless ad-hoc network (self-configuring network of mo-
bile devices (nodes) that communicate without a fixed infrastructure), the
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allocation of bandwidth for various services can be used to measure fairness
and guarantee that each service gets a fair share of resources.

2.6.3 How to measure fairness

Fairness measures play a vital role in evaluating and quantifying the level of eq-
uity in resource allocation or sharing scenarios. They provide objective and nu-
merical representations of fairness, enabling comparisons between different al-
location schemes. In this section, we explore both quantitative and qualitative
fairness measures and their significance in guiding decision-making processes.

Quantitative Fairness Measures

Quantitative fairness measures are metrics used to evaluate and quantify the
level of fairness in resource allocation or sharing scenarios. These measures pro-
vide numerical representations of fairness, allowing for objective and quantita-
tive comparisons between different allocation schemes. They play a crucial role
in assessing the fairness of resource distributions and guiding decision-making
processes. These metrics need to meet a number of criteria, such as continuity,
individual independence, and scalability. Jain’s index [A quantitative measure
of fairness and discrimination] and Shannon’s entropy [The mathematical theory
of communication] are some examples of quantitative fairness measures. Jain’s
Index is a ratio that illustrates how fairly resources are distributed, with a higher
value signifying a fairer distribution, and Shannon’s entropy might show fairness
and quantify the uncertainty of resource distribution when the entropy value is
larger.

Fairness can also be assessed using other measures of variability, such as the ratio
or difference between the greatest and lowest values of a performance indicator.
Less frequently used in fairness studies are variables like unfairness and vari-
ability metrics like the Lorenz curve [Methods of measuring the concentration of
wealth] and the Gini coefficient [Variabilita e mutabilita].

Qualitative Fairness Measures

Without offering a numerical representation, qualitative fairness metrics concen-
trate on evaluating fairness. Max-Min Fairness is frequently used in qualitative
metrics.

Max-Min Fairness

Max-Min fairness attempts to distribute as much as possible to customers who
pay cheap rates, with minimal resource waste. Single-path rate allocation is a
straightforward illustration of max-min fairness, where a network is made up
of links with defined capacities, source-destination pairs communicate with one
another over a single predetermined path, each source-destination pair must be
given a rate and the rate on each link is kept below its capacity.
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A rate allocation is considered fair in the sense of max-min fairness if it is im-
possible to raise the rate of one flow without also lowering the rate of a lower
flow.

Finding the max-min fair vector in resource allocation issues is done using the
Max-Min Programming (MP) Algorithm [Radunovic and Le Boudec, 2007]. The
algorithm produces the max-min fair allocation by repeatedly maximizing the
smallest coordinate of the feasible vector until all coordinates are fixed.

• Max-Min Programming (MP) Algorithm

1. Identify the smallest component: The algorithm begins by examining
the max-min fair vector and identifying the smallest component within
it.

2. Maximize the minimal coordinate: Maximize the minimal coordinate
by adjusting the corresponding allocation to its highest possible value
within the constraints of the system, while keeping the other alloca-
tions unchanged.

3. Fix the minimal coordinate: Once the minimal coordinate is deter-
mined, it is fixed at its maximum value. This means that the allocation
corresponding to the minimal coordinate is set to its maximum allow-
able value, ensuring that no other allocation can be increased beyond
this point.

4. Remove the corresponding dimension: After fixing the minimal co-
ordinate, the algorithm removes the dimension corresponding to that
coordinate. This means that the focus of the algorithm shifts to the
remaining coordinates, excluding the one that has been fixed.

5. Repeat steps 1 and 2: The algorithm continues by repeating steps 1
and 2 on the reduced set of coordinates. It identifies the new smallest
component among the remaining coordinates and fixes it at its maxi-
mum value.

2.7 Summary

In this chapter, we discussed several technologies that facilitate the implementa-
tion of network slicing, including MEC, NFV, Cloud Computing, and SDN. These
technologies play a crucial role in enabling network slicing, and we provided a
brief description of how they work and their contributions to the implementation
of network slicing.

The chapter also covered the fundamental graph analysis and optimization tools
that form the basis of our resource allocation framework for network slicing.
These tools, such as NetworkX for network analysis, MiniZinc for mathemat-
ical modeling of resource allocation, and Matplotlib for visualizing outcomes,
empower efficient resource allocation, fair network slicing, and valuable insights
into network structures and performance.
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Furthermore, a comparison between 5G and 4G networks was performed to un-
derstand the advancements and capabilities brought by 5G technology. The anal-
ysis focused on improvements in speed, latency, capacity, and energy efficiency.
The architecture of 5G networks and their various components, including the
role of elements like NG-RAN, were explained in delivering high-performance
network services.

In a crucial aspect of our research, network slicing was addressed comprehen-
sively. The objective was to provide a clear overview of the concept and its prac-
tical implementation. We began by defining network slicing, explaining its key
characteristics, and highlighting its significance in the context of next-generation
networks. Real-world applications of network slicing across various services
were presented to showcase its versatility and potential impact on various do-
mains.

The chapter concluded with a comparison between ONAP and MOSAIC5G, fo-
cusing on their ability to individually monitor network slices and manage their
life cycle. The analysis explored the components and functions of each platform,
highlighting key differences and similarities in their monitoring and manage-
ment capabilities. The aim was to provide insights into selecting an appropri-
ate platform for network slice monitoring and life cycle management based on
specific requirements and constraints.

Additionally, this chapter discussed the concept of fairness in wireless networks,
with a focus on resource allocation and sharing. With the rapid growth of wire-
less technology, ensuring fairness among intelligent devices in the IoT era has
become critical. The section emphasized the urgent problem of fair resource dis-
tribution in wireless networks and explored fairness research, drawing insights
from a comprehensive review of fairness in wireless networks.

Fairness in wireless networks was defined as the equitable distribution of re-
sources while considering the diverse needs and expectations of system users.
The section categorized fairness definitions into five types, including equal op-
portunity, targeted fairness, resulting fairness, temporal fairness, and fairness
per service. It highlighted that unfair resource distribution can lead to resource
starvation and negatively impact performance and resource utilization. Fairness
solutions aim to create plans and procedures to support equitable resource distri-
bution, either through centralized decision-making or group decision-making in
distributed systems.

Overall, the chapter provided valuable insights into the implementation of net-
work slicing, the advancements brought by 5G technology, real-world applica-
tions of network slicing, and a comparison of platforms for network slice moni-
toring and life cycle management. It also sheds light on the importance of fairness
in wireless networks, the various definitions of fairness, and the measures used
to assess fairness in resource allocation and sharing scenarios.
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Related Work

3.1 Works for 5G and Use Cases

In this section, we present a selection of real projects and use cases that demon-
strate the practical applications of 5G technology and network slicing. These
projects serve as valuable references for our research, as we leverage them to
formulate test cases and validate the capabilities of our framework. By studying
these real-world implementations, we gain insights into how 5G and network
slicing can address challenges and enhance network functionalities across diverse
domains, including smart city infrastructure, critical communications, disaster
management, healthcare, and more. These projects provide a tangible link to our
work, guiding us in developing robust and relevant test scenarios to assess the
efficacy of our framework in practical settings.

3.1.1 OREOS - Orchestration and Resource Optimization for Re-
liable and Low-latency Services

This section presents a compelling use case involving the OREOS project, which
aligns closely with the activities proposed in this dissertation. The insights pre-
sented in this section are based on the valuable research of [OREOS: Orchestration
and Resource optimization for rEliable and lOw-latency Services] and [OREOS:
Estudos Preliminares na área do Projeto].

The OREOS project stands as an exemplary case study that provides valuable
insights into the practical implementation of 5G network slicing. This project’s
comprehensive research offers a deep understanding of the diverse applications
of network slicing in the context of fifth-generation (5G) mobile communications.

The primary objective of the OREOS project is to develop and deploy an end-to-
end orchestration platform capable of providing and managing critical services in
5G networks. These services encompass a wide range of applications, including
vehicle communications, electrical distribution networks, and emergency com-
munications for public and private entities.
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A key focus of the OREOS project is to address cutting-edge technological chal-
lenges related to 5G network development, particularly in supporting services
based on URLLC. This capability is crucial, as it paves the way for revolutionary
changes in sectors like automotive and smart cities.

The OREOS project encompasses two major use cases to validate its platform:
the Smart City use case and the Autonomous Driving use case. Here, we focus
on the Smart City use case, which includes three user stories: pedestrian safety,
air quality management, and crime prevention.

The Smart City use case is set in an urban environment, aiming to enhance peo-
ple’s safety, improve the quality of life through environmental monitoring, and
increase the efficiency of crime prevention actions.

In the first user story, pedestrian safety is a critical concern, particularly at road
crossings. To address this, video cameras throughout the city are installed to
detect pedestrians at the crossings or their intention to cross. This may be accom-
plished through intelligent mechanisms that are able to detect people, pedestrian
crossings, and their movement without having to alert approaching vehicles to
slow down or stop before reaching pedestrians. One example of this mechanism
is, that if vehicles are connected to the city network, the use of network informa-
tion can notify drivers in advance of a pedestrian’s presence on the roadways.
This scenario is represented in figure 3.1

Figure 3.1: Pedestrian Crossing [de Coimbra, 2021b]

The second user story involves air quality management, which requires a setup
with multiple vendors connecting sensors and devices to gather data on weather
and emission rates. The collected data is analyzed in quasi-real-time and sent
to various cloud platforms for predictive weather forecasting and real-time re-
sponse to pollution incidents. Citizens are provided with this information to raise
awareness and potentially avoid highly polluted areas.

The third user story revolves around crime prediction, enabling agile policing,
and enhancing visitor safety. The use of machine learning models identifies ma-
licious actions, such as robberies, based on police force reports, generating risk
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information for different neighborhoods. Citizens and visitors can access this
information through applications, helping them make informed decisions about
their safety.

The Smart City use case’s objectives are tailored to each user story:

• Pedestrian Safety:

– Enable pedestrian detection at road crossings.

– Support real-time video analysis.

– Facilitate real-time information sharing with vehicles.

– Provide feedback to pedestrians about approaching vehicles.

• Air Quality Monitoring:

– Collect data from multiple sensors and IoT devices.

– Aggregate data for edge analysis.

– Provide feedback on air quality measurements and predictions.

– Integrate pollution information with navigation systems.

• Crime Prevention:

– Detect robberies through video analysis or other sources.

– Predict crime based on historical data.

– Inform users about risks through city-specific applications.

– Collect data from citizens and tourists about their perception of safety.

The feasibility of this use case is strongly influenced by the potential of 5G net-
work slicing by distributing the different user stories across distinct slices, opti-
mizing their performance and efficiency.

Figure 3.2is a good example of how different slices are represented in the context
of the OREOS project. As we can see, each slice has its own unique qualities in
accordance with its purpose.

With the technologies discussed in the previous chapter, the concept of Ultra-
Reliable Low Latency Communication (URLLC) slice comes into focus, empha-
sizing the critical criteria of low latency and high reliability. To effectively meet
these criteria, a strategic deployment approach becomes essential, and this is
where Mobile Edge Computing (MEC) servers play a pivotal role.

By strategically placing MEC servers in key locations, especially in highly busy
streets frequently used by pedestrians, the network gains significant advantages.
The incorporation of MEC servers at these strategic spots enhances the network’s
cloud computing capabilities, thereby fulfilling the high-demanding requirements
of 5G. The result is a substantial reduction in latency for critical services, ensuring
swift and reliable communication.
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Figure 3.2: End to End Network Slicing Overview [What is 5G? Differences be-
tween 4G and 5G (eMBB, URLLC, mMTC)]

With the URLLC Slice powered by MEC infrastructure, smart cities can achieve a
seamless and secure environment for pedestrian safety. Video cameras equipped
with intelligent mechanisms can detect pedestrians crossing streets and their move-
ments. By leveraging the MEC-enabled network, information about approaching
vehicles can be instantly shared, allowing timely alerts to pedestrians and drivers
to avoid potential collisions. This real-time communication between pedestrians
and vehicles contributes to enhanced safety at crossings.

Furthermore, the MEC infrastructure empowers smart cities with efficient air
quality monitoring. By deploying a Massive Internet of Things (MIoT) Slice, sen-
sors and IoT devices can gather and aggregate air quality data in real time. This
data is then analyzed at the edge, providing accurate air pollution information
and enabling predictive weather forecasting. The seamless integration of pollu-
tion data with navigation systems empowers citizens to make informed decisions
to avoid routes with high pollution levels.

Figure 3.3 illustrates how a MEC server might influence QoE:

Lastly, the Enhanced Mobile Broadband (eMBB) Slice ensures robust crime pre-
vention measures. The eMBB infrastructure supports high-capacity and high-
speed communication, which is essential for agile policing and ensuring the safety
of city dwellers. Machine learning models can efficiently detect and report mali-
cious actions within neighborhoods, providing valuable insights into crime pat-
terns and enhancing overall security.

Taking this information into account, we represent each user story with a specific
Service and Slice Type (SST) characteristic, as follows:

• Pedestrian Safety: URLLC (Ultra-Reliable Low Latency Communication)
slice.
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Figure 3.3: Physical Installation Cases for MEC servers [What is 5G? Differences
between 4G and 5G (eMBB, URLLC, mMTC)]

• Air Quality Monitoring: MIoT (Massive Internet of Things) slice.

• Crime Prevention: eMBB (Enhanced Mobile Broadband) slice.

In alignment with our research, we will leverage these specific use cases to struc-
ture our test case regarding this project.

Testing Environment

The testing environment for the Smart City use case is a simulated and controlled
setup replicating a real urban city context. It focuses on validating the function-
ality, performance, and security of the smart city infrastructure. The components
used in the topology include:

• Cloud Clusters: Various cloud clusters represent different components of
the smart city infrastructure, such as AAI, AAF, SDN-C, SO, DCAE, Policy,
and SDN-R. These clusters handle management, orchestration, and policy
enforcement.

• 5G Core Cluster: This critical component includes AUSF, NSSF, PCF, AMF,
NRF, and SMF, responsible for core network functions like authentication,
policy control, and network slicing to ensure seamless communication and
services for 5G-enabled devices.

• OpenStack: The test environment utilizes OpenStack, an open-source cloud
computing platform, to manage and control the cloud clusters, providing
virtualization capabilities and efficient resource management.

• User Equipment (UEs): Virtual nodes or simulated devices represent UEs,
which simulate end-user devices in a real-world 5G network context. These
devices connect to the network to access services and applications.
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• Edge Cluster: The Edge cluster includes components like bNB, UPF, N3WF,
FlexRIC, FlexCN, and AF. It enables low-latency services and enhances net-
work performance at the network edge.

• Smart City Applications: The test environment deploys city-specific appli-
cations responsible for pedestrian safety, air quality monitoring, and crime
prediction. These applications run as virtual nodes or servers, providing
the respective functionalities.

The logical abstraction of the topology involves using 25 nodes to represent the
entire architecture, with each node representing a specific component. It is es-
sential to note that this representation does not imply the physical deployment
of individual nodes; in a real-world scenario, some components may run on the
same physical servers or virtual machines based on resource allocation and de-
ployment strategies. Figure A.1 illustrates the topology diagram, providing a
visual representation of the test case setup.

Figure 3.4: OREOS topology[OREOS: Metodologia de Avaliação e Especificação
de Casos de Uso para Validação]

3.1.2 Network Slicing for Critical Communications in 5G Com-
munication

In recent years, the emergence of modern technologies, such as Smart Grids driven
by renewable energy resources, Intelligent Transportation Systems (ITSs) with
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self-driving cars, and the IoT, has led to increased demands on Information and
Communication Technology (ICT). Critical Infrastructures (CIs) play a crucial
role in supporting these advancements, necessitating dedicated communication
networks to meet their specific and divergent requirements.

However, the traditional approach of deploying separate communication infras-
tructures for each critical use case incurs high costs and lacks scalability. In re-
sponse to these challenges, the concept of 5G network slicing has been intro-
duced, and its definitions and advantages were already explained in the section
2.4.

To fulfill the performance targets of 5G and support the diverse requirements of
CIs, this project’s approach to network slicing builds on the principles of NFV
and SDN, which are instrumental in addressing the dynamic demands of Criti-
cal Infrastructures, providing the ability to reconfigure communication networks
according to specific service requirements.

In the network slicing architecture suggested in this research, authors use queu-
ing methods, in particular Hierarchical Token Bucket, in combination with SDN
and NFV. The Open vSwitch serves as an open-source virtual multilayer switch
deployed on DP devices in the network. Our SDN-MANO controller acts as an
orchestrator, dynamically creating and managing individual slice controllers tai-
lored to specific use cases. Each slice is represented as a separate bridge contain-
ing virtual ports nested within the main bridge.

When traffic enters the data plane, the MANO controller classifies packets based
on their protocol or other criteria supported by the OpenFlow protocol. Packets
are then assigned to the appropriate slice bridge, and the slice’s controller routes
the packets to their virtual destination port. This routing process is repeated at
each hop to the destination, ensuring traffic flows are mapped to the appropriate
QoS queue and physical port in the main bridge. Best-effort traffic is classified
for flows that do not match any slice, ensuring efficient resource utilization.

This project’s approach is designed to be adaptable to different technologies be-
yond Ethernet, supporting both wired and wireless (air interface) 5G communi-
cation. This flexibility ensures compatibility with a wide range of Critical Infras-
tructure applications, addressing diverse data rates, latency, reliability, and other
requirements.

We employed this project as a means to validate our fairness model, utilizing
real-world data to imbue it with practical significance. The testing environment,
delineated as follows, serves as the backdrop for this validation process:

Testing Environment

The test setup consists of 13 identical servers, each equipped with a four-core,
2.2GHz Intel Xeon D-1518 CPU, 16GB of RAM, and six 1GBaseT Ethernet ports
featuring different Network Interface Cards (NICs). The servers operate on Ubuntu
Server 16.04.3 LTS as their operating system.

Scenario Components
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• 3 Virtual switches form a sliced data plane responsible for efficiently for-
warding and switching network traffic within the shared infrastructure.

• 3 designated servers act as hosts and are responsible for generating and
processing network traffic over the sliced network.

• 4 SDN controllers participate in the scenario. 3 controllers utilize Floodlight
(v1.2) as their software platform and are assigned to manage specific slices:
Smart Grid, Intelligent Transport, and Multimedia Services.

The fourth controller runs Ryu (v4.19) as its software platform and serves
as an SDN-MANO controller, coordinating and managing the slices estab-
lished by the Floodlight controllers.

The fig 3.5 is a visual representation of this scenario.

Figure 3.5: Evaluation Scenario within the Testing Setup [Network slicing for
critical communications in shared 5G infrastructures-an empirical evaluation]

3.1.3 Service Function Chaining in Wildfire Scenarios

Wildfires in Mediterranean countries, such as Portugal, pose significant risks dur-
ing summer and demand efficient fire combat strategies. Mission Critical Ser-
vices (MCS) play a vital role in coordinating first responders’ human and tech-
nical resources to combat wildfires effectively. However, traditional communica-
tion technologies like Public Mobile Radio systems fall short of meeting MCS’s
stringent Quality of Service (QoS) requirements. As a solution, the authors of
this article, propose an innovative approach that harnesses the power of Service
Function Chaining and Fog Computing to enhance MCS capabilities and ensure
reliable and timely communication during critical wildfire situations.
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The dynamic and challenging nature of wildfire combat scenarios requires a mod-
ernized approach to communication. Traditional Public Mobile Radio technolo-
gies lack the necessary capabilities to fulfill MCS’s diverse requirements, hinder-
ing real-time information exchange and decision-making. This research seeks to
address these limitations by leveraging emerging technologies, such as 5G, LTE,
and Fog Computing, to optimize MCS communication infrastructure and ser-
vices.

The Conceptual Framework of the proposed project outlines the fundamental
principles and components that drive the enhancement of MCS in wildfire com-
bat scenarios. It emphasizes the significance of Service Function Chaining in or-
chestrating different Service Functions to achieve optimal performance. These
Service Functions are classified based on their relevance to MCS and include Mis-
sion Critical Voice, Mission Critical IoT, multimedia services, location data, and
Mission Analysis. The primary objective is to improve situational awareness by
integrating real-time video streaming and sensor data from the field.

The integration of Fog Computing and SDN is a crucial aspect of the project. Fog
nodes deployed at edge, intermediate, and cloud levels play a pivotal role in col-
lecting sensor data and managing devices. Fog Computing enables efficient data
processing at the edge of the network, reducing the need to send all data to cen-
tralized cloud servers. SDN dynamically configures network paths to optimize
MCS resilience and ensure timely communication during wildfire situations. By
combining Fog Computing and SDN, the project aims to create a flexible and
scalable communication infrastructure that can adapt to changing firefighting re-
quirements.

The development of effective Service Function Chaining policies is essential to
streamline data flow and minimize latency. Different approaches for mapping
SFs onto Virtual Machines at the edge and cloud nodes are introduced in this sec-
tion. These policies are designed to maximize operation time and reduce process-
ing overhead, taking into account the computational capabilities of each node.
By efficiently chaining SFs, the project aims to enhance the overall performance
of MCS, ensuring that critical services are delivered with low latency and high
reliability.

This article played a pivotal role in shaping our approach to validating the fair-
ness model. Specifically, we leveraged the insights within this article to construct
and simulate a series of comprehensive test cases. By doing so, we were able
to procure real-world values pertaining to crucial service characteristics, such as
bandwidth, latency, CPU utilization, and memory requirements. These values,
extracted from the context provided by the article, not only substantiated the
practical application of our fairness model but also enriched its accuracy and ef-
fectiveness in real-world scenarios.

3.1.4 5G Smart City Lighting

The MATILDA and SliceNet projects jointly define a 5G Smart City Lighting
network slicing architecture by implementing an end-to-end operational service
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framework that covers the life cycle of design, development, and orchestration
of 5G network services through a One-Stop API over a programmable infrastruc-
ture. All of this information regarding the following section was found in [Rusti
et al., 2019b] and [Rusti et al., 2019a].

Applications based on microservices can be independently orchestrated across
this programmable infrastructure with the aid of metadata from application graph
components, which give indications about the infrastructure requirements.

The way that these projects work is that information regarding the provided re-
quirements is mapped to the slice intent MATILDA framework, which results in
the creation of the appropriate slice intent description.

This descriptor is then sent to the One-Stop API made available by SliceNet, to
fulfill the request by responding with an application-aware slice object. An end-
to-end slice instance is established once the management plane has received and
processed the slice intent sent through the SliceNet One-Stop API.

5G Smart City Lighting is automated controlled and efficiently managed, with
real-time and historical energy consumption measurements, as well as real-time
detection of failures, energy loss, or energy theft potential.

3.2 Models for fairness

3.2.1 SALEM: Service Fairness in Wireless Mesh Environments

Wireless Mesh Networks (WMNs) have undergone rapid evolution, enabling
seamless connectivity for a wide array of intelligent devices and small-sized sen-
sors, regardless of their physical location or time of day. The ubiquitous support
of wireless networks has introduced features that enhance the quality of services,
such as high availability rates, efficient energy usage models, and intelligent spec-
trum management. However, the growing adoption of WMNs has accentuated
the need for effective resource management and fairness in resource allocation to
ensure equal access to network resources for all devices.

In response to these challenges, SALEM is proposed, a novel approach to ad-
dress the fairness routing problem in WMNs. The main objective of SALEM is
to distribute network resources fairly, considering three key fairness objectives:
reliability, delay, and energy consumption.

To achieve this, SALEM employs a Mixed Integer Linear Programming (MILP)
formulation, which mathematically models the fairness objectives as optimiza-
tion problems. The formulation involves defining binary variables to represent
the allocation of services on links and calculates the normalized values for relia-
bility, delay, and energy fairness. These objectives may be conflicting, as different
paths may offer varying levels of reliability, delay, and energy consumption. To
address this challenge and obtain a compromise solution, SALEM utilizes a min-
max formulation that assumes all objectives are equally relevant.
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The SALEM heuristic, a central component of the approach, is implemented in
the ONOS SDN controller. It leverages the JGraphT library [JGraphT] to model
the network topology as graphs and uses the CapacityScalingMinimumCostFlow
algorithm [Applications of network optimization] to find optimal paths for each
service. The algorithm calculates the normalized weight for each link based on
the fairness objectives and ensures that services traverse paths that provide suf-
ficient flow capacity with minimal costs. The obtained paths are appended to a
list, which contains all the routes for the requested services.

The implementation of SALEM in the ONOS SDN controller enhances the prac-
ticality and real-world deployability of the proposed solution. Its capabilities to
manage routing decisions and improve fairness in resource allocation make it a
promising approach for future WMNs. The SALEM project contributes valuable
insights to the field of WMNs, providing a fairness-driven solution for routing
optimization that aligns with the evolving demands of wireless communication
technologies.

We will leverage the SALEM approach from this article to test our fairness model
in real-case scenarios. The primary objective of this test scenario is to evaluate the
performance of our fairness model in a wireless mesh network (WMN) within a
real smart-city environment.

In this scenario, we aim to emulate a complex WMN topology, encompassing
diverse wireless technologies such as LTE, 5G, mmWave, WiFi, and Gigabit Eth-
ernet. This topology draws inspiration from the Aveiro Tech City Living Lab
(ATCLL) situated in Aveiro, Portugal, known for its cutting-edge technological
infrastructure.

Testing Environment

The testing environment for the network slicing scenario is emulated using the
Mininet SDN network emulator. Mininet allows us to create a virtual network en-
vironment that closely resembles a real network, enabling comprehensive testing
and validation of the network-slicing architecture. The environment is structured
based on the following components:

• 2 centralized backbone SDN switches (swcc): Represent the central con-
trollers for the network slices in a multi-slice environment. They act as the
orchestrators for resource allocation and service provisioning across the en-
tire infrastructure. Each switch is responsible for managing a specific slice,
ensuring that the resources are efficiently distributed among the services
within that slice.

• 6 clusters switches: Connect the edge switches within a particular slice,
forming the internal communication structure of that slice. Each cluster is
connected to a dedicated SDN switch (swc).

• 36 edge switches: Each Cluster switch, contains 6 edge switches (sw). the
edge switches are responsible for connecting the end devices (such as Rasp-
berry Pi 3B or Cubiboard 3 machines) to the backbone switches. They han-
dle the traffic flow within each slice and ensure that services within the same
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slice can communicate efficiently.

Raspberry Pi 3B and Cubiboard 3 Devices represent the nodes that are part
of the network slices. Raspberry Pi 3B devices are used as central and cluster
switches, while Cubiboard 3 devices are employed as edge switches.

The logical abstraction of the topology involves using 44 nodes to represent the
entire architecture, with each node representing a specific component. Figure 3.6
illustrates the topology diagram, providing a visual representation of the test case
setup.

Figure 3.6: Topology diagram [SALEM: Service Fairness in Wireless Mesh Envi-
ronments]

3.3 Summary

In the "Related Work" chapter, we explore a selection of projects and use cases that
highlight the practical applications of 5G technology and network slicing across
various domains. These real-world implementations serve as essential references
for our research, guiding us in the formulation of test cases and the validation
of our fairness model. By closely studying these projects, we gain valuable in-
sights into how 5G and network slicing can effectively address challenges and
improve network functionalities in areas such as critical communications, smart
city infrastructure, etc.

The insights obtained from these projects were instrumental in constructing real-
world test scenarios to assess the performance of our fairness model. By adapting
the network topologies and service requirements described in these articles, we
were able to create relevant and robust test cases that reflect the practical com-
plexities and demands of modern communication networks. By using the sce-
narios presented in these works, we designed our test scenarios adapted to our
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fairness model, ensuring that our evaluations align with the intricacies of real-
world communication environments.
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Research Objectives and Approach

This chapter outlines the key goals of this study, as well as the approach em-
ployed and the decisions made. The research methodology is presented in section
4.1, and the research objectives are identified and described in section 4.2.

4.1 Research Methodology

This dissertation began with a study of what a 5G network is, how it works, and
what customers may acquire from it. An analysis was done to explore these prin-
ciples and some of the technology utilized to operate this network. This analysis
was conducted with the help of digital libraries like IEEE Explore, where a num-
ber of papers and articles were filtered based on the research emphasis.

5G network softwarization and slicing, 5G network slicing enabling technologies
and orchestrators, were some keywords searching for the concepts in the articles
mentioned above. The publications used in this research, as previously noted,
were filtered by the year 2018 and above using digital libraries.

Additionally, all the information regarding orchestrators’ architecture was gath-
ered from their official websites, particularly ONAP and MOSAIC5G. This infor-
mation made possible a better view of the components used in each orchestrator.

Implementing network slicing in an orchestrator requires significant time and re-
sources, which are often limited. As a result, we adjusted our strategy to focus on
resource allocation and sought a solution to address this challenge. Our selected
solution was NetworkX, a tool that enabled us to create a simulated network
closely resembling real-world conditions. This simulation provided us with the
opportunity to apply our fairness model within the context of network slicing.

To effectively utilize NetworkX and generate a realistic network topology, we
delved into the intricacies of its operation. This exploration was guided by an ar-
ray of scholarly works, including references such as [5G Dataset Network Slicing
CRAWDAD Shared], [Nerini, 2020], and [Resilient service chains through smart
replication]. Through these sources, we gained profound insights into the tool’s
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functionalities and its vital role within the realm of network analysis and simula-
tion.

After the investigation and understanding of the concepts and technologies be-
hind the 5G Network, a study focused on the architecture of this network was
made using solutional videos [MPIRICAL 5G Core Network] which provided a
thorough analysis of the various components of the architecture of this Network.

4.2 Research Objectives

The objectives of this thesis include:

• Identification of current network slicing approaches and requirements.

As part of this study, we examined current network slicing implementations
in order to identify the various methodologies employed. This provided us
with a deeper understanding of how different approaches, which all oper-
ate within the same concept, can function in various contexts. Due to the
complexity of the topic, particularly in regard to understanding the appli-
cation of network slicing in smart cities, this analysis was crucial in gaining
a comprehensive understanding of its exploration.

• Validation of an optimization model for network slicing.

This research seeks to validate the effectiveness of a fairness model designed
for network slicing. This model plays a crucial role in optimizing how net-
work resources are allocated and how network slices are configured to meet
the unique needs of various users and services. Prioritizing fairness means
that every network slice gets a fair and suitable portion of resources. Val-
idating this model is significant because it ensures that it actually works
well, and is practical, effective, and reliable in real-world situations.

• Test and evaluation of the optimization model for network slicing

The aim of this objective is to conduct a comprehensive examination and
assessment of the fairness model that has been validated, specifically in the
context of achieving a fair resource allocation within network slicing. This
evaluation involves rigorous testing, utilizing authentic data derived from
real-world scenarios, thereby confirming the model’s validity.

The outcomes obtained from these meticulous tests served a twofold pur-
pose: firstly, to measure the actual effectiveness of the fairness model and
its ability to deliver on its promises; and secondly, to ensure its practicality
and usability within real-life situations. This objective carries substantial
significance, as it establishes the model’s robustness and utility, verifying
its potential applicability to tangible projects that require equitable resource
distribution.

It’s important to highlight that the testing and evaluation process involved
using data gathered from a wide range of use cases and the development of
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complex simulations to replicate real-world scenarios. This multifaceted
approach guaranteed a thorough evaluation that accurately assesses the
model’s performance in practical, real-world contexts.

• Implementation of network slicing in an orchestration platform. As pre-
viously discussed, successful network slicing relies on a technology that can
meticulously oversee each distinct slice. This level of oversight is achieved
through orchestrators who possess an intricate understanding of the net-
work’s dynamic elements. Our objective was to put the validated optimiza-
tion model into practical use within an active orchestrator. This practical
implementation aimed to provide firsthand insight into how the model per-
forms in a real-world context. However, it’s important to note that due to
the substantial computational resources needed for the implementation of
network slicing within an orchestration platform, this specific objective has
not been executed.

4.2.1 Approach

This section outlines the approach taken to achieve the objectives outlined in Sec-
tion 4.2. The approach for achieving the designed goals is elaborated upon in this
section.

• Identification of current network slicing approaches and requirements.

To achieve this objective, a review of multiple publications related to the
theme was conducted, considering the perspectives of different authors in
order to gain a comprehensive understanding of the current state of net-
work slicing and the various approaches that have been proposed and im-
plemented.

Case studies, such as the OREOS project, were also analyzed to understand
the approaches being used in real-world environments and their perfor-
mance. In addition, practical experimentation was conducted to gain first-
hand experience with the various network slicing approaches and assess
their strengths and limitations. Together, these approaches provided us
with a comprehensive understanding of the current state of network slic-
ing and the various approaches being used.

• Validation of an optimization model for network slicing.

This thesis aims to investigate the optimization of network slicing by vali-
dating a fairness model that maximizes the fairness of bandwidth and CPU
for each slice. The goal of this research is to make better use of the resources
available in a network and improve the overall performance of network
slicing.

This model was validated in the MiniZinc platform, a constraint modeling
language, where was tested under different scenarios to evaluate its perfor-
mance. The results of the simulations were used to validate the effectiveness
of the model and to identify any potential improvements.
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• Test and evaluation of optimization models for network slicing.

Following the validation process within the MiniZinc platform, the model
was transitioned to real-world contexts for implementation. These scenar-
ios have been crafted using the NetworkX library, enabling us to construct
network topologies that closely resemble actual networks. By simulating
real-world network conditions, we rigorously tested and evaluated our model,
ensuring its competence in managing authentic data. This validation pro-
cess substantiates its applicability in real projects that require a resource
allocation model, thus affirming its practicality in real-world scenarios.

• Implementation of network slicing in an orchestration platform.

This objective remained unfulfilled due to the substantial computational
resources and time investment needed to develop a fully functional orches-
tration platform. Despite the challenges that prevented us from realizing
this goal directly, we proactively sought alternative approaches to replicate
the intended scenario. Our solution involved leveraging the capabilities of
the NetworkX library, enabling us to simulate a network environment that
closely emulates a real-world setting. While a comprehensive orchestra-
tion platform couldn’t be realized, this innovative approach allowed us to
explore and study network slicing dynamics within a simulated environ-
ment, thereby contributing to our understanding of the concept’s practical
application.

4.2.2 Plan

In this chapter, we present the planning for the first semester in Figure 4.1 and the
second semester in Figure 4.2 of the project. In this Gantt charts, we can visualize
the distribution of tasks to ensure that the project is completed within the given
timeframe.

Figure 4.1: First Semester Plan
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Figure 4.2: Second Semester Plan

4.2.3 Risks

This section aims to identify and assess the potential risks that may be encoun-
tered in the pursuit of achieving the objectives outlined in Section 4.2. By iden-
tifying and evaluating these risks, we can develop strategies for reducing or ad-
dressing them in order to ensure the success of the project.

One of the notable risks identified during the course of this study pertains to the
inherent complexity of the ONAP orchestrator platform. As highlighted earlier,
the deployment and validation of network slicing strategies within the ONAP
environment demand substantial computational and time resources. In order to
address and mitigate this risk, we adopted an alternative strategy. Specifically, we
opted to simulate a realistic network topology using the versatile capabilities of-
fered by the NetworkX library. This simulation approach allowed us to replicate
essential aspects of a real network environment, enabling us to explore network
slicing dynamics and evaluate our model’s performance without the constraints
posed by the ONAP platform’s resource demands.

4.3 Summary

In this chapter, we have outlined the key objectives and approach taken in our
research. We began by delving into the complexities of the 5G network, its prin-
ciples, and technologies through an extensive review of academic literature and
digital libraries such as IEEE Explore. Additionally, we gathered insights into or-
chestrator architectures, particularly from ONAP and MOSAIC5G official sources,
to better understand their components.

Our initial plan involved implementing network slicing within an orchestrator.
However, due to resource limitations, we adjusted our approach to focus on re-
source allocation, utilizing the NetworkX tool to create realistic network simu-
lations closely resembling real-world conditions. This shift allowed us to apply
and validate our fairness model within network slicing more efficiently.

The research objectives were identified and defined in detail in this chapter:
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• Identification of current network slicing approaches and requirements:
We conducted a comprehensive review of existing network slicing imple-
mentations and methodologies, including real-world case studies such as
the OREOS project.

• Validation of an optimization model for network slicing: We developed a
fairness model and validated it within the MiniZinc platform under various
scenarios to ensure its effectiveness.

• Test and evaluation of the optimization model for network slicing: We
transitioned our model to real-world scenarios using the NetworkX library,
conducting extensive testing and evaluation to confirm its practicality and
reliability.

• Implementation of network slicing in an orchestration platform: While
this specific objective was not executed due to resource constraints, we em-
ployed NetworkX to simulate network slicing within a realistic environ-
ment, contributing to our understanding of its application.

We also provided a visual representation of the project plan for the first and sec-
ond semesters, as well as an assessment of potential risks, with a particular focus
on the complexity of the ONAP orchestrator platform.

In conclusion, this chapter has set the stage for our research by outlining our
goals, approach, and objectives. We have adapted our methodology to address
resource limitations and have identified potential risks. This groundwork will
guide our research throughout the project, ensuring its successful completion.
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Fairness Model in the Resource
Allocation Framework

In this chapter, we introduce the Fairness Model, a crucial component of our
project focused on optimizing resource allocation in network slicing. To develop
the Fairness Model, we drew upon the concepts and insights discussed in Chap-
ter 2, where we explored the notion of fairness, its measurements, and the various
types of fairness, such as max-min and min-max, both qualitatively and quanti-
tatively.

Chapter 3 presented a collection of relevant research articles that played a pivotal
role in shaping our approach. We utilized the values and parameters presented
in these articles to construct realistic test cases for validating and fine-tuning the
Fairness Model.

Our primary objective in building the Fairness Model was to achieve equitable
resource allocation among different network slices. By prioritizing fairness, we
sought to ensure that each slice receives a balanced and appropriate share of
bandwidth and CPU resources.

To achieve this, an objective function was formulated, aiming to maximize fair-
ness while considering the requested bandwidth and CPU for each service. The
model’s constraints were thoughtfully designed, reflecting real-world constraints
and requirements observed in the related research.

As we mentioned earlier the structure and formulation of this fairness model
were already established, so our objective is to validate the viability of this model
for integration into other projects that require a resource allocation algorithm.
One of these projects is the OREOS project which was already introduced in chap-
ter 3, where we’re focusing on validating that the model can indeed be used ef-
fectively.

Throughout this chapter, we will delve into the structure and components of the
Fairness Model, showcasing its integration of insights from Chapter 2 and the
utilization of data from Chapter 3. By combining these resources, we have created
a robust and reliable model that optimizes resource allocation in network slicing
while ensuring fairness across services. The comprehensive approach taken in
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this chapter allows us to demonstrate the model’s efficiency and its potential for
practical implementation in 5G networks.

5.1 Objective Function

Optimization is a common feature in mathematical programming models. By
maximizing or reducing an objective function, these models identify the ideal re-
sponse to a particular problem. The quantity that we wish to maximize or mini-
mize is represented by the objective function. In our model, the objective function
aims to maximize the fairness of bandwidth and CPU for each slice. Instead of
focusing on individual flows, the aim of this objective is to consider the overall
used resources in each slice in a fair manner.

Our model’s objective function considers two crucial variables: CPU and band-
width allocation. It considers the requested bandwidth and CPU for each service,
assigning weights and penalties to facilitate allocation decisions.

To evaluate the overall objective function 5.1, we sum up the bandwidth and CPU
contributions of all services and slices. The solution aims to minimize this value,
thereby reducing the overall cost. The model reaches for optimal performance by
balancing the utilization of bandwidth and CPU, ensuring adherence to slice and
service constraints.
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To understand better the objective function of our model we can divide it into
two parts, Bandwidth and CPU contribution.

• Bandwidth Contribution: This part of the equation, calculates the band-
width contribution to the objective function for each service “a” within slice
“S”:

n

∑
i,j=1

(
1 + W(1 − qasq̄s

ij)
)

xas
ij ba (5.2)

(1+W(1− qasq̄s
ij), is a weight factor that penalizes the allocation of services

on links that are not in the slice qs
ij or not part of the service qas.

xas
ij represents whether service "a" is allocated on the link (i, j) and is multi-

plied by the requested bandwidth (ba) for service “a”. The entire expression
is summed over all pairs of nodes and weighted by the penalization factor.
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• CPU Contribution: This part of the equation, calculates the CPU contribu-
tion to the objective function for each service “a” within slice “S”:

n

∑
i=1

(1 + W(1 − qasq̄s
i )) yas

i Ca (5.3)

(1 +W(1 − qasq̄s
i ), is a weight factor that penalizes the allocation of services

on nodes that are not in the slice q̄s
i or not part of the service qas.

yas
i represents whether service "a" is allocated on node i, and is multiplied

by the requested CPU (Ca) for service “a”. The entire expression is summed
over all pairs of nodes and weighted by the penalization factor.

Table 5.1 represents all the parameters and the variables used in the objective
function, in order to understand the impact of each one in the fairness result.

Parameters Description
S Number of slices
A Number of services
n Number of nodes
ba Requested bandwidth by service a
Ca Requested CPU by service a
W Weight parameter
qas 1 if service a is assigned to slice s and 0 otherwise
qs

ij 1 if slice s uses link (i, j) and 0 otherwise
q̄s

i 1 if slice s uses node i and 0 otherwise

Variables Description
xas

ij Binary variable that is 1 if link (i, j) is used by service a and
0 otherwise.

ya
i s Binary variable that is 1 if node i has service a allocated and

0 otherwise.

Table 5.1: Variables and Parameters in Fairness Model

In some instances, it may be relevant to share resources between slices. For exam-
ple, each service belongs to a specific slice but that same slice may be overloaded
and is not able to allocate resources. Thus, we introduce a weight parameter W
to apply that penalization, which changes the objective function value for a given
node/link. The penalisation W will be applied if any of the previous parameters
(qas, qs

ij and q̄s
i ) is 0. If the penalization is not applied, the equation will be 0. This

is solved by increasing 1 the result of the penalization.

5.1.1 Linearization

Linearization is a mathematical technique employed in this thesis to address the
problem of optimizing fairness in bandwidth and CPU allocation for each slice.
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The central objective is to achieve fair resource distribution among the various
slices of the system.

The optimization problem, as represented by Equation 5.1, initially involves a
nonlinear objective function. However, to make it suitable for efficient computa-
tional methods, the function is linearized. This transformation is accomplished
by introducing an auxiliary variable, denoted as Z, which serves as a critical com-
ponent in the linearization process.

In the linearized form, the objective function seeks to minimize the auxiliary vari-
able Z. By doing so, the fairness of resource allocation is maximized, aiming to
reduce any potential imbalances or discrepancies in the distribution of resources
across the slices. This results in a more fair and efficient resource utilization strat-
egy for the entire system.

The optimization problem is subject to the linear constraints as defined in the
equation:

min Z
s.t. Z ≥ FR(x, y), ∀s = 1, . . . , S (5.4)

Here, Z acts as a real variable that represents the fairness measure for resource
allocation among the slices. The inequality constraints ensure that Z remains
greater than or equal to the fairness measure (FR(x, y)) for all individual slices
(s = 1, . . . , S).

The objective function is to maximize the fairness of bandwidth and CPU allo-
cation for each slice. The auxiliary variable Z is introduced in order to linearize
this objective function. The original objective function is transformed into a min-
imization problem with linear constraints. The goal is to reduce the imbalance or
discrepancy in resource distribution across the slices by reducing Z.

One of the significant advantages of employing linearization is the simplicity and
interpretability it brings to the model. Linear functions are computationally effi-
cient and easy to analyze, making them a suitable choice for optimizing resource
fairness in this context.

5.1.2 Min-Max Fairness

We have adopted the min-max approach to achieve fairness in our model. This
approach is designed to minimize the maximum allocation among the participat-
ing entities, ensuring a well-balanced distribution of resources. By preventing
situations where certain services receive disproportionately larger resources than
others, the min-max fairness approach fosters resource equilibrium, mitigates re-
source concentration, and addresses disparities. Consequently, this approach en-
hances the overall fairness and equity of resource allocation within the network-
slicing environment.

The min-max fairness approach is implemented through the introduction of the
real variable Z in the linearized version of the objective function. The optimiza-
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tion problem seeks to minimize Z while ensuring that Z is greater than or equal
to the fairness metric FR(x, y) for all slices (s = 1, ..., S).

Minimizing Z is all about maximizing fairness. It might seem a bit counterintu-
itive, as we’re using the term "minimize," which typically suggests making some-
thing as low as possible. However, Z here represents a crucial measure of fairness.

In essence, Z stands for the minimum fairness metric among all the network slices
under consideration. So, when we use the term "minimizing Z", we’re striving to
minimize the differences in fairness metrics across these slices.

To simplify this concept, our goal is to elevate the fairness level across all slices,
even in the worst-case scenario, where fairness might be at its lowest. By mini-
mizing Z, we’re effectively closing the gap between the fairness metrics of differ-
ent slices, striving for a higher and more uniform level of fairness.

In essence, the term "minimizing Z," refers to minimizing the discrepancies in
fairness among slices, ultimately leading to a better, more balanced distribution
of resources. This approach ensures that no single slice is unfairly favored, pro-
moting a fair allocation of resources to all slices, even in the toughest cases.

While it’s true that our focus on the worst-case scenario may not always align
with real-world situations, the advantages offered by the min-max approach make
it an appealing option for resource allocation in network slicing.

It is important to note that the design of the model itself was beyond the scope of
our work, and thus, we solely focused on its implementation aspect. Fortunately,
the min-max fairness metric was already an integral part of the existing design,
aligning perfectly with our objectives.

The deliberate choice of the min-max fairness approach is attributed to its in-
herent simplicity and ease of practical application. Its underlying concept is
straightforward, enabling seamless integration into the existing resource alloca-
tion model. The mathematical formulation and linearization can be effortlessly
incorporated into the solver or relevant equations used for optimization. This
streamlined integration process ensures a smooth and effective implementation,
minimizing the complexity associated with configuring and deploying resource
allocation algorithms.

Moreover, the computational efficiency of the min-max fairness approach is highly
advantageous for real-world network slicing challenges. Other, more complex
fairness measures may demand substantial computational overhead, potentially
limiting their practicality, particularly in large-scale networks with multiple slices
and services. In contrast, the simplicity and efficiency of the min-max fairness ap-
proach make it a viable and effective solution for resource allocation in such com-
plex network environments. Its ability to strike a balance between fairness and
computational efficiency empowers the model to cater to the diverse resource re-
quirements of different slices while optimizing network performance and user
experience.
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5.2 Model Constraints

In the context of optimization and mathematical programming, constraints are
conditions or limitations that restrict the feasible solutions of a problem. These
constraints define the boundaries within which the optimization process must
operate to find the most favorable solution that satisfies all the given require-
ments.

In the Fairness Model for resource allocation within network slicing, constraints
play a pivotal role in shaping the optimization process. They impose specific
limitations on the allocation of resources, ensuring that the resulting solution
adheres to various predefined criteria. These criteria could include avoiding
over-utilization of resources, meeting latency requirements for certain services,
or maintaining flow conservation within the network.

In this section, we explore the constraints that govern the Fairness Model, aimed
at optimizing resource allocation within network slicing. These constraints play
a crucial role in ensuring fairness and efficiency in resource utilization. We will
delve into resource constraints to prevent over-utilization, flow constraints for
valid routing, and delay constraints for meeting latency requirements. Under-
standing and applying these constraints will lead to a more balanced and robust
resource allocation strategy, meeting the diverse needs of different slices and ser-
vices.

5.2.1 Resource constraints

The model’s resource constraints are made to make sure that the overall band-
width, CPU, and memory requests for each slice and node don’t go above their
allowed amounts. By preventing resource overuse, these restrictions are essential
for ensuring fairness.

The restriction on the overall CPU allocation for each node is imposed by Equa-
tion 5.5:

S

∑
s=1

A

∑
a=1

yas
i Ca ≤ C̄i, ∀i = 1, . . . , n (5.5)

C̄i corresponds to the total CPU in node i, which according to this constraint, the
total amount of allocated CPU for all services in each slice must be lower than or
equal to. This restriction promotes fairness in CPU consumption by guaranteeing
that the CPU resources are distributed evenly and preventing any single slice or
service from monopolizing the CPU capacity.

The total amount of RAM that each node receives is constrained by Equation 5.6:

S

∑
s=1

A

∑
a=1

yas
i Ma ≤ M̄i, ∀i = 1, . . . , n (5.6)
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This constraint, makes sure that the overall amount of memory allocated for all
services in each slice Ma does not exceed the node’s entire available memory ca-
pacity M̄i. This restriction prevents resource overutilization and guarantees equi-
table memory consumption across various slices by limiting memory allocation.

For each link, Equation 5.7 limits the total requested bandwidth:

S

∑
s=1

A

∑
a=1

xas
ij ba ≤ b̄ij, ∀i, j = 1, . . . , n (5.7)

b̄ij corresponds to the total bandwidth in link (i, j). This constraint defines that the
total bandwidth allocated to all services in each slice must be less than or equal
to the link’s total bandwidth capacity, ensuring that the bandwidth resources are
allocated equally among the slices and preventing any slice or service from using
excessive amounts of bandwidth, which could affect the performance of other
slices.

5.2.2 Flow constraints

Here it is assumed that a predefined source and target exist for each flow. More-
over, it is also necessary to ensure that each service will be allocated in a node
existing in the path.

The flow conservation concept is maintained by Equation 5.8:

S

∑
s=1

n

∑
j=1

xas
ij −

S

∑
s=1

n

∑
j=1

xas
ji = Ua

i , ∀i = 1, . . . , n,

a = 1, . . . , A (5.8)

This constraint states that the difference between the incoming and outgoing
flows of each service in each node should be equal to a predetermined value Ua

i
which indicates if node i is the source (1), transport (0) or target (-1) for a given
service a. By satisfying this constraint, the model ensures that the allocated ser-
vices follow a valid path from their source to the target, respecting the predefined
routing requirements. It maintains the integrity of the flow by guaranteeing that
the allocated services are properly routed within the network.

The allocation of services within each node is constrained by Equation 5.9:

yas
i ≤

n

∑
j=1

(xas
ij + xas

ji ), ∀i = 1, . . . , n,

a = 1, . . . , A
s = 1, . . . , S (5.9)

This constraint states that the number of services allocated in each node yas
i should

be less than or equal to the sum of the incoming xas
ij and outgoing xas

ji flows for
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those services. By enforcing this constraint, the model ensures that services are
allocated in nodes that exist in the path from the source to the target. It prevents
the allocation of services in nodes that are not part of the valid path, which could
lead to incorrect routing and unreliable service delivery.

To ensure that each link in the path is used in a single direction we implement
Equation 5.10:

xas
ij + xas

ji ≤ 1, ∀i, j = 1, . . . , n,

a = 1, . . . , A
s = 1, . . . , S (5.10)

This constraint is used, to prevent the model from selecting disconnected links in
the path. It ensures that the allocation of links for a specific service a in a slice S
follows a unidirectional path and avoids using the same link for both forward and
backward directions. If the sum of xas

ij and xas
ji is greater than 1 (i.e., 2 or more),

it means that both directions of the link between nodes "i" and "j" are being used
simultaneously. This violates the unidirectional constraint, as a service a should
only be allowed to traverse the link in one direction, either from node i to node j
(forward) or from node j to node i (backward). By enforcing this constraint, we
ensure that for each service a in slice s the link between nodes i and j is used in
only one direction.

5.2.3 Delay constraint

Due to the nature of some services, it is necessary to ensure a given end-to-end
latency for the service. For example, in a URLLC slice, latency is of most impor-
tance.

S

∑
s=1

n

∑
i,j=1

xas
ij dij ≤ d̄a, ∀a = 1, . . . , A (5.11)

In order to enforce a maximum end-to-end latency for particular services, the
model’s delay constraint 5.9 is applied. It makes sure that these services don’t
have their latency requirements violated by excessive delays introduced by the
resources and pathways that were provided to them.

Finally, we need a constraint to ensure that each service will be allocated only
once.

S

∑
s=1

n

∑
i=1

yas
i = 1, ∀a = 1, . . . , A (5.12)
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yas
i ≤ qs

i , ∀i = 1, . . . , n,
a = 1, . . . , A
s = 1, . . . , S (5.13)

xas
ij ≤ qs

ij, ∀i, j = 1, . . . , n,

a = 1, . . . , A
s = 1, . . . , S (5.14)

5.3 Summary

In conclusion, the Fairness Model presented in this chapter plays a critical role
in optimizing resource allocation within the network slicing context. The model
is designed to prioritize fairness by ensuring that each slice receives an equitable
share of resources, leading to a more balanced and efficient allocation strategy.

The objective function of the Fairness Model aims to maximize the fairness of
bandwidth and CPU allocation for each slice. By considering the requested band-
width and CPU for each service and introducing weights and penalties for alloca-
tion decisions, the model optimizes resource distribution while adhering to slice
and service constraints.

To transform the initial nonlinear objective function into a computationally effi-
cient form, the concept of linearization is applied. By introducing an auxiliary
variable, the model achieves the objective of minimizing the fairness measure,
thereby maximizing fairness in resource allocation across slices.

The Fairness Model is governed by a series of constraints to maintain equitable
resource distribution. Resource constraints prevent over-utilization by limiting
the total CPU and memory allocated for each node and the total bandwidth allo-
cated for each link. Flow constraints ensure that services are allocated in nodes
along valid paths, maintaining the flow conservation concept. Additionally, de-
lay constraints guarantee that specific services adhere to their end-to-end latency
requirements.

By effectively addressing these constraints, the Fairness Model optimizes resource
allocation in a way that promotes fairness among different slices while meeting
the diverse requirements of services.

In summary, the Fairness Model is a vital component of our project that strives
to achieve equitable and efficient resource allocation within the network slicing
framework. By prioritizing fairness in bandwidth and CPU allocation and ad-
hering to various constraints, our model enhances the overall performance and
reliability of the network while meeting the unique demands of different slices
and services.
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Network Resource Allocation
Framework

In the context of modern networking, efficiently allocating network resources
poses a critical challenge. With the escalating demand for diverse services and
applications, conventional static network configurations often fall short of deliv-
ering optimal performance. To address this, dynamic and flexible resource allo-
cation techniques have emerged, aiming to optimize resource utilization while
ensuring fair distribution among different services and users.

Numerous methods and models have been proposed to tackle the resource allo-
cation problem in networks. Each approach comes with its own advantages and
limitations, underscoring the importance of identifying the most suitable tech-
nique for a specific network scenario. Existing approaches may prioritize specific
performance metrics, such as maximizing throughput, minimizing latency, or re-
ducing energy consumption. While these metrics are crucial in their respective
contexts, they might not offer the comprehensive perspective required to address
all resource allocation challenges effectively.

This section introduces a comprehensive framework meticulously designed to
optimize network resource allocation while upholding fairness as a key criterion.
Unlike many existing methods that focus on individual flows or specific perfor-
mance metrics, our framework adopts a comprehensive approach, considering
the overall resource utilization in each network slice. By doing so, it ensures fair
distribution of resources among different services or slices, promoting uniform
access to network capabilities for all users.

As we mentioned before, the project OREOS aims to achieve an end-to-end 5G
network, with network slicing being one of its crucial components. The slicing
management is typically done via ONAP, however, due to limited access to these
resources, an alternative solution was pursued. Consequently, a fairness model
was created, and a framework was developed to validate and implement this
fairness model for network slicing management in 5G networks.

Since direct access to ONAP resources was not feasible due to resource consump-
tion constraints, the focus shifted towards the slicing management part using the
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developed framework. This framework involves key components such as Net-
workX [NetworkX], MiniZinc [MiniZinc], and other complementary tools. By in-
tegrating these components seamlessly, the framework executes a sophisticated
resource allocation process, ensuring a balance between service requirements and
available network resources.

The Resource Allocation Framework’s primary objective is to serve as a tool for
simulating and optimizing resource allocation in network slicing scenarios. By
allowing users to specify various parameters, the framework can effectively sim-
ulate real-life network configurations, making it versatile for network adminis-
trators and designers. This adaptability enables its application to a wide range of
projects that require an intelligent and equitable resource allocation model.

Throughout the upcoming sections, we will delve into the intricate details of our
framework, explaining its components, mathematical formulation, and optimiza-
tion techniques. Additionally, we will demonstrate its applicability through di-
verse scenarios, showcasing how it significantly enhances resource allocation in
modern networks. By the end of this section, readers will have a comprehen-
sive understanding of the framework’s potential and its importance in achieving
efficient and fair network resource allocation.

6.1 Overview

The foundation of our resource allocation framework begins with the simulation
of a network using NetworkX, which grants us the capability to define all essen-
tial network characteristics, including nodes, edges, and the bandwidth, CPU,
and memory requirements of each service. The library supports various graph
data structures, facilitating the efficient representation of real-world networks.

With the network simulation established in NetworkX, we proceed to the re-
source allocation phase, where MiniZinc takes center stage. Leveraging MiniZ-
inc, we craft a model that encapsulates the resource allocation problem, factor-
ing in critical constraints such as available CPU and memory in each node, total
bandwidth in each link, and the resource requests of each service. We also define
the objective function, aimed at optimizing fairness and efficiency in resource al-
location across network slices.

Upon configuring the MiniZinc model, we seamlessly transmit the network sim-
ulation data from NetworkX to MiniZinc. This data encompasses the network
topology, service requirements, and other pertinent parameters. MiniZinc, in
turn, employs its solvers to identify the optimal resource allocation, adhering
to all constraints and optimizing the predefined objective function.

The outcomes of the resource allocation process are then seamlessly fed back
into NetworkX, enabling us to visualize and analyze the distribution of resources
throughout the network. NetworkX’s integration with Matplotlib empowers us
to generate highly customizable visualizations, significantly enhancing our un-
derstanding of the network’s topology and resource distribution.
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6.2 Components Used

This section introduces the key components that form the foundation of our Re-
source Allocation Framework for Network Slicing. Each component plays a crit-
ical role in enabling efficient resource allocation and analysis within the network
slicing context. We have already introduced these components in Section 2, and
here we will specifically discuss the reasons behind choosing NetworkX, MiniZ-
inc, and Matplotlib for our framework. By understanding the functionality and
integration of these components, we can better appreciate how they contribute to
the optimization and orchestration of network resources in the context of network
slicing.

6.2.1 NetworkX

The decision to utilize NetworkX as our graph analysis library stemmed from
several critical factors. Firstly, NetworkX offers a comprehensive array of func-
tionalities and algorithms, providing a rich toolkit for effectively analyzing net-
work properties. This diverse feature set proved indispensable in addressing the
complexity of our resource allocation problem and allowed us to explore and
model real-world networks with precision.

Seamless integration with the Python ecosystem was another pivotal considera-
tion in selecting NetworkX. Given that our framework was developed in Python,
opting for NetworkX felt like a natural and seamless fit. Its smooth compatibility
with other popular scientific libraries, such as NumPy and Matplotlib, facilitated
the effortless execution of complex mathematical computations and the visual-
ization of results. This seamless integration greatly streamlined our workflow,
enhancing overall productivity throughout the entire development process.

To represent real-world networks efficiently, it was crucial to have a tool that
could create the network topology. NetworkX emerged as the ideal choice as
it offers various functions to generate different types of graphs, such as Erdős-
Rényi graphs, Watts-Strogatz graphs, and Barabási-Albert (BA) graphs. Since we
wanted to create a topology based on the BA model, which will be elaborated fur-
ther in this document in section 6.4, NetworkX naturally provided the necessary
functionality.

To achieve a network representation as close to reality as possible, we needed to
assign attributes to nodes and edges, simulating routers or links in a genuine net-
work. NetworkX enables us to precisely set attributes, resulting in more detailed
and informative representations of networks.

Lastly, to gain a visual understanding of our topology and better comprehend our
network, we required a reliable visualization tool. Here again, NetworkX demon-
strated its utility by seamlessly integrating with the Matplotlib library, allowing
us to visualize networks and graph structures using customizable plotting func-
tions. This visualization capability proved invaluable in comprehending network
topology and relationships effectively.
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6.2.2 MiniZinc

To mathematically represent the resource allocation problem within the network
slicing context, we rely on MiniZinc, a powerful constraint modeling language
and solver interface tailored for tackling combinatorial optimization and con-
straint satisfaction problems.

The inclusion of MiniZinc in our framework serves a crucial purpose – to vali-
date the fairness model specifically developed to address optimization problems
like allocating resources (e.g., bandwidth, processing power) optimally across
different network slices while adhering to their unique requirements and con-
straints. This model has been meticulously designed to ensure equitable and effi-
cient resource distribution among slices, contributing to the overall performance
enhancement of network slicing.

Furthermore, MiniZinc provided excellent support for integrating with other pro-
gramming languages, including Python, which was the language used to develop
the rest of our framework. This allowed us to seamlessly incorporate MiniZinc
models and solutions into our Python-based framework, enabling us to leverage
the strengths of both MiniZinc and Python for a more robust and flexible solution.

The primary reason behind selecting Minizinc as our platform of choice is its
seamless integration with ONAP. Minizinc’s solver-independent approach allows
for effortless incorporation of the optimization model into the ONAP environ-
ment. Leveraging Minizinc’s interfaces enables us to adapt the model to ONAP’s
specific requirements, making it a perfect fit for our optimization solution within
the broader network automation and orchestration provided by ONAP.

In particular, the ONAP Optimization Framework (OOF) adopts Minizinc as its
constraint modeling language, providing a standardized and well-established
foundation for optimization within the ONAP ecosystem. This decision ensures
that we can capitalize on the integration efforts and advantages offered by this
robust framework, streamlining our optimization implementation within ONAP.
[ONAP Architecture]

6.2.3 Matplotlib

Matplotlib, a widely used Python plotting library, plays a crucial role in our Re-
source Allocation Framework for Network Slicing. As an essential component,
Matplotlib enables us to visualize and interpret the solutions generated by our
resource allocation model, providing valuable insights into the allocation of net-
work resources across different slices.

One of the key reasons for choosing Matplotlib is its flexibility and versatility in
creating a wide range of high-quality plots and visualizations. This capability
empowers us to represent complex network structures, resource allocations, and
performance metrics in a clear and intuitive manner. By leveraging Matplotlib’s
extensive set of visualization tools, our framework allows network operators and
researchers to gain a comprehensive understanding of the resource allocation out-
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comes.

The seamless integration of Matplotlib with NetworkX further enhances the vi-
sual representation of network topologies, as NetworkX serves as the underlying
graph analysis library in our framework. This integration enables us to transform
NetworkX graph data structures into visually appealing and informative plots,
showcasing the allocation of services, links, and nodes across different network
slices.

6.3 Inputs for Fairness Model

In this section, we delve into the essential input data that drives our resource
allocation framework for network slicing. The framework operates based on in-
put files that define the specific network scenario, encompassing various param-
eters crucial to the allocation process. These input files serve as the backbone
of our framework, providing a structured representation of the network topol-
ogy, service requirements, link attributes, resource constraints, and other critical
elements.

Let’s explore the key components of the input data:

• Network Topology Representation:

The input data comprehensively describes the network topology using graph-
based representations. Nodes and links are defined, where nodes represent
network elements like routers, switches, or servers, and links symbolize the
connections between these nodes.

• Service Requirements:

The input data includes the service requirements for each individual service
to be allocated in the network. These requirements consist of key parame-
ters such as the amount of bandwidth required by each service to function
optimally, the CPU processing power needed by each service to execute its
tasks, and the memory capacity required by each service to store and pro-
cess data.

• Link Attributes:

The input data incorporates attributes of the links between nodes. These at-
tributes represent the characteristics of the network links and influence the
service allocation decisions. These attributes are the available Bandwidth,
which reflects the total available bandwidth in each link, representing the
capacity of data transmission, and the delay, which represents the delay or
latency in transmitting data between nodes connected by the link.

• Resource Constraints:

The input data may include resource constraints, such as the total CPU and
memory available in each node. These constraints restrict the allocation of
services to ensure that the nodes do not become overloaded.
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• Slice and Service Parameters:

The input data also contains parameters related to network slices and ser-
vices, such as slice assignments which indicate which services belong to
which network slices, guiding the framework in achieving slicing-specific
objectives, and Link and node allocations within slices, which determine
which links and nodes are available for each network slice, further influ-
encing service placement.

• Weight Parameter (W):

The input data includes the weight parameter used in the objective func-
tion. This parameter represents the penalization factor that influences the
allocation of services and links based on their slice assignment and usage.
It enables fairness in resource allocation across network slices.

All these input parameters adhere to a structured format determined by the array
index. To provide a clearer understanding, in arrays containing slice attributes,
such as bandwidth and latency, the initial element corresponds to the first slice,
and this ordering persists for all subsequent elements.

This pattern is visually depicted in Figure 6.1. For instance, in this illustration,
the variable bw_link contains the bandwidth values of the links. Consequently,
the initial value of 5000 corresponds to links belonging to the first slice; 10000 is
assigned to links in the second slice; and 50000 designates the bandwidth values
for links within the third slice.

Figure 6.1: Input Example

By representing the network topology, service requirements, link attributes, and
resource constraints in a structured and accessible format, the input data serves as
the foundation of our framework. It allows network administrators, researchers,
and operators to efficiently define and simulate various network scenarios, en-
suring that the resource allocation model provides optimal and well-informed
solutions for network slicing.
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6.4 Network Topology

In the realm of computer networks, a fundamental aspect that lays the foundation
for efficient data transmission, resource allocation, and overall network perfor-
mance is "Topology." In its essence, network topology defines the physical or log-
ical arrangement of interconnected nodes, devices, and communication links that
form a network. Just as the layout of roads and intersections dictates how traf-
fic flows in a city, network topology governs how data packets traverse through
interconnected nodes in a computer network.

In this context, there are two primary types of network topology: physical and
logical. Physical topology refers to the actual physical layout of network com-
ponents, including devices like computers, routers, switches, and the cables that
interconnect them. On the other hand, logical topology abstracts the physical
layout and focuses on how data flows and communicates between nodes, inde-
pendent of the physical medium.

Various topologies can be employed to design computer networks, each with its
strengths and weaknesses. Some common network topologies include the star
topology, bus topology, ring topology, mesh topology, and tree topology, among
others. Each topology configuration caters to different network requirements,
such as scalability, fault tolerance, and cost-effectiveness. In our framework, we
generate the network topology using NetworkX with the Barabasi-Albert model.

Barabási-Albert graph

In our research framework, the strategic utilization of the BA graph model holds
paramount importance, serving as a crucial tool for generating synthetic net-
works and enabling rigorous testing and simulation across diverse scenarios.

Out of the many network generation models available, we chose the BA model
because it can create networks that resemble real-world networks with scale-free
properties. Scale-free characteristics are commonly found in many real networks,
making the BA model a suitable choice for our research. The information related
to this type of topology was taken into account in the article [Barabasi-Albert
model].

First and foremost, our approach to network synthesis prioritizes realism. The BA
model is able to create networks that closely resemble real-world systems found
in various domains, such as social networks, citation networks, and transporta-
tion networks. By capturing these realistic features, the synthetic networks we
generate provide a strong basis for in-depth analysis and valuable insights.

Another key aspect is the power-law degree distribution seen in BA graphs,
which mirrors the connectivity patterns seen in real networks. This distribution
means that a few nodes have many connections, while most nodes have fewer
connections. This reflects how connectivity works in many real networks, where
some entities have far more connections than others.

Furthermore, the scale-free nature inherent in BA graphs contributes to the real-
ism of our synthetic networks. This characteristic is characterized by a heteroge-
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neous distribution of node degrees, where a small number of highly connected
hubs coexist with the majority of nodes having limited connections. These criti-
cal hubs play a pivotal role in shaping the overall connectivity and resilience of
the network. On the other hand, most nodes in the network have relatively few
connections.

We can see a representation of the difference between a scale-free graph and a
random network in Figure 6.2. In a scale-free network, we observe a few nodes
with a significantly higher number of connections, forming hubs, while the rest
of the nodes have only a few connections. This results in an uneven degree dis-
tribution and a network structure that mirrors real-world systems, where certain
entities have a disproportionate number of connections compared to others. On
the contrary, a random network lacks this heterogeneous degree distribution and
exhibits a more uniform connectivity pattern, where nodes have similar degrees.

Figure 6.2: Random Network vs Scale-Free Network [Scale-Free Networks]

Lastly, the preferential attachment mechanism in the BA model aligns well with
how many real networks grow over time. This mechanism is similar to scenarios
seen in social media networks, where newly added entities prefer to link with
well-connected nodes rather than less popular ones. This preference leads to a
positive feedback loop, magnifying differences and influencing how the network
evolves.

The BA model can represent this scenario of social media networks, where well-
known influencers attract more new followers due to their popularity. As a result,
these influencers end up having a disproportionate number of connections com-
pared to other users, forming hubs in the network. This phenomenon creates a
scale-free network structure with a few highly connected nodes and many nodes
with limited connections.

We conducted a comprehensive evaluation of various graph generation models,
including the Erdős-Rényi and Watts-Strogatz models, in conjunction with the
Barabási-Albert (BA) model. Our analysis unveiled that the Erdős-Rényi and
Watts-Strogatz models typically yield networks characterized by a more uniform
degree distribution. However, this uniformity falls short of capturing the het-
erogeneous connectivity patterns observed in many real-world networks. These
models rely on random processes and may not effectively replicate the dynamic
growth processes that underlie real-world network evolution. On the other hand,
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scale-free networks generated by the BA model exhibit increased resilience to ran-
dom node failures when compared to those produced by Erdős-Rényi or Watts-
Strogatz models.

The choice of the BA model seamlessly aligns with scenarios where the objective
is to examine networks with highly influential or well-connected nodes, a com-
mon feature in many real-world systems. In contrast, Erdős-Rényi and Watts-
Strogatz models are better suited for situations where network nodes display
more uniform degrees and connectivity patterns.

The generation of the Network Topology Process

The network is composed of several nodes and links. Nodes in the network rep-
resent the individual components or entities within the infrastructure, such as
routers, switches, or servers. The creation of nodes is based on the input data,
which provides details about the physical layout of the network. Each node is
uniquely identified, and its attributes, such as processing capacity (CPU) and
memory, are defined.

The Barabasi-Albert model starts with a small number of nodes (m) and gradually
adds new nodes one by one, each connected to m existing nodes. This process
continues until the desired number of nodes (n) is reached

Edges in the network represent the connections between nodes, indicating the
existence of links between them. These links serve as communication channels
through which data can flow between nodes. The creation of edges is influenced
by the q_link matrix.

For each new node, we add m edges that connect the node to m existing nodes.
The probability of a new node connecting to an existing node is proportional to
the existing node’s degree (number of neighbors). Nodes with higher degrees are
more likely to attract new connections, reflecting the "rich-get-richer" principle.

The q_link matrix is a binary matrix that indicates the links between nodes in the
network. It has a size of N x N, where N is the number of nodes in the network.
Each entry (i, j) in the q_link matrix is either 0 or 1, representing the absence (0) or
presence (1) of a link between nodes i and j.

The process of creating edges based on the q_link matrix involves examining each
entry in the matrix. For each entry (i, j) with a value of 1, an edge is created
between node i and node j, indicating that a link exists between them. Conversely,
for entries with a value of 0, no edge is created, indicating that there is no direct
link between the corresponding nodes.

To gain a clearer insight into the functioning of this generation process, refer to
Figure 6.3, which illustrates the structure of the q_link matrix. Within this matrix,
each array corresponds to a specific slice; in this case, we have three slices. If
an edge is denoted with a value of 1 in the corresponding array, it signifies that
the edge belongs to the respective slice. For example, in slice 1, the links (0,3)
and (3,0) are included, while in slice 2, the links (2,3), (3,2), (3,4), and (4,3) are
designated.
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Figure 6.3: q_link matrix

6.5 MiniZinc Model

In this section, we present the implementation of the mathematical model pre-
sented in section 5, using MiniZinc as a language to optimize the fairness of
bandwidth and CPU allocation in multi-slice networks.

The primary objective of this model is to maximize the fairness of resource allo-
cation for each slice while ensuring an equitable distribution of overall resources
across the network. To achieve this, we carefully translate the mathematical
model into MiniZinc syntax.

Our validation process utilizes MiniZinc to test and assess the performance of
the Fairness Model. We employ various metrics to evaluate the fairness and effi-
ciency of resource allocation.

As we mentioned before, the model implemented in the MiniZinc platform was
based on the fairness model presented in Section 5. Our role in this phase of the
research was to bring the mathematical model to life by transforming abstract
mathematical equations into practical constraints and conditions that could be
executed and evaluated using MiniZinc.

Solving the Model using the Gecode Solver

As Python served as the primary language for the rest of our resource alloca-
tion framework, we greatly valued Gecode’s interoperability with Python. This
compatibility allowed us to effortlessly incorporate the solver’s solutions into our
Python-based framework, empowering us with a rich set of tools and libraries for
various tasks.
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By leveraging Gecode’s efficiency, constraint programming expertise, seamless
integration with MiniZinc, and interoperability with Python, we were able to
create a robust and highly effective resource allocation framework for network
slicing.

Process of solving the Minizinc Model

The MiniZinc model, written in a high-level declarative language, needs to be
compiled into a format that the Gecode solver can understand and process. With
the model compiled, the Gecode solver is selected as the solver of choice. This is
represented in figure 6.4.

Figure 6.4: Gecode implementation

The Gecode solver proceeds to search for a feasible solution that satisfies all the
constraints defined in the model. During this process, the Gecode solver keeps
track of the best solution found so far. As it explores the solution space, if it
encounters a solution that improves upon the current best, it updates the best
solution accordingly. This way, the solver continues to refine its search, striving
to find the best possible solution.

Once the Gecode solver completes its search, it reports the results. If a feasible
solution that satisfies all constraints is found, it is presented as the output. The
solution includes the allocation of resources, such as CPU, memory, and band-
width, for each service in the network slicing scenario. If an optimal solution is
reached, it represents the most efficient allocation that maximizes fairness and
meets all the defined constraints.

After obtaining the solution, it is further analyzed to evaluate its effectiveness and
fairness in resource allocation. Various performance metrics and visualizations,
facilitated by the integration with Matplotlib, provide insights into the network’s
resource utilization and the impact of the resource allocation on different slices
and services.

6.6 Summary

In the context of modern networking, the efficient allocation of network resources
is crucial due to increasing demands for diverse services. This chapter introduces
a comprehensive framework designed to optimize network resource allocation
while prioritizing fairness. While various methods and models exist for resource
allocation, this framework takes a holistic approach, considering overall resource
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utilization across network slices. The objective is to ensure equitable distribution
of resources among services and users.

The framework is particularly significant for the OREOS project, which aims to
create an end-to-end 5G network with network slicing as a key component. Given
limited access to resources like the ONAP orchestrator, an alternative approach
was pursued. A fairness model was developed, and a framework was created to
validate and implement this model for network slicing management in 5G net-
works. By utilizing components like NetworkX, MiniZinc, and Matplotlib, the
framework orchestrates a sophisticated resource allocation process, aligning ser-
vice requirements with available resources.

A notable feature of the framework is its code availability in a repository, allow-
ing others to access and contribute to its development. The careful selection of
NetworkX and MiniZinc as core components ensured compatibility, enabling the
generated data to be directly input into ONAP. This compatibility allows for a
smoother transition from the simulation framework to the actual ONAP envi-
ronment, enhancing the practicality and applicability of the resource allocation
model.

The framework’s foundation lies in the generation of network topology using the
Barabasi-Albert model, which creates synthetic networks mirroring real-world
systems. NetworkX is used for network simulation, enabling efficient visual-
ization and analysis. MiniZinc, a constraint modeling language, plays a pivotal
role in crafting an optimization model that ensures fair resource allocation. The
process involves translating mathematical models into MiniZinc code and uti-
lizing the Gecode solver to find optimal or near-optimal solutions. The outputs
are analyzed using various metrics and visualizations to assess the fairness and
efficiency of the resource allocation.

The framework’s adaptability and ability to simulate real-world scenarios make
it a powerful tool for network administrators and designers. By understanding
the components, mathematical formulation, and optimization techniques of the
framework, readers can appreciate its potential for enhancing resource allocation
in modern networks while ensuring fairness.
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Model Validation and Testing

This chapter presents a comprehensive methodology for validating and testing
the network resource allocation model in multi-slice networks. The validation
process is conducted in progressive stages, starting with small-scale tests and
gradually progressing to more complex scenarios. This approach allows for a
thorough evaluation of the model’s performance and behavior under varying
conditions.

Initially, the validation involves generating small networks, enabling manual cal-
culation of expected results, which are then compared with the model’s outputs
to verify resource allocations’ correctness. As confidence in the model’s accu-
racy grows, more challenging tests with larger networks and multiple services
are conducted, using random values for service resource demands and network
link characteristics. This step ensures that the model performs effectively under
diverse scenarios and varying resource demands.

A critical aspect of the validation process involves evaluating the model’s scal-
ability to handle larger networks without compromising performance. This en-
sures that the model is applicable in real-world scenarios with high resource de-
mands and large-scale networks.

Throughout the validation process, the model’s results are meticulously ana-
lyzed, ensuring that it meets the requirements of fairness and efficiency in re-
source allocation among network slices. Performance metrics are utilized to sup-
port the conclusions about the model’s effectiveness and applicability in practical
scenarios.

It is important to note that we are not using a heuristic to validate the model,
and the validation does not focus on the quality of the solution but rather on
verifying whether the solution is correct in terms of meeting the requirements
and objectives of the problem. The primary objective of validation is to guar-
antee that the model consistently delivers precise and consistent results that
align with the distinct requirements of diverse network scenarios. This in-
volves assessing whether, within each designed scenario, the model adeptly
chooses the links and nodes that best contribute to minimizing the final out-
come, all while considering the unique demands imposed by these require-
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ments.

In essence, the validation process confirms that the model reliably provides cor-
rect solutions by effectively allocating services while complying with the con-
straints imposed by both the test cases and the model itself. This meticulous
validation ensures the model’s reliability and applicability in practical scenarios,
where accurate resource allocation is crucial for optimizing network performance
and resource utilization.

7.1 Validation Methodology

The validation methodology was developed in progressive stages, starting with
small-scale tests and gradually progressing to more complex scenarios to evaluate
the model’s performance and behavior. Initially, we generated small networks,
allowing us to manually calculate the expected results. We compared these re-
sults with those obtained from the model to verify the correctness of resource
allocations.

As we gained confidence in the model’s accuracy, we advanced to more chal-
lenging tests involving larger networks and more services. In these cases, we
used random values for service resource demands and network link characteris-
tics. While these values did not have specific justifications, they were randomly
selected to assess how the model performed under varied conditions.

Another important aspect was evaluating the model’s scalability. We tested its
ability to handle increasingly larger networks, ensuring that it maintained ac-
ceptable performance even in large-scale scenarios. This was essential to confirm
that the model could be applied in real-world environments with large-scale net-
works and high resource demands.

Additionally, we conducted sensitivity tests to analyze the impact of different
parameters and input values on the final results. We adjusted weight values,
resource capacities, and service requirements to understand how these changes
would affect resource allocations and fairness among the slices.

A significant part of the validation involved comparing the results with bench-
marks established by other resource allocation methods in multi-slice networks.
This allowed us to assess the model’s efficiency and relative performance com-
pared to existing approaches, demonstrating its effectiveness and highlighting
its advantages.

Throughout the validation process, we carefully analyzed the results, ensuring
that the model met the requirements of fairness and efficiency in resource allo-
cation among network slices. Performance metrics and comparisons with tradi-
tional approaches were used to support our conclusions about the model’s effec-
tiveness and applicability in practical scenarios.
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7.2 Performance Metrics

In this section, we outline the performance metrics used to evaluate the effec-
tiveness and efficiency of our resource allocation model in multi-slice networks.
These metrics play a crucial role in assessing the model’s performance and its
ability to achieve fair resource allocation while optimizing network utilization.
By quantitatively measuring various aspects of the model’s performance, we gain
valuable insights into its behavior and suitability for real-world scenarios.

7.2.1 Fairness Metric

The fairness metric in the network resource allocation model aims to evaluate
the equitable distribution of resources (bandwidth and CPU) among the different
slices in a multi-slice network. The primary objective is to achieve a balanced and
fair allocation of resources, ensuring that no single slice is significantly disadvan-
taged in terms of resource availability.

In the framework of the objective function outlined in Section 5, and considering
the resultant variable Z derived from the model, the fairness metric evaluates the
efficacy of resource allocation among various slices. This assessment is made by
considering the cumulative utilization of resources within each slice. The Z vari-
able serves as a reflection of the extent to which the fairness objective is achieved
in the resource allocation process. By minimizing the Z variable, the optimiza-
tion process seeks to align the allocation of resources in a manner that maximizes
fairness across slices, while abiding by the specified constraints.

In this optimization framework, a high value of Z suggests that the allocation of
resources across slices is facing challenges in meeting the fairness and resource
allocation constraints. This indicates that the resource distribution might be dis-
proportionate, potentially favoring certain slices over others. In other words, a
high Z value reflects an allocation scenario where the fairness objective is not
well achieved, and there may be slices that are significantly disadvantaged in
terms of resource availability.

On the other hand, a low value of Z indicates that the allocation of resources is
in closer alignment with the fairness and resource allocation constraints. In
this scenario, resources are more evenly and fairly distributed among different
slices, and the optimization process is successful in achieving its objectives. A
low Z value signifies that the allocation strategy is effective ensuring that each
slice receives its due share of resources, minimizing any discrepancies or imbal-
ances.

By optimizing the fairness metric, the network resource allocation model aims to
mitigate potential performance bottlenecks and ensure that slices with high re-
source demands receive adequate allocations without impacting other slices neg-
atively. This balanced distribution of resources leads to improved service quality,
reduced congestion, minimized service disruptions, and ultimately, a higher level
of user satisfaction across the entire network.
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7.2.2 Slice Isolation

In our network resource allocation model for multi-slice networks, the Slice Iso-
lation metric holds significant importance in preserving the integrity and inde-
pendence of individual slices. Its primary goal is to ensure that services are ex-
clusively allocated to their designated slices and not spread across other slices,
except when dictated by resource constraints.

To achieve this isolation, we rely on a crucial element within our model known
as the penalization parameter, represented as W in Equation 5.1. Whenever the
model attempts to allocate a service to a slice other than its designated one, a
penalization factor comes into play. This penalization acts as a deterrent, dis-
couraging the model from making inappropriate allocations and reinforcing strict
adherence to slice boundaries. In cases where a service is correctly allocated to
its designated slice, the penalization W remains dormant, as it aligns with the
desired behavior.

While preserving slice isolation is essential for maintaining the integrity of net-
work slices, we must also strike a balance with resource efficiency. In certain
scenarios, resource constraints or exceptional circumstances may necessitate allo-
cating a service to a different slice. In such situations, the penalization is applied,
but the allocation may proceed if no other viable options are available.

The incorporation of the penalization parameter W in the model encourages a
thoughtful evaluation of resource availability and the consequences of making
cross-slice allocations. It motivates the model to prioritize resource allocation
within the designated slice, while still allowing for flexibility in cases where re-
source constraints demand alternative allocations.

To calculate the slice isolation metric, we adjust the value of the W variable to
be either more strict or relaxed. A higher value of W instructs the model to
make every effort to prevent the service from being implemented in another
slice that does not belong to it. Conversely, a lower value gives the model more
flexibility to allocate the service in the most optimal manner, even if it means
crossing slice boundaries. This flexibility allows us to strike a balance between
maintaining strict slice isolation and optimizing resource utilization based on the
specific requirements of the network scenario.

7.3 Datasets and Inputs

Slice Values Methodology

As previously discussed, our validation methodology was structured into three
distinct phases:

• Initial Tests: These involved creating small networks to enable manual cal-
culation of expected outcomes. This initial phase laid the foundation for
our validation process.
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• Intermediate Tests: These tests introduced increasing complexity and en-
compassed a range of random scenarios. This phase aimed to explore the
model’s behavior under diverse conditions with growing intricacy.

• Real Scenario Tests: The final phase focused on the practical application
of our model in real-world environments. This step aimed to validate the
model’s effectiveness when subjected to actual usage scenarios.

In our model, we considered three types of network slices: enhanced Mobile
Broadband (eMBB), Ultra-Reliable Low-Latency Communications (URLLC), and
Massive Machine-Type Communications (mMTC). The key parameters we used
from these slices were bandwidth and latency, which played a crucial role in re-
source allocation.

The bandwidth and latency values that we assigned to each slice are represented
in Table 7.1:

Network Slice Latency (ms) Bandwidth (Kbps)
eMBB Slice 50 50000
URLLC Slice 10 10000
mMTC Slice 300 5000

Table 7.1: Latency and Bandwidth Values for Network Slices

The values of latency were chosen based on the dataset from [5G Dataset Net-
work Slicing CRAWDAD Shared], providing realistic latency requirements for
each slice. Regarding the bandwidth values, we used the values based on [Net-
work slicing for eMBB, URLLC, and mMTC: An uplink rate-splitting multiple
access approach].

The provided details pertain exclusively to intermediate and real-test scenarios,
aligning with our aim to acquire authentic data for testing the fairness model.
For the initial test cases, specific values were adopted. In these cases, the selec-
tion of bandwidth values for the links was guided by insights from the research
paper [SALEM: Service Fairness in Wireless Mesh Environments]. Accordingly,
wireless connections were attributed a bandwidth of 54 Mbps, while fiber optic
connections were set at 1000 Mbps. This choice was made because the initial tests
involved scenarios with only one network slice.

Node values Methodology

In our network topology representation, we modeled a combination of virtual
machines (VMs) using NetworkX to represent different nodes, and we incorpo-
rated two distinct hardware configurations.

• The first configuration involved professional hardware with higher resource
consumption;

• The second configuration utilized commodity hardware with lower resource
consumption.
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Additionally, we included a dedicated node to represent the cloud, which had
the most abundant resources compared to the other nodes. The values used to
categorize each node were based on the dataset [Thantharate et al., 2022].

Specifically, 50% of nodes had values from VMs with "op ccc" values, which stood
for On-Premises Commodity Cloud Computing. To simulate these cloud com-
puting nodes we used professional hardware like Cisco IR829 Industrial Inte-
grated Services Routers.

The remaining 50% of the nodes were assigned to VMs with the "ccc to cloud"
values, representing commodity cloud computing. This approach involved using
commodity hardware, such as Raspberry Pi devices.

Furthermore, we designated a single dedicated node to represent the cloud, which
possessed more resources than the other nodes. To represent this cloud node we
used a High-Performance Cloud Instance.

The characteristics of the devices used for simulation are tabulated in Table 7.3.
This table provides an overview of the CPU and RAM specifications for each de-
vice. The units used to represent these values are Million Instructions per Second
(MIPS) for CPU and Megabytes for RAM.

Device CPU (MIPS) RAM (MB)
Cisco IR829 Industrial Integrated Services Routers 16000 8000

Raspberry Pi 9600 4000
High-Performance Cloud Instance 30000000 131072

Table 7.2: Cloud Device Characteristics

In a manner akin to the method used for selecting bandwidth and latency values,
the determination of CPU and memory values for distinct nodes in the initial and
intermediate test cases adhered to a deliberate strategy. This strategy mirrored
the categorization scheme employed in real-test scenarios, wherein nodes were
grouped into three distinct sets: comparable to commodity nodes, professional-
grade nodes, and cloud nodes.

Device CPU and RAM
Lower CPU and memory (Commodity) Random values ranging from 1 to 10

Intermediate CPU and memory (Professional) Random values ranging from 10 to 20
Elevated CPU and memory values (Cloud) Random values ranging from 20 to 300

Table 7.3: Initial and Intermediate Node Characteristics

Services values Methodology

In the framework of the initial and intermediate test cases, we employed a ran-
domized generation process to define parameter values for various services. In
contrast, when striving to authentically emulate services within real-scenario test
cases for our model, we embraced a comprehensive approach. This approach
took into consideration a spectrum of parameters, spanning critical elements like
bandwidth, latency, CPU, and memory requirements for each distinct service.
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The CPU and memory values utilized in our test cases were carefully extracted
from real-world scenarios documented in the article [Service Function Chaining
in Wildfire Scenarios]. Leveraging these values provided a robust framework
for consistently simulating resource allocation across diverse scenarios. To en-
sure an accurate representation of the resource requirements for each service, we
categorized them based on their functions and cross-referenced them with the
corresponding CPU and memory values from the aforementioned article.

The categorization process entailed the selection of the suitable service function
for each implemented service. We achieved this by referencing the table located
in Chapter A, enabling us to confidently match each service with its most fitting
function. This systematic approach ensured a precise representation of the re-
source requirements for various services, thereby enhancing the fidelity of our
simulation to real-world conditions.

For determining suitable bandwidth and latency values, we referred to this ar-
ticle to align the characteristics of each service with appropriate network slice
specifications.

Scenario 1: Network Slicing for Critical Communications in Shared 5G Infras-
tructures

Service Slice Bandwidth
(Kbps)

Latency
(ms)

CPU
(MIPS)

Memory
(MB)

Smart Me-
tering

mMTC 500 5000 10 256

Floating
Car

uRLLC 100 2000 10 256

Multimedia eMBB 1300 60000 200 256

Table 7.4: Test Case I: Service Requirements

Smart Metering involves collecting data from utility meters, such as electricity,
water, or gas meters, using IoT devices. So we categorized the function of this
service as "IoT data acquisition."

Floating Car Data typically involves collecting and analyzing real-time vehicle
location information using GPS location data. For this service, we chose the func-
tion "GPS location data."

Lastly, Multimedia represents video transmission, so we labeled its function as
"video transmission."

Scenario 2: Optimizing Fairness in Wireless Mesh Networks

Real-Time Virtualization Technology (RT-VT) falls into the IoT data processing
category, as it involves virtualizing real-time systems and executing real-time
processes.

Voice traffic belongs to the Conf. voice channels category, as it entails audio data
transmission for voice calls and real-time communications.

Burst-user-driven (BUD) traffic is classified under the IoT data acquisition cat-
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Service Slice Bandwidth
(Kbps)

Latency
(ms)

CPU
(MIPS)

Memory
(MB)

RT-VT mMTC 1500 5000 20 256
Voice traf-
fic

uRLLC 24.4 30000 30 256

BUD traf-
fic

eMBB 12000 5000 10 256

Table 7.5: Test Case II: Service Requirements

egory, encompassing periodic and bursty data transmissions from sensors, IoT
devices, and M2M connectivity.

Scenario 3: OREOS Smart city

Service Slice Bandwidth
(Kbps)

Latency
(ms)

CPU
(MIPS)

Memory
(Mb)

Pedestrian
safety

mMTC 1500 120000 700 256

Air quality
monitor-
ing

uRLLC 500 5000 10 256

Crime pre-
vention

eMBB 1500 120000 800 256

Table 7.6: Test case III: Service Requirements

Pedestrian safety is triggered by the event of a citizen crossing a road, in a local
covered by video surveillance cameras. The initial step is the capture of video
and transfer of such information for analysis. Based on the information provided
in the previously referenced article, we have categorized this service under the
Service Function: Video real-time analysis. This critical function plays an indis-
pensable role in promptly detecting pedestrians crossing the road in real-time.
By analyzing the video feed from surveillance cameras, potential safety concerns
can be identified and addressed promptly.

Air quality monitoring is triggered with the deployment of IoT devices in several
city locations and the necessary configuration of the data pipeline for collection,
aggregation, and processing. We have categorized this service under the function:
of Data acquisition from biosensors, and sensors. The acquisition of data from
IoT devices, such as biosensors and sensors, assumes paramount importance in
gathering comprehensive air quality data from diverse city locations. This entails
the systematic gathering of data from the deployed IoT devices to facilitate robust
air quality monitoring.

Crime prevention is triggered by the detection of an abnormal event regarding
a citizen covered by video surveillance. Such abnormal event (such as a fall or
robbery) is detected by video cameras. The story can also be triggered by the
sharing of information from a tourist/citizen regarding the perception of safety
in a certain place. Such feedback is performed through the “Citizen App” made

84



Model Validation and Testing

available by the municipality. For this service, we have categorized the func-
tion as Video real-time analysis. Video real-time analysis plays a pivotal role in
crime prevention, empowering surveillance systems to promptly detect abnor-
mal events, such as falls or robberies, in real-time, based on the video feed from
cameras.

Bandwidth and CPU Normalization

In complex scenarios, normalizing bandwidth and CPU values becomes crucial.
Normalization, a mathematical technique, rescales values to a standardized in-
terval, often from 1 to 2 in our case. This choice avoids nullifying computational
impact as with a 0-1 range, where the minimum value is always 0, rendering cal-
culations meaningless. By opting for 1-2, meaningful calculations occur, ensuring
effective computation.

Normalization’s purpose is to harmonize values on a common scale for easier
comparison and analysis. This aids optimization problems with varied vari-
able magnitudes. Normalization counters variable dominance due to numerical
range; without it, larger values could disproportionately influence optimization.
For example, varying bandwidth (100-10,000 units) versus CPU (1-10 units) re-
quirements might incline optimization towards larger bandwidth. Normalization
aligns these requirements to foster equitable optimization influence.

7.4 Test Results and Analysis

This section delves into the outcomes of the conducted tests and provides a thor-
ough analysis of the obtained results. For enhanced clarity, distinct colors will be
employed to visually distinguish the paths taken by each service. The calculation
of the fairness metric, denoted as Z, involves aggregating the utilized bandwidth
along the paths and incorporating values related to service allocation.

The forthcoming test cases will be presented in a structured tabular format, en-
capsulating the following essential attributes:

• Starting Node: This indicates the origin point of the path where the journey
commences.

• End Node: It designates the terminal destination where the path concludes.

• Bandwidth Requirement: This specifies the amount of bandwidth essential
for the service to operate effectively.

• Latency Constraint: It signifies the maximum permissible time delay, a cru-
cial consideration for the service’s performance.

• CPU Capacity: This outlines the processing power required by the service,
quantified in terms of CPU units.

• Memory Allocation: It delineates the extent of memory resources allocated
to facilitate the service’s operations.
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7.4.1 Initial Tests: Small-Scale Verification and Manual Valida-
tion

In the upcoming tests, we will present a series of test cases aimed at validating
our model. These test cases will employ a limited set of values to confirm the
accuracy of our fairness model. In this initial phase, our focus is to gain a clear
understanding of how the model selects which links to utilize. To facilitate our
calculations and analysis, we are conducting these tests with just one network
slice. Given this single-slice setup, we will not consider the slice isolation metric,
as it cannot be practically applied in this preliminary stage. Consequently, our
evaluation in this section will solely revolve around the fairness metric, denoted
as variable Z, as we assess whether it produces the expected output results.

Test case 1

Figure 7.1: Graph Test Case I

Start Node End Node Band. Latency CPU Memory
0 4 11.35060 10 10 10

Table 7.7: Test case I

Node Memory (Gb) CPU (Gb)
0 14.6292 10.8124
1 14.6292 10.8124
2 14.8852 16.2002
3 14.6292 10.8124
4 188.3523 52.4957

Table 7.8: Memory and CPU Specifications for Nodes
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Upon analyzing the test case, we observe a path that begins at node 0, offering
two potential destinations: link(0,3) and link(0,1).

If the path were to divert to link(0,1), it would use more bandwidth than neces-
sary, as it would later need to use the link(1,3). This detour would result in an
additional bandwidth usage of 11.3560 units compared to a direct route through
link(0,3). However, once the path reaches node 3, the only available onward op-
tion is to use the link(3,4). Therefore, the model chooses that link leading to the
optimal solution in this scenario.

To compute the fairness metric represented by z entails aggregating the utilized
bandwidth along the path and the value denoting service allocation. In the con-
text of this test case, the calculation is:

• 11.3560 (Service Bandwidth) * 2 (link(0,3) and link(3,4)) + 10 (Service re-
quired CPU)

• Z = 32.712

This result aligns precisely with the anticipated value, corroborating the accuracy
of the model’s calculations. As illustrated in Figure 7.1, the service allocation is
observed to have been designated to Node 0. Notably, the service necessitates a
CPU capacity of 10 units, a requirement that aligns with the available resources
of Node 0, which boasts a total of 10.8124 units. Thus, Node 0 stands as a viable
candidate for accommodating the service’s computational demands.

Test case 2

Figure 7.2: Graph Test Case II

Within this specific test case, a singular option presents itself: that of selecting
link(0,1) followed by utilizing link(1,3) to complete the path.

The cumulative outcome of this choice is calculated as follows:
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Start Node End Node Band. Latency CPU Memory
0 3 0.3124 10 10 10

Table 7.9: Test case II

Node Memory (Gb) CPU (Gb)
0 12.7153 11.5524
1 61.6382 276.8038
2 13.082 12.1299
3 12.7153 11.5524
4 12.7153 11.5524

Table 7.10: Memory and CPU Specifications for Nodes

• 0.3142 (Service Bandwidth for link(0,1)) + 0.3142 (Service Bandwidth for the
link(1,3)) + 10 (service-required CPU)

• Z = 10.6284

Significantly, this computed value aligns perfectly with the expected outcome,
unequivocally validating the model’s precise calculations. This outcome con-
firms that in this particular test case, fairness achieved the optimal solution, as
the model adeptly selects the optimal links and nodes for resource allocation.

Test case 3

Figure 7.3: Graph Test Case III

In this particular test case, two distinct services are at play:

• Service 1: The model determines the optimal route by selecting the link(0,3).
Although it could have opted for link(0,1) followed by link(1,3), this alterna-
tive trajectory would have unnecessarily consumed bandwidth. By electing
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Service Start
Node

End
Node

Band. Lat. CPU Mem. Color

1 0 3 10.0965 15 4 0 Blue
2 0 4 11 3 18 17 Yellow

Table 7.11: Test case III

Node Memory (Gb) CPU (Gb)
0 12.8949 14.0302
1 19.2668 11.8135
2 12.8949 14.0302
3 101.1108 282.8566
4 12.8949 14.0302

Table 7.12: Memory and CPU Specifications for Nodes

to traverse solely through the link(0,3), the model demonstrates a judicious
decision that conserves bandwidth without compromise.

• Service 2: Selects the identical link (link(0,3)) as its optimal path. This route
becomes the only viable choice to fulfill the requirement of culminating at
node 4.

By analyzing the model’s behavior in this specific test case, we can delve into
the fairness metric, which demonstrated that the achieved fairness was indeed
optimal. The outcome of this test case computation is as follows:

• Service 1: 11 (Service bandwidth) + 11 (Service bandwidth) + 18 (Service
CPU)

• Service 2: 10.0965 (Service bandwidth) + 4 (Service CPU)

• Z = 54.0965

As for the allocation of resources, the first service finds its home in node 0, while
the second service takes residence in node 3—a placement strategy that we pre-
viously elucidated.

Test case 4

Service
Num-
ber

Start
Node

End
Node

Band. Latency CPU Memory Color

1 0 3 11.6138 13.2485 6.1743 17.274 Blue
2 0 4 2.8301 19.844 13.719 18.070 Yellow

Table 7.13: Test case IV

This test case holds significant intrigue in unraveling the model’s behavior. In this
illustrative instance, the apparent path of choice for the model seemed straight-
forward—opting for link(0,3) for Service 1 and traversing link(0,3) followed by
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Figure 7.4: Graph Test Case IV

Node Memory (Gb) CPU (Gb)
0 13.888 14.8257
1 237.007 144.4957
2 13.888 14.8257
3 12.4904 17.6135
4 13.888 14.8257

Table 7.14: Memory and CPU Specifications for Nodes

link(3,4) for Service 2. However, a noteworthy twist comes to light: Node 1
emerges as the sole contender capable of accommodating the service requisites.

As a consequence, the model adeptly alters its trajectory. It strategically em-
barks upon link(0,1) to meet the resource prerequisites, subsequently resuming
its journey through link(1,3). This shift effectively optimizes resource allocation,
addressing the unique constraints posed by node 1’s capabilities.

The strategic adaptations in path selection vividly showcase the model’s aptitude
for orchestrating resource allocation within the confines of network dynamics
and constraints.

Consequently, the outcome of this test case unfolds as follows:

• For Service 1, the calculated value stands at (11.6138 * 2) for bandwidth,
adding to 6.1743 for CPU, yielding a total of 29.4019.

• Service 2, on the other hand, contributes 2.8301 (bandwidth) multiplied by
3, accompanied by 13.719 for CPU, summing up to 22.1093.

• z = 51.5112

Test case 5
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Figure 7.5: Graph Test Case IV

Service Start
Node

End
Node

Band. Latency Memory CPU Color

1 0 3 0.8355 13.3811 0.4524 19.3813 Blue
2 0 4 5.9119 16.9656 8.0845 17.9326 Yellow
3 0 1 17.2739 7.5776 6.5545 11.3386 Green
4 3 4 11.022 8.0958 3.9704 1.4925 Orange

Table 7.15: Test case V

Service 1 once again struggles with a CPU allocation problem. As a resolution,
it charts a unique course: veering towards node 2, the singular outpost capable
of fulfilling its specific CPU prerequisites. With resources successfully allocated,
Service 1 then gracefully returns to its intended path, converging once more at
node 3—the designated terminus.

Consequently, the outcome of this test case unfolds as follows:

• For Service 1, the calculated value stands at (0.8355 * 3) for bandwidth,
adding to 19.3813 for CPU, yielding a total of 21.8878.

• Service 2, on the other hand, contributes 5.9119 (bandwidth) multiplied by
4 (links used), accompanied by 17.9326 for CPU, summing up to 43.8422.

• Service 3, on the other hand, contributes 17.2739 (bandwidth) multiplied by
2 (links used), accompanied by 11.3386 for CPU, summing up to 45.8864.

• Service 4, on the other hand, contributes 11.022 (bandwidth), accompanied
by 1.4925 for CPU, summing up to 12.5145.

• Giving a total Z of 123.1309.
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Node Memory (Gb) CPU (Gb)
0 9.5511 8.1169
1 9.5511 8.1169
2 25.1739 157.6299
3 15.9234 17.9788
4 9.5511 8.1169

Table 7.16: Memory and CPU Specifications for Nodes

As for the allocation of resources, the first and second services find their home in
node 2, while the third and fourth service takes residence in node 3.

Test case 6

Figure 7.6: Graph Test Case VI

Service Start
Node

End
Node

Band. Latency Memory CPU Color

1 0 3 19.7952 17.3856 0.288 16.0402 Blue
2 0 4 16.8884 12.7575 2.8488 9.333 Orange
3 0 1 2.4179 5.4979 7.7209 13.6389 Green
4 3 4 3.0744 5.6482 0.249 5.6348 Red

Table 7.17: Test case VI

The outcome of this test case unfolds as follows:

• For Service 1, the calculated value stands at 19.7952 of bandwidth, adding
to 16.0402 for CPU, yielding a total of 35.8354.

• Service 2, on the other hand, contributes 16.8884 (bandwidth) multiplied by
2 (links used), accompanied by 9.333 for CPU, summing up to 42.1098.
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Node Memory (Gb) CPU (Gb)
0 241.2431 39.3334
1 16.8426 14.0135
2 7.3443 6.3426
3 7.3443 6.3426
4 7.3443 6.3426

Table 7.18: Memory and CPU Specifications for Nodes

• Service 3, on the other hand, contributes 2.4179 (bandwidth), accompanied
by 13.6389 for CPU, summing up to 16.0568.

• Service 4, on the other hand, contributes 3.0744 (bandwidth), accompanied
by 5.6348 for CPU, summing up to 8.7092.

• Giving a total Z of 102.7112.

As for the allocation of resources, services 1, 2, and 3 are allocated in node 0, while
service 4 takes residence in node 3.

7.4.2 Intermediate Tests: Growing Complexity and Random Sce-
narios

Building upon the initial phase, intermediate tests involved more complex sce-
narios. Larger networks and a higher number of services were introduced. To
simulate a variety of conditions, random values were incorporated for service re-
source demands and network link characteristics. This phase assessed the model’s
consistency and performance in scenarios of increased diversity and intricacy.

In this phase, which involves more intricate scenarios, the concept of slice isola-
tion comes into play. Here, our objective is to observe how our model responds
when we employ a multi-slice network. To achieve this, we adjusted the values
of the slice isolation variable, denoted as W. Higher values were used to empha-
size greater isolation between slices, while lower values were employed to grant
the model more flexibility, allowing for analysis of its behavior under different
conditions.

The visual representation of these test cases exhibits subtle distinctions due to
the utilization of multiple slices within our network. Nodes are color-coded to
correspond to their respective slice numbers. The initial slice is depicted in red,
followed by the second slice in blue, and finally the third in green. In instances
where a node is associated with two slices, it is denoted by a combination of the
corresponding colors.

Adjacent to the graph plot, a table provides a comprehensive overview of the
parameters associated with the links featured in the graph. Each row in the table
corresponds to a specific slice, with the first row pertaining to the first slice, the
second row representing the second slice, and so forth.
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Test Case 7

Figure 7.7: Graph Test Case VII

This test case was designed to thoroughly examine the behavior of the penaliza-
tion parameter. To achieve this, we formulated the following scenario:

• Two services: S1 belonging to slice 1 and S2 belonging to slice 2.

• Source = S and destination = T

• Links (0, 1), (1, 3) are part of slice 1

• Links (0, 2), (2, 3) are part of slice 2

• Node 0 e 3 are shared by both slices

• Node 1 belongs to slice 1 while node 2 belongs to slice 2

• Total available bandwidth for each link: 1000

• Link delay: 1

• Penalization parameter (W): 1000

Service Start
Node

End
Node

Band. Latency Memory CPU Color

1 0 3 10 10 10 10 Blue
2 0 3 20 10 10 10 Red

Table 7.19: Test case VII

Node Memory (Gb) CPU(Gb)
0 0 0
1 1000 1000
2 1000 1000
3 0 0

Table 7.20: Memory and CPU Specifications for Nodes
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This instance serves to evaluate the accurate implementation of penalization. To
thoroughly evaluate this aspect, we deliberately configured W to be equal to 1000,
thereby imposing a strong level of isolation between slices. With such a high W
value, the model is effectively prevented from choosing links associated with a
different service, as doing so would result in an exceedingly high Z value. Con-
sequently, the first service exclusively utilizes the links within its designated slice
(red nodes). Similarly, the second service confines its link selection to the links of
its corresponding slice (blue nodes). This example effectively validates the func-
tionality of the isolation parameter as intended.

The outcome of this test is as follows:

• Slice 1 = 10 + 10 + 10 = 30

• Slice 2 = 20 + 20 + 10 = 50

• Z = 50

• S1 allocates his resources in node 1 and S2 in node 2.

In line with the min-max approach, our goal is to ensure that the worst-case sce-
nario, in terms of fairness, is as good as possible. To do this, we want to maximize
the minimum fairness metric among all the different slices in our network.

When we minimize the maximum allocation, we are aiming to minimize the
worst-case scenario or the maximum amount assigned to any individual item
or entity, which in this case is slice 2 which exhibits a fairness metric of 50.

When considering the slice isolation metric, the model’s performance can be deemed
commendable. The use of a high isolation parameter, denoted as W = 1000, en-
sured that the model adhered closely to the assigned slices for each service. This
is evident from the fairness metric, which achieved a score of 50. Notably, the
penalty factor for utilizing a slice not associated with a service was set at 1000.
As a result, this value did not contribute to the final outcome. This observation
reaffirms that the model successfully upheld slice isolation as anticipated.

Test Case 8

This test case introduces a heightened sense of realism by integrating concrete
values for both services and slices. To further illustrate the concept of color-coded
nodes, these nodes are categorized into three groups:

• Slice 1 represented in red

• Slice 2 represented in blue

• Slice 3 represented in green

Additionally, it’s worth emphasizing the significance of the values enclosed within
parentheses. These values denote the normalized bandwidth and CPU values, as
elaborated upon in Chapter 6. The outlined scenario encompasses the following
set of parameters:
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Figure 7.8: Graph Test Case VIII

• 3 services: S1 belonging to slice 1, S2 belonging to slice 2 and S3 belonging
to slice 3.

• Links (0, 1), (0, 5), (1,2), (1,6) are part of slice 1

• Links (2, 3), (2, 7), (3,4), (3,8) are part of slice 2

• Links (8, 9) are part of slice 3

• Node 2 is shared by both slices 1 and 2

• Node 8 is shared by both slices 2 and 3

• Nodes 0, 1, 5, and 6 belong to slice 1, nodes 3, 4, and 7 belong to slice 2 while
node 9 belongs to slice 3

• Penalization parameter (W): 2

Service Start
Node

End
Node

Band Latency Memory CPU Color

1 0 9 1500
(1.123)

245.2181 2.7632 1.978
(1)

Red

2 0 7 24.4 (1) 74.5357 5.8198 3.7655
(1.713)

Blue

3 6 9 12000
(2)

1906.1377 21.0626 4.4843
(2)

Green

Table 7.21: Test case VIII

In this specific test case, we have fine-tuned the penalization factor to account for
the distinctive attributes of our network graph. This graph intricately relies on
leveraging different slices to establish connections to designated nodes.

To elucidate how the penalization factor influences our results, we perform a se-
ries of calculations. For each link that does not belong to the slice assigned to
a service, we apply a penalization by multiplying the bandwidth value by the
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Node Memory (Gb) CPU (Gb)
0 2.1101 2.1963
1 6.149 3.9262
2 28.1229 4.7201
3 2.1101 2.1963
4 6.149 3.9262
5 6.149 3.9262
6 2.1101 2.1963
7 6.149 3.9262
8 2.1101 2.1963
9 2.1101 2.1963

Table 7.22: Memory and CPU Specifications for Nodes

penalization factor plus 1. This addition of 1 is pivotal due to our equation for-
mulation: in the absence of penalization, we need to ensure a value of at least 1 to
prevent multiplication by 0. Subsequently, we incorporate the CPU requirement
necessitated by the service’s allocation to a particular node.

In this particular test case, as previously mentioned, we intentionally adjusted
the penalization factor to 2, in contrast to the previous test case. This decision
was made to intentionally ease the strictness of slice isolation, allowing us to
evaluate the slice isolation metric. The primary objective of this evaluation was to
determine if the model correctly recognizes that it can utilize slices not exclusively
dedicated to its service for resource allocation.

The results from this test case provided positive feedback, as the model delivered
relatively rapid outcomes. This suggests that the relaxation of slice isolation led
the model to focus more on identifying the optimal links for resource allocation,
behaving as if there were only one slice among the three services.

As a consequence of this meticulous approach, our model adeptly selects the op-
timal pathways, yielding the subsequent outcomes:

• Slice 1: 1.123 + 1.123 + 1.123*3 + 1.123*3 + 1.123*3 + 1 = 13.456

• Slice 2: 1*3 + 1*3 + 1 + 1.713 = 8.713

• Slice 3: 2*3 + 2*3 + 2*3 + 2*3 + 2 + 2 = 28

• z = 28

As we mentioned before, we are using the min-max approach in our fairness
model. This approach ensures minimizing the discrepancies in fairness among
slices, ultimately leading to a better, more balanced distribution of resources.

When we minimize the maximum allocation, we are aiming to minimize the
worst-case scenario or the maximum amount assigned to any individual item
or entity, which in this case is slice 3 which exhibits a fairness metric of 28. Z here
represents a crucial measure of fairness, so the fairness achieved in this case test
was 28.
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As for the allocation, service 1 allocates its resources in node 1, service 2 in node
7, and service 3 in node 2.

Test Case 9

Figure 7.9: Graph Test Case IX

This test case serves as an extension of test case number 8, aiming to explore
potential alterations in the model’s behavior upon the introduction of a specific
link. The inclusion of this link is intended to enhance the provisioning of services,
thereby investigating whether the model will opt for utilizing this advantageous
connection.

• 3 services: S1 belonging to slice 1, S2 belonging to slice 2 and S3 belonging
to slice 3.

• Links (0, 1), (0, 5), (1,2), (1,6) are part of slice 1

• Links (2, 3), (2, 7), (3,4), (3,8) are part of slice 2

• Links (6,9), (8, 9) are part of slice 3

• Node 2 is shared by both slices 1 and 2

• Node 8 is shared by both slices 2 and 3

• Node 6 is shared by both slices 1 and 3

• Nodes 0, 1, and 5 belong to slice 1, nodes 3, 4, and 7 belong to slice 2 and
node 9 belongs to slice 3

• Penalization parameter (W): 2

In this test case, we strategically introduced an edge (link(6,9)) to examine how
the model’s decision-making diverges from its previous behavior, as observed in
test case number 8. By introducing a shared node (node 6) between slices 1 and 3,
we opened up an alternative pathway for resource allocation to various services.
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Service Start
Node

End
Node

BW Latency Memory CPU Color

1 0 9 1500.0
(1.1232)

222.96 2.8382 1.8531
(1)

Red

2 0 7 24.4 (1) 132.07 5.0148 3.7755
(1.6261)

Blue

3 6 9 12000.0
(2)

1758.83 22.790 4.9233
(2)

Green

Table 7.23: Test case IX

Node Memory (Gb) CPU (Gb)
0 3.4974 1.9184
1 3.4974 1.9184
2 5.9603 3.8677
3 5.9603 3.8677
4 5.9603 3.8677
5 3.4974 1.9184
6 3.4974 1.9184
7 5.9603 3.8677
8 3.4974 1.9184
9 28.3662 5.0343

Table 7.24: Memory and CPU Specifications for Nodes

Additionally, we adjusted the penalization factor to evaluate the model’s behav-
ior. This adjustment revealed that the model now prioritizes resource allocation
based on slice utilization.

This test case stands out from the previous one, where the model had only one
viable path for resource allocation. In this instance, we provided the model with
an alternative option. For example, instead of allocating service 3 to slice 2 as
it did in the previous test case, the model, even with relaxed slice isolation con-
straints, focused on using a link within its own slice to provide service 3. This
test case clearly demonstrates that the model comprehends the metrics and their
implications accurately.

This shift in the model’s behavior offers valuable insights into how its prefer-
ences may evolve when a strategically positioned link, such as link(6,9), becomes
available.

• slice 1: 1.123 + 1.123 + 1.123*3 + 1 = 6.615

• slice 2: 1*3 + 1*3 + 1 + 1.6261 = 8.6261

• slice 3: 2 + 2 = 4

• z = 8.6261

As for the allocation of the nodes, service 1 is allocated in node 0, service 2 in
node 2, and service 3 in node 9.
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7.4.3 Real-Scenario Tests: Application in Practical Environments

In the final phase, the model was subjected to real-scenario tests involving practi-
cal, multi-slice network environments. These tests evaluated the model’s capabil-
ity to handle real-world complexities, resource demands, and network dynamics.
The model’s outputs were compared against expected real-world outcomes, fur-
ther validating its reliability in actual operational scenarios.

Network Slicing for Critical Communications

Figure 7.10: Graph Test Case X

• 3 services: S1 belonging to slice 1, S2 belonging to slice 2 and S3 belonging
to slice 3.

• Node 3 and 5 are shared by all the slices

• Nodes 0 and 1 belong to slice 1, nodes 2, 4, 6, 8, 10, 11, and 12 belong to slice
2, and nodes 7 and 9 belong to slice 3.

• Penalization parameter (W): 20

Service Start
Node

End
Node

BW
(kbps)

Latency
(ms)

Memory
(MB)

CPU
(MHz)

Color

1 0 10 500
(1.33)

5000 256 10 (1) Red

2 2 12 100 (1) 2000 256 10 (1) Blue
3 9 12 1300 (2) 60000 256 200 (2) Green

Table 7.25: Test case X

During this test, our aim was to simulate network slicing for critical communica-
tions within shared 5G infrastructures. As previously highlighted, this scenario
comprises 13 identical servers or nodes. Our objective was to replicate communi-
cation patterns within this network, envisioning a situation where a node within
a specific slice communicates with a controller located outside that slice. The
outcome of this simulation is depicted in Figure 7.10.
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Node 0 - 13
Memory (MB) 16000

CPU (MHz) 2200

Table 7.26: Memory and CPU Specifications for Nodes

In this context, the first service initiates its path from node 0, representing the
server of slice 1 (Smart Grid), and traverses the network to reach the controller
at node 10. Similarly, service 2 commences from node 2 and terminates its com-
munication at node 12, where its corresponding controller is situated. The same
pattern is observed for service 3. Notably, our model adeptly selects and utilizes
the network links, resulting in improved operational efficiency across all three
services.

The outcomes of this test are as follows:

• Slice 1: 1.33 (bandwidth) + 1.33 (bandwidth) * 21 (weight) + 1.33 (band-
width) * 21 (weight) + 1 (CPU) = 58.19

• Slice 2: 1 + 1 + 1 + 1 = 4

• Slice 3: 2 (bandwidth) + 2 (bandwidth) * 21 (weight) + 2 (bandwidth) * 21
(weight) + 2 (CPU) = 88

• Z: 88

In summary, the overall objective value, denoted as Z, equals 88. This value rep-
resents the expected outcome when the model employs the most optimal links
to minimize Z. Despite the necessity for the model to utilize slices unrelated to
certain services, the meticulous selection of which links to utilize minimizes the
influence of the weight parameter on the final result.

Regarding the allocation, Service 1 is assigned to Node 0, Service 2 to Node 2,
and Service 3 to Node 5.

SALEM

• 3 services: S1 belonging to slice 1, S2 belonging to slice 2 and S3 belonging
to slice 3.

• Node 3 is shared by both slices 2 and 3

• Node 2 is shared by both slices 1 and 2

• Nodes 4,5,6,7,8,9 belong to slice 1, nodes 10,11,12,13,14,15 belong to slice 2
and nodes 0 and 1 belong to slice 3.

• Penalization parameter (W): 20

Due to the constrained time available, we needed to modify our original test plan.
The extensive complexity of the network topology, comprising 44 nodes, would
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Figure 7.11: Graph Test Case XI

Service Start
Node

End
Node

BW
(kbps)

Latency
(ms)

Memory
(MB)

CPU
(MIPS)

Color

1 0 15 1500.0
(1.123)

5000 256 20 (1.5) Red

2 1 15 24.4 (1) 30000 256 30 (2) Blue
3 2 15 12000.0

(2)
5000 256 10 (1) Green

Table 7.27: Test case XI

have demanded weeks to comprehensively analyze all possible scenarios. To
address this challenge, we streamlined the test to include 16 nodes while still
yielding comparable results.

In this adapted test, our focus shifted to simulating switch and cluster configu-
rations. We devised a network structure with two centralized switches, assigned
to control network slices within slice 3. These switches were each connected to
two cluster switches, fostering communication between devices and the respec-
tive slices. One cluster switch was designated for slice 1, while the other was
designated for slice 2. Each cluster incorporated six edge switches to establish
connections with end devices.

In terms of resource allocation, we determined that service 1 would be allocated
to node 2, service 2 to node 3, and service 3 to node 0. The resulting resource
distribution can be summarized as follows:

• Slice 1: 1.123 * 21 + 1.123 + 1.5 = 47.166

• Slice 2: 1 * 21 + 1 + 2 = 24

• Slice 3: 2 * 21 + 2 + 2 + 2 * 21 + 1 = 89

The total objective value, represented as ’z,’ stands at 89. Our primary aim re-
volves around verifying the correctness of the solution concerning the problem’s
requirements and objectives. The achieved result aligns with our expectations, as
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Node Memory (MB) CPU (MIPS)
0 8000 16000
1 4000 9600
2 8000 16000
3 8000 16000
4 4000 9600
5 4000 9600
6 8000 16000
7 8000 16000
8 8000 16000
9 4000 9600

10 4000 9600
11 4000 9600
12 8000 16000
13 131072 30000000
14 8000 16000
15 4000 9600

Table 7.28: Memory and CPU Specifications for Nodes

the model utilized the available links exclusively to produce the optimal outcome
within the imposed conditions.

OREOS Smart City

Figure 7.12: Graph Test Case XII

Due to limited computational resources, we refrained from conducting the test
with 25 nodes. The processing time for such a scenario could have been signifi-
cantly prolonged, contingent on the complexity of the network topology. Conse-
quently, we imposed a cap of 16 nodes, enabling us to obtain practical results for
evaluation. The scenario was designed as follows:

• 3 services: S1 belonging to slice 1, S2 belonging to slice 2 and S3 belonging
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to slice 3.

• Node 6 is shared by both slices 1 and 2

• Node 8 is shared by both slices 2 and 3

• Nodes 7 and 15 are shared by slices 1, 2, and 3

• Nodes 0, 3, 9, and 12 belong to slice 1, nodes 1, 4, 10, and 13 belong to slice
2, and nodes 2, 5, 11, and 14 belong to slice 3.

• Penalization parameter (W): 20

Service Start
Node

End
Node

BW
(kbps)

Latency
(ms)

Memory
(MB)

CPU
(MIPS)

Color

1 0 15 1500.0
(2)

120000 256 700
(1.87)

Red

2 1 15 500 (1) 5000 256 10 (1) Blue
3 2 15 1500 (2) 120000 256 800 (2) Green

Table 7.29: Test case XII

Node Memory (MB) CPU (MIPS)
0 8000 16000
1 4000 9600
2 8000 16000
3 8000 16000
4 4000 9600
5 4000 9600
6 8000 16000
7 8000 16000
8 8000 16000
9 4000 9600

10 4000 9600
11 4000 9600
12 8000 16000
13 131072 30000000
14 8000 16000
15 4000 9600

Table 7.30: Memory and CPU Specifications for Nodes

This test case is designed to assess the model’s behavior in a real-world scenario
by utilizing actual operational values. The objective is to determine if our model
is well-prepared for implementation in practical environments. The positive out-
come of this test case reinforces our confidence in the model’s effectiveness. It is
aligned perfectly with the expected results, indicating that the model successfully
adhered to the links and slices assigned to each service, consistently selecting the
optimal paths.
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• slice 1: 2 * 5(links) + 1.87 = 11.87

• slice 2: 1 * 5(links) + 1 = 6

• slice 3: 2 * 5(links) + 2 = 12

• z = 12

As for the allocation service 1 is allocated in node 0, service 2 in node 1, and
service 3 in node 2

7.5 Summary

This chapter presents a comprehensive investigation into the optimization of net-
work slicing within the dynamic context of multi-slice 5G networks. The research
is structured around a meticulous validation methodology that encompasses an-
alytical validation, diverse scenario testing, and real-scenario validation. These
stages collectively ensure the accuracy and practical viability of the proposed
model.

The validation process begins with analytical tests that validate the model’s out-
comes against manually calculated results, ensuring the model’s adherence to
mathematical principles. Moving forward, intermediate tests introduce complex-
ity by integrating random values for service demands and network attributes.
This phase evaluates the model’s performance under various conditions, demon-
strating its consistency and adaptability.

The highest level of validation is achieved through real-scenario tests, where the
model’s outputs are aligned with expected outcomes in practical multi-slice net-
work environments. This phase serves as a rigorous assessment of the model’s
reliability and effectiveness, confirming its applicability in real-world scenarios.

The chapter examines the model’s behavior across multiple real-world scenar-
ios. It delves into network slicing for critical communications, showcasing the
model’s resource allocation capabilities in shared 5G infrastructures. The SALEM
scenario simulates a smart city network, evaluating the model’s performance in
intricate urban infrastructures. The OREOS Smart City scenario tests the model’s
optimization skills in complex smart city networks.

The datasets and input parameters used in these scenarios encompass service
characteristics, node specifications, and the introduction of a penalization param-
eter. These elements collectively define the model’s decision-making process and
resource allocation strategies.

In conclusion, this chapter contributes significantly to the optimization of net-
work slicing in multi-slice 5G networks. Through a rigorous validation method-
ology and diverse real-world scenario exploration, the research provides evi-
dence of the model’s efficiency, adaptability, and applicability in practical net-
work environments. The findings underscore the model’s potential to enhance
resource allocation in the dynamic landscape of 5G networks.
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Conclusions and Next Steps

In the dynamic landscape of modern telecommunications, the dawn of 5G net-
works illuminates a realm of unprecedented possibilities. This thesis embarked
on a journey through the intricacies of network slicing, resource allocation, and
the cardinal principle of fairness in network slicing. The culmination of this jour-
ney exceeds the boundaries of academia as we stand at the intersection of theoret-
ical investigation and practical application, announcing a significant revolution
in network orchestration.

Our work in this thesis embarked on a profound exploration of the potentialities
woven within the fabric of 5G networks. The architectural prowess of 5G, under-
scored by its speed, low latency, and expansive capacity, forms the canvas upon
which the concept of network slicing paints its innovation. The opening chapters
unveiled the panorama of 5G’s promise — a landscape of augmented communi-
cation, vehicular autonomy, smart cities, and the sprawling Internet of Things, all
framed by the dynamic canvases of network slices.

The Fairness Model, which embodies the need for fair distribution of resources,
beats at the center of our discussion. This model emerged from the confluence
of meticulous research, mathematical refinement, and the unwavering pursuit of
equitable allocation. The model’s trajectory wasn’t solely towards efficiency; it
aspired to uphold the very essence of fairness and equality in the dynamic dance
of resource orchestration.

In this comprehensive Network Resource Allocation Framework, with the com-
bining NetworkX, MiniZinc, and Matplotlib we were able to effectively handle
simulation, modeling, and visualization of resource allocation. Rigorous testing
and validation have transformed this idea into a practical tool, set to reshape re-
source allocation practices.

The model’s strength was put to the test in a variety of challenging contexts, rang-
ing from crucial communications to smart cities. Each scenario demonstrated the
model’s skill in navigating complex networks and supporting a variety of service
and user requests while still adhering to real-world limits.

Yet, as we close this chapter, we find it’s not an ending, but rather a transition. The
next step of this work is to apply our model within the ONAP framework. The
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initial compass, which was focused on making network slicing possible within
ONAP, changed into a trajectory that was in line with resource allocation. A
framework that was created in conjunction with ONAP’s technological environ-
ment became apparent as an indication of upcoming implementation. Now that
the framework has been verified, we can go on to the last stage, which is integrat-
ing it into the ONAP ecosystem.

This thesis goes beyond just being a collection of facts in the weave of invention
and application. It marks the beginning of a new era in which resource allocation
is wise, network orchestration is efficient, and the symphony of 5G networks
reverberates with fairness and equity.
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Appendix A

Aditional Information

Figure A.1: Service Funtions [Service Function Chaining in Wildfire Scenarios]
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