
João António da Silva Melo

OPACITY-BASED DEFENSE FOR
DETERMINISTIC FINITE AUTOMATA AGAINST

PASSIVE AND ACTUATOR-ENABLEMENT
ATTACKS

July 2024

Dissertation in the context of the Master in Informatics Security, advised by
Professors Tiago Cruz, Paulo Simões, Graziana Cavone, and Federica Pascucci, and
presented to the Department of Informatics Engineering of the Faculty of Sciences

and Technology of the University of Coimbra.

João António da Silva Melo

OPACITY-BASED DEFENSE FOR
DETERMINISTIC FINITE AUTOMATA

AGAINST PASSIVE AND
ACTUATOR-ENABLEMENT ATTACKS

July 2024

Dissertation in the context of the Master in Informatics Security, advised by
Professors Tiago Cruz, Paulo Simões, Graziana Cavone, and Federica

Pascucci, and presented to the Department of Informatics Engineering of the
Faculty of Sciences and Technology of the University of Coimbra.

João António da Silva Melo

DEFESA BASEADA EM OPACIDADE PARA
AUTÓMATOS FINITIOS DETERMINISTICOS

CONTRA ATAQUES PASSIVOS E DE
ATIVAÇÃO DE ATUADORES

Julho 2024

Dissertação no âmbito do Mestrado em Segurança Informática, orientada
pelos Professores Tiago Cruz, Paulo Simões, Graziana Cavone e Federica
Pascucci, e apresentada ao Departamento de Engenharia Informática da

Faculdade de Ciências e Tecnologia da Universidade de Coimbra.

Acknowledgements

I wish to thank,

my supervisors in Italy for their extraordinary assistance in understanding complex con-
cepts and overcoming challenges.

my supervisors in Portugal for making this opportunity possible and providing persis-
tent encouragement.

my family for their acts of love and belief in me.

my friends for their companionship and support in maintaining balance and focus.

my girlfriend for being a motivational and positive influence.

my parents, who have always been there for me and have provided me with the oppor-
tunities that led me here.

Thank you all for making this objective easier to accomplish.

vii

Abstract

In our rapidly evolving technological landscape, safeguarding systems against
cyber threats is imperative. This dissertation, part of the Master’s program in In-
formatics Security, focuses on advancing security methodologies within the do-
main of Discrete Event Systems (Discrete Event Systems (DES)), specifically tar-
geting Deterministic Finite Automata (Deterministic finite automata (DFA)). Un-
like conventional time-driven systems, certain human-engineered systems, such
as real-time communication networks and automated manufacturing processes,
exhibit distinctive event-driven traits requiring a unique approach for effective
protection.

The primary objective of this research is to propose and validate an innovative
security technique based on the concept of opacity within DES, with a particular
emphasis on defending DFA systems against active attacks. Opacity ensures con-
fidentiality and resilience by recognizing attackers as active intruders rather than
passive observers.

A comprehensive literature review revealed a gap in the field concerning security
through opacity, particularly in the context of active attacks. This research aims
to bridge this gap by developing a novel opacity-based technique. The study
spans two semesters, encompassing the modeling of the Hydra testbed as a DES
and the iterative development, testing, and refinement of the proposed security
technique.

In the initial phase, DES theory and opacity literature were explored, and the
Hydra testbed, a water distribution system simulation, was introduced as a case
study. The subsequent phase focused on formulating, testing, and validating the
opacity-based technique against Actuator-Enablement (AE) attacks. The devel-
oped method successfully enhances security while relaxing some assumptions of
previous works, making it more adaptable for practical use in physical systems
like Hydra.

Through practical experiments within the Hydra system, the efficacy of the devel-
oped technique was validated, demonstrating its ability to defend DFA systems
against active attacks effectively. While some limitations were identified, such
as reliance on predefined sets of events, these findings provide valuable insights
and lay the groundwork for future research to refine and extend the technique.
This research contributes significantly to reinforcing security and resilience in
DES systems under active threat scenarios.

Keywords

DES, DFA, Opacity, Active Attacks, Actuator-Enablement Attack, Supervisor, Mit-
igation Module

ix

Resumo

No nosso cenário tecnológico em rápida evolução, proteger os sistemas contra
ameaças cibernéticas é imprescindível. Esta dissertação, parte do programa de
Mestrado em Segurança Informática, foca-se no avanço das metodologias de se-
gurança no domínio dos Sistemas de Eventos Discretos (DES), com especial en-
foque nos Autómatos Finitos Determinísticos (DFA). Ao contrário dos sistemas
tradicionais orientados pelo tempo, certos sistemas projetados pelo homem, como
as redes de comunicação em tempo real e os processos de produção automatiza-
dos, exibem características distintas orientadas por eventos, exigindo uma abor-
dagem única para uma proteção eficaz.

O objetivo principal desta pesquisa é propor e validar uma técnica inovadora de
segurança baseada no conceito de opacidade dentro dos DES, com ênfase partic-
ular na defesa dos sistemas DFA contra ataques ativos. A opacidade garante a
confidencialidade e a resiliência ao reconhecer os atacantes como intrusos ativos,
em vez de observadores passivos.

Uma revisão abrangente da literatura revelou uma lacuna no campo relativa-
mente à segurança através da opacidade, particularmente no contexto de ataques
ativos. Esta pesquisa visa preencher essa lacuna desenvolvendo uma técnica
nova baseada em opacidade. O estudo abrange dois semestres, incluindo a mod-
elação da plataforma de teste Hydra como um DES e o desenvolvimento, teste e
refinamento iterativo da técnica de segurança proposta.

Na fase inicial, a teoria dos DES e a literatura sobre opacidade foram exploradas,
e a plataforma de teste Hydra, uma simulação de um sistema de distribuição de
água, foi introduzida como um caso prático. A fase subsequente concentrou-se
na formulação, teste e validação da técnica baseada em opacidade contra ataques
de Ativação de Atuadores (AE). O método desenvolvido melhora com sucesso
a segurança enquanto relaxa algumas das suposições dos trabalhos anteriores,
tornando-o mais adaptável para uso prático em sistemas físicos como o Hydra.

Através de experiências práticas no Hydra system, a eficácia da técnica desen-
volvida foi validada, demonstrando a sua capacidade de defender eficazmente
os sistemas DFA contra ataques ativos. Embora algumas limitações tenham sido
identificadas, como a dependência de conjuntos de eventos predefinidos, estas
descobertas fornecem insights valiosos e estabelecem as bases para futuras pesquisas
para refinar e expandir a técnica. Esta pesquisa contribui significativamente para
reforçar a segurança e a resiliência nos sistemas DES em cenários de ameaças
ativas.

Palavras-Chave

DES, DFA, Opacidade, Ataques Ativos, Ataques de Ativação de Atuadores, Su-
pervisor, Módulo de Mitigação

xi

Contents

1 Introduction 1
1.1 Context and Motivation . 1
1.2 Objectives and Contributions . 2
1.3 Structure . 3

2 Background 5
2.1 Introduction . 5
2.2 Discrete Event Systems . 5
2.3 Formal Languages and Finite Automata 5

2.3.1 Alphabets and Words . 6
2.3.2 Operators on Words . 6
2.3.3 Languages . 7
2.3.4 Operators on Languages . 8

2.4 Deterministic Finite Automata (DFAs) 9
2.4.1 Definition . 9
2.4.2 Languages of DFAs . 11
2.4.3 Modeling with deterministic automata 12

2.5 Nondeterministic finite automata . 12
2.5.1 Definition . 13
2.5.2 Languages of a NFAs . 15
2.5.3 Observer of a partially observable system: Models and Con-

structions . 16
2.6 Supervisory Control . 17

2.6.1 Components - Plant, supervisor and closed-loop system . . 18
2.6.2 Representing a Supervisor as a DES and closed-loop system 20

2.7 Opacity in DES . 23
2.7.1 Introduction . 23
2.7.2 Concept of Opacity . 24
2.7.3 Verification of Opacity . 27
2.7.4 Enforcing Opacity . 29

2.8 Summary . 31

3 State of the Art 33
3.1 Introduction . 33
3.2 Research Regarding primary objectives of Work 33

3.2.1 Methodology for the Systematic Review 33
3.2.2 Active Attacks in DES . 34
3.2.3 Opacity Against Active Attackers in DES 35

xiii

3.3 Enforcing opacity and Attack detection followed by mitigation . . . 40
3.3.1 Enforcement of Current-State opacity 40
3.3.2 Detection and Mitigation of an Active Attack 44

3.4 Discussion of the Literature and Gap Analysis 50
3.5 Systems to be Considered and Security by opacity 50

3.5.1 Opaque System by default . 51
3.5.2 Opaque System through controller enforcement 51

3.6 Opacity and Active Attackers . 52
3.7 Summary . 53

4 Opacity-Based Defense for DFA Against Passive and AE-Attacks 55
4.1 Introduction . 55
4.2 Enforce opacity and mitigate attacks via supervisory control 55

4.2.1 First Application of the security technique and its Discoveries 58
4.2.2 Changing the Approach for the Technique 63

4.3 Securing a DES with Opacity Against Active Attackers 68
4.3.1 Overview . 68
4.3.2 Integrating the Technique . 68

5 Case Study 71
5.1 Hydra System . 71

5.1.1 Introduction . 71
5.1.2 Physical Model . 71
5.1.3 General Architecture . 73
5.1.4 Different Configurations . 74

5.2 Adapting the Hydra System - A simpler approach 74
5.3 Defending the Hydra System with the Proposed Approach 76

5.3.1 Nominal Functioning . 77
5.3.2 Passive attacker in the system 77
5.3.3 Active attacker in the system 80

5.4 Conclusions regarding the Case-Study and Future Work 80
5.5 Summary . 81

6 Methodology and Planning 83
6.1 Introduction . 83
6.2 Methodology . 83

6.2.1 Introduction . 83
6.2.2 Design Science Research . 83
6.2.3 Applying DSR in the dissertation 84

7 Conclusion 87

References 89

Appendix A Planning 95
A.1 Planning for work after the Intermediate Delivery 95

A.1.1 Planning for the next phase 95

Appendix B Gantt Chart with a Condensed Division of Work 97

xiv

Acronyms

DES Discrete Event Systems.

DFA Deterministic finite automata.

NFA Nondeterministic finite automata.

xv

List of Figures

2.1 A Deterministic finite automata (DFA) 10
2.2 Model of a DFA for a communication protocol 13
2.3 NFA Example . 13
2.4 Plant G controlled by supervisor S 17
2.5 DFA representing a plant G . 18
2.6 DFA representing the Supervisor for the plant in Figure 2.5 21
2.7 The closed-loop system . 23
2.8 Nondeterministic finite automata (NFA) G considered for exam-

ples in the section . 26
2.9 Observer Gobs of G considered for examples in the section 28

3.1 Open Discrete Event Systems (DES) G. Noting that ϵ ∈ λ(q, x), for
all q ∈ Q, and x ∈ Xϵ. Transitions with ϵ were removed for clarity
purposes. See 1. 37

3.2 Observer automata for Figure 3.1 . 37
3.3 Observer automata for Figure 3.1, using to verify RCS opacity . . . 39
3.4 Figures present in [Yao et al., 2024] 40
3.5 Model of system G in [Yin, 2015] . 42
3.6 Incomparable solutions example in [Yin, 2015] 43
3.7 Construction of the AIC-O. Blue rectangles correspond to Y-states

and yellow oval states correspond to Z-states. 43
3.8 Figures present in [Yao et al., 2020] 46
3.9 (a) System G, (b) Supervisor S, (c) Controlled System S/G 48
3.10 (a) Model Ĝ of the plant under attack. (b) Model Ŝ of the supervisor

under attack . 49
3.11 ASA model H of Ĝ and Ŝ of Figure 3.10 49
3.12 (a) Example of a supervisor S enforcing the specification G, (b) cor-

responding model Ŝ of the supervisor under attack 49
3.13 The ASA model H of Ĝ in Figure 3.10(a) and Ŝ in Figure 3.12(b) . . 50
3.14 Sensor deception Attacks . 52

4.1 System G with the classification of States and Events 62
4.2 System G defended against an Active Attacker using the Mitiga-

tion Module M . 63
4.3 Application of the refined Technique to System G 65
4.4 System G with marked states . 67
4.5 System G with vulnerable events in red and defendable events in

dark green. 67

xvii

5.1 Hydra System Physical Configuration 72
5.2 Sensors in the Water Tanks . 72
5.3 DES of a simpler Hydra System. 75
5.4 Meaning of the states of the Hydra Adaptation. 75
5.5 AIC-O Hydra System . 78
5.6 AIC-O of the Hydra System with marked States and Transitions . . 79

xviii

List of Tables

2.1 Transition function for Figure 2.1 . 10
2.2 Control function for the example . 21
2.3 Control function for S . 22

5.1 Information about components. 74

xix

Chapter 1

Introduction

1.1 Context and Motivation

We inhabit a world increasingly shaped by technological dominance across ev-
ery facet of our daily lives, where cyber-physical systems play an increasingly
dominant role. In this landscape, the imperative for applying and evolving cy-
bersecurity techniques has become non-negotiable, due to several factors ranging
from security and safety issues to the potential negative impact of service inter-
ruptions [Rosa et al., 2021]. Specifically, this dissertation is driven by the central
objective of exploring and advancing security techniques within the realm of Dis-
crete Event Systems DES.

While the majority of systems are usually related to a time-driven paradigm, a no-
table subset of man-made systems, such as real-time communication networks or
automated manufacturing processes, displays distinctive event-driven character-
istics. These traits, marked by events triggering system responses, elude effective
treatment through conventional time-driven models. Instead, these dynamic sys-
tems necessitate a nuanced approach that departs from process-neutral strategies
(such as correlation or signature-based techniques [Rosa et al., 2015]), being able
to capture system intricacies, ensuring a comprehensive understanding of their
behaviour and responses to various events.

This dissertation, which is part of the Master’s program in Informatics Security,
delves into the concept of opacity within the confidentiality realm of security,
focusing on DES, more specifically in DFA. It intends to provide a valuable con-
tribution to informatics security by proposing an effective technique capable of
withstanding active threats while upholding the crucial aspect of system opacity.

The field of DES has undergone significant developments in recent years, pro-
pelled by extensive research in the realm of cybersecurity, particularly concern-
ing active attackers. According to [Oliveira et al., 2023], as of 2022, the number of
papers dedicated to exploring the characteristics of active attacks has surpassed
the contributions focused on passive attacks. This evolving landscape has ignited
interest in comprehending how these attacks elicit reactions from systems and the
methods by which such systems can be fortified against these threats.

1

Chapter 1

A comprehensive literature review reveals a gap in the field, notably in introduc-
ing the concept of security by opacity and its application to active attacks. Within
this dynamic context, this study delved into this unexplored territory and formu-
lated a novel security technique applicable to DFA. The research is designed not
only to address the specific aspects and questions surrounding security by opac-
ity and active attacks but also to make a substantial contribution to the existing
body of knowledge in the cybersecurity domain. The objective is to provide valu-
able insights into reinforcing security and resilience, particularly in the context of
control applications.

1.2 Objectives and Contributions

This chapter delineates a roadmap that guides the research efforts of this disser-
tation within the realm of opacity in security, focusing on (DES). Rooted in the
acknowledgement of attackers as active intruders, rather than passive observers,
the objectives outlined here traverse two semesters, orchestrating a meticulous
exploration of concepts and the development and application of a novel security
technique.

Within these objectives lies the commitment to model the Hydra testbed as a DES,
ensuring its consistency as a case-study for the opacity-based proposed tech-
nique. Simultaneously, the proposed technique will undergo iterative refinement,
aligning it with the intricacies of active attacks. As the investigation progresses,
a deliberate effort will be made to connect theoretical insights with practical ap-
plications, emphasizing the real-world implications of the developed technique.

The primary goal of this work is to define a novel and general technique, based on
opacity, to ensure cybersecurity of DESs in case of active attacks, thus acknowl-
edging attackers as active intruders, not just passive observers. Then, the first
part of this work consists in analysing the state of the art on opacity of DES and
the existing techniques devoted to opacity analysis and enforcement in the con-
text of cybersecurity, with the aim of identifying the literature gaps and open
issues. In addition, a suitable literature DES to be used to test and validate the
opacity-based security technique is selected. In particular, the selected physical
system, modeled as a DES, serves as a target for active attacks and to validate the
effectiveness of the opacity-based technique.

The chosen system, is a test-bed named Hydra, which emulates a water distribu-
tion system, employing a combination of gravity and pumps to circulate the fluid
within the system. While the physical structure of the testbed is designed with
a low-cost approach, it is interfaced to the control system through an industrial
PLC over a Modbus/TCP network. This system has been employed in previous
research projects, as demonstrated by the example in [Battisti et al., 2018].

The second part of this work involves defining, testing, and validating an opacity-
based technique. This process combines two distinct methods to enforce current-
state opacity against passive and active attackers in Deterministic Finite Automata
(DFA). The ultimate goal is to develop a technique that enhances security, ensur-

2

Introduction

ing the system remains opaque, particularly in the face of active threats.

The technique focuses on defending a DFA system against Actuator-Enablement
(AE) attacks. The developed method successfully achieves this goal while relax-
ing assumptions of previous works, making it more adaptable for use in physical
systems, such as Hydra, the real system used in this dissertation’s case study.

The following list summarises the key objectives to be pursued across the first
and second semesters, offering a structured framework for navigating the envi-
ronment of DES security and opacity.

• Delve into the theoretical foundations of DES, comprehending the funda-
mental principles about the dynamic interaction of events and state transi-
tions within complex systems.

• Conduct a thorough literature review on opacity, focusing on DES suscep-
tibility to active attacks.

• Develop a comprehensive understanding of the behaviour and responses of
DES to various events, particularly in the presence of active attackers.

• Model the Hydra testbed as a DES, ensuring its consistency as a case-study
for the opacity-based technique.

• Propose and outline a technique for ensuring opacity within DES systems,
considering the nuances introduced by active attackers.

• Conduct a preliminary evaluation of the proposed technique through simu-
lated scenarios, emphasizing its effectiveness in maintaining opacity under
active attacks.

• Refine the proposed technique based on the outcomes of the practical case
study, ensuring its viability and effectiveness.

• Implement the proposed technique on the Hydra testbed, transforming it
into a practical case study for further examination.

• Compile final documentation, including the comprehensive report/dissertation,
summarizing the entire research process and detailing the developed tech-
nique’s contribution to reinforcing security and resilience in DES systems.

1.3 Structure

The dissertation structure for the rest of the document is described by:

• Background - This chapter provides the essential theoretical background
for understanding the concepts of DES and opacity. Its contents and their
organization assume that the reader may have limited knowledge of the
topic. All the necessary information to comprehend the subsequent chap-
ters is defined and explained here.

3

Chapter 1

• State-of-the-art - In this chapter a comprehensive review of existing litera-
ture on the topic is conducted. The primary emphasis is on active attacks
in DES and their integration with security measures, particularly the use of
opacity in DES. In the end of this chapter, there is a discussion and analysis
of the existant literature gap is also done.

• Proposed Technique - This chapter details the steps required to create the
technique and a formal presentation of the technique itself. All of the de-
cisions and conclusions regarding the literature presented in Chapter 3 are
done in this chapter, as well as the evolution of the technique.

• Case Study - A brief description is provided, introducing the Hydra sys-
tem, which will be used to implement the proposed technique. The physics-
based model of the system is first introduced and then converted into a rep-
resentation of a DFA model. The technique is applied to this system, going
through the types of attacks. A final conclusion regarding the effectiveness
of the technique is done in the end of the chapter.

• Methodology - In this chapter, the approach to address the problem is out-
lined. Risks are identified with consideration given to their probabilities,
potential impacts, and proposed mitigations.

4

Chapter 2

Background

2.1 Introduction

In this chapter, notations are introduced to facilitate discussions of opacity and
control in Discrete Event Systems (DES). The primary focus is on DES modeled
through regular languages and finite automata. More detailed discussions about
the introductory material can be found in relevant sources such as [Cassandras
and Lafortune, 2010].

2.2 Discrete Event Systems

An event-driven system, often denoted as a discrete-event system, exhibits dy-
namic behavior within a discrete state space. The system’s state evolves through
segmented trajectories influenced by abrupt physical events, causing unpredictable
shifts. Both the timing and characteristics of these events are not predictable.

The system’s state, represented by logical or symbolic values rather than numeri-
cal ones, undergoes changes triggered by events described in non-numeric terms.
Automata or finite state machines commonly serve as models for these systems.
While initially perceived as distinct from time-driven systems, it is noteworthy
that a physical system initially described by a time-driven model can often find an
alternative representation in a discrete-event model. This abstraction process in-
volves simplification to retain essential properties while obscuring non-essential
details.

2.3 Formal Languages and Finite Automata

For simplicity and to avoid repetition throughout this section, all examples used
in the following contents of the Background, have been inspired by [Basilio et al.,
2021] and materials from Professor Giua 1.

5

Chapter 2

1

2.3.1 Alphabets and Words

Within the domain of formal language theory, an essential field in the examina-
tion of discrete structures and automata, fundamental elements emerge as foun-
dational components for the explication and analysis of languages. At the core
of this lie the fundamental concepts of an alphabet, words, and diverse operators
tasked with manipulating these linguistic structures.

Formally, an alphabet A is defined as a finite and non-empty set of symbols. The
cardinality of the alphabet, represented by |A|, corresponds to the number of sym-
bols contained within it.

Example: Considering the Latin alphabet as A1 = {a, b, c, . . . , x, y, z}, it is said
that its cardinality is |A1| = 26.

From the usage of the alphabet A, it is possible to create words, which are the
sequential arrangement of symbols from A. The length of a word, denoted by
|w|, corresponds to the count of symbols it comprises. Additionally, |w|s denotes
the number of occurrences of a specific symbol s ∈ A within the word w.

Example: Considering the alphabet defined in the previous example, A1, and
word w1 = example, it is possible to conclude that w1 is defined on A1, |w1| = 7,
and |w1|e = 2.

The collection of words formed from an alphabet A is symbolized as A∗. The
empty word, a sequence of zero length, exists across all alphabets and is consis-
tently represented by ε. It is therefore empirical to mention that, while an alpha-
bet A is always a finite set, A∗ is always an infinite set, as there is no constraint to
how long words can be.

In a scenario where DES are used, A is the alphabet of events that can occur in
DES, and each symbol in A denotes an action that is assumed to be instantaneous
in the system.

2.3.2 Operators on Words

Multiple operators are used on words, the first to be considered is the binary
operator: concatenation. When two words w1 ∈ A∗ and w2 ∈ A∗ are concatenated,
the result is a new word, wc = w1 · w2, composed by the sequence of symbols
present in w1 followed by the sequence of symbols in w2. Usually, the symbol · is
omitted, and the operation is represented as w1w2.

From the definition of concatenation, one can understand that:

• the length of a word obtained by concatenation is equal to the sum of the
length of the words that suffered the operation;

1 Materials used from Professor Giua

6

https://www.alessandro-giua.it/UNICA/ACCPS/notes_ACCPS_v.2022-06-08.pdf

Background

• it is associative, i.e., wc = (w1w2)w3 = w1(w2w3) = w1w2w3;

• it is not commutative, i.e., considering w1 ̸= w2, if wc = w1w2, then wc ̸=
w2w1;

it is important to mention that the identity element of this operator is the empty
word ε, meaning that, for every word w ∈ A∗, it holds that εw = wε = w.

As it is used for multiplication in elementary arithmetic’s, the exponent notation is
commonly implemented to represent the concatenation of x identical symbols, by
the usage of exponent x. For instance, the word aaabbc can be expressed as a3b2c1,
meaning that a is repeated three consecutive times, b twice, and c appears once
in the end of the word. To generalize this, for any symbol s ∈ A, the convention
of denoting e0 = ε is used. This choice is made because sks0 = sk+0 = sk, and for
this equation to hold true, s0 must be the identity element, ε.

It is essential to consider key notations that describe various relationships be-
tween words within a larger word, including prefixes, suffixes, and substrings.
For example, given word w ∈ A∗ that can be written as w = xyz where x, y, z ∈
A∗, then word x is a prefix of w, represented as u ⪯ w, word y is called a sub-
string of w, and z is a suffix of w. Considering the following example, where
word w = 1234, the prefixes of w are ε, 1, 12, 123, and 1234. Its suffixes are ε, 4,
34, 234, and 1234. Finally, its substrings comprise the set of all prefixes, suffixes,
and the following strings: 2, 3, and 23.

Another operation to take into consideration is the projection of words from al-
phabet A∗ on a subset A′ ⊆ A. It is denoted by w ↑ A′, and its result is the word
obtained by removing from w all the symbols that don’t belong to A’. For exam-
ple, considering A = {1, 2, 3} and A′ = {1, 2}. When the following word is taken
into consideration, w = 1131223233, its projection on A′ is obtained by removing
all 3’s from it, so w ↑ A′ = 111222.

2.3.3 Languages

A language L, defined in an alphabet A, is a collection of words formed from the
symbols in A. The cardinality of this language, represented by |L|, is the number
of distinct words it contains.

The following examples of languages defined on alphabet A = {1, 2, 3} may be
considered to better understand this concept.

L1 = {1, 12, 123}, L2 = {ε, 1}, L3 = {w ∈ A∗ | |w| = 5}

In language L1, there are three possible words; therefore, |L1| = 3. Language
L2 consists of two words, including the empty word. Finally, in L3, all words of
length five defined on A are contained in this language.

As languages are sets of words, it is possible to make comparisons between two
of them through the inclusion, ⊆, and strict inclusion, ⊂, relations. For example,

7

Chapter 2

language L1 = {1} is strictly included in language L2 = {1, 11}, and none of
these is included in language L3 = {111}.

2.3.4 Operators on Languages

There are many operators that can be applied to languages, to start off, the usual
binary set operators, such as intersection and union, can be taken into considera-
tion.
To better understand these concepts, let L1 ⊆ A∗1 and L2 ⊆ A∗2 be two languages,
and let AI = A1 ∩ A2 be the intersection and A = A1 ∪ A2 the union of the
alphabets. The definition of the union and intersection of L1 and L2 is given by:

• Union: L1 ∩ L2 = {w ∈ A∗ | w ∈ L1 ∨ w ∈ L2};

• Intersection: L1 ∪ L2 = {w ∈ A∗I | w ∈ L1, w ∈ L2};

For example, considering L1 = {ε, DES} and L2 = {DES, DFA, NFA}, then
L1 ∩ L2 = {DES} and L1 ∪ L2 = {ε, DES, DFA, NFA}.

Some characteristics of the intersection and union operators are that:

• Both are associative and commutative;

• The intersection operator has as the identity element the language A∗, the
explanation is that, for all L ⊆ A∗ it holds that L ∩ A∗ = A∗ ∩ L = L;

• The language ∅ is the union operator’s identity element, since, for all L ⊆
A∗ it holds that L ∪∅ = ∅ ∪ L = ∅;

As previously defined in 2.3.2, the concatenation operator also exists as an oper-
ator to Languages. Considering L1, L2 ⊆ A∗ as two languages, the concatenation
of L1 and L2 is defined as the language

L1L2 = {w = w1w2 ∈ A∗ | w1 ∈ L1, w2 ∈ L2},

which consists of all possible combinations obtained by concatenating a word
from L1 with a word from L2. For example, considering L1 = {ε, DES} and
L2 = {DES, DFA, NFA}, then L1L2 = {ε ·DES}∪ {ε ·DFA}∪ {ε ·NFA}∪ {DES ·
DES}∪{DES ·DFA}∪{DES ·NFA} = {DES, DFA, NFA, DESDES, DESDFA, DESNFA}.

As previously defined in 2.3.2, when applied into languages, the concatenation
operator, shares some of the characteristics, as it is associative, non-commutative
and the identity element is a language that consists of the empty word {ε}, i.e.,
for all L ⊆ A∗, L{ε} = {ε}L = L. Other ways of denoting this operator are, for
all L ⊆ A∗ : L0 = {ε}, L3 = LLL, etc.
Finally, the concatenation operator is distributive with respect to the union, i.e,
(L1 ∪ L2)L3 = L1L3 ∪ L2L3.

8

Background

Some unary operators on languages are the Kleene star, the prefix closure, and the
complement.

The Kleene Star (or Kleene closure), when applied to language L ⊆ A∗, is the lan-
guage

L∗ = {ε} ∪ L ∪ LL ∪ . . .
∞⋃

i=0

Li,

which includes all words formed by concatenating words from language L, an
unlimited number of times.
For example, if L = {22} is a language defined by alphabet A = {2}, then
L∗ = {ε} ∪ {22} ∪ {2222} ∪ . . . = {(22)n | n ≥ 0} ⊂ A∗.

The prefix closure of a given language L ⊆ A∗ is the language,

pre f (L) = {u ∈ A∗ | there is w ∈ L : u ⪯ w}
which consists of all prefixes of words in L. Evidently, L ⊆ pre f (L), since when
a word w is in L, then w is also in pre f (L). A language L is called prefix closed if
L = pre f (L) holds.
To better understand the concept of prefix closed, consider L1 = {ε, 1, 2, 12} and
L2 = {1, 2, 12}. Then, L1 = pre f (L1) holds, and therefore this language is prefix
closed. On the other hand, for the case of L2, L2 ̸= pre f (L2) = {ε, 1, 2, 12}, thus
making L2 not prefix closed.
As mentioned previously, another unary operator used on languages is the com-
plement, which given language L ⊆ A∗, its complement is the language,

L′ = {w ∈ A∗ | w /∈ L}
which consists of all words that don’t belong to L. L′ can also be written as,
L′ = A∗\L.
A simple example, considering L = {1, 11, 111}, defined on alphabet A = {1};
the complement of L is L′1 = {1k | k = 0∨ k ≥ 4}.

2.4 Deterministic Finite Automata (DFAs)

As shown in the previous chapter, formal languages can be described either by
listing their words, or by set notation. However, in this chapter languages will
be defined using a type of generators, i.g., a structure to which a language can be
associated, these generators are referred to as discrete event models and in this chap-
ter the focus will be on Deterministic finite automata (DFA). This model is built on
two basic components: states and transitions. It simply describes how a dynamic
system changes from one state to another when specific discrete events happen.

2.4.1 Definition

A DFA is represented by a quintuple

G = (X, A, δ, x0, Xm)

9

Chapter 2

x0start

x1

x2

x3

a

b

b

a

b

Figure 2.1: A DFA

where:

• X is a finite set of states;

• A is an alphabet;

• δ: X× A −→ X is a transition function;

• x0 ∈ X is an initial state;

• Xm ⊆ X is a set of final states

DFAs are used to describe DES, meaning that the alphabet will represent a fi-
nite set of events. The dynamics of the automaton are specified in the transition
function, meaning that, if x̄ = δ(x, e), then the occurrence of event e, when the
current-state of the system is x, will lead to state x̄.

As represented in figure 2.1, an automaton can be described as a graph in which
each node corresponds to a distinct state, symbolized by circular shapes. In this
specific representation, the initial state is indicated by an incoming arrow, desig-
nating it as the system’s starting point, while the final state is denoted by a double
circle. 2.1 shows the graphical structure of an automaton with X = {x0, x1, x2, x3},
alphabet A = {a, b}, the initial state is x0, and the set of final states is Xm = x3.
The transition function for this automata can be given by the following table:

δ a b

x0 x1 x2

x1 x1 x3

x2 - x3

x3 - -

Table 2.1: Transition function for Figure 2.1

10

Background

To understand this table, the value x2 at the intersection between row x0 and col-
umn b, denotes that δ(x0, b) = b. A box with the symbol ’-’, such as the one at
the intersection between row x3 and column a, means that such transition is not
defined.

The set of events enabled (or active) in state x of a given DFA G = (X, A, δ, x0, Xm),
is

A(x) = {e ∈ A | δ(x, e) is defined}.

To specify that an event e ∈ A(x), another type of notation is δ(x, e)!, which
indicates that for the pair (x, e) the function δ is defined.

A run of length k, in a given DFA G = (X, A, δ, x0, Xm), is a sequence of states and
transitions

x0
e1−→ x1

e2−→ . . .
ek−1−−→ xk−1

ek−→ xk

in which, for all i = 0, . . . , k it is certain that xi ∈ X and for all i = 1, . . . , k it is also
certain that xi = δ(xi−1, ei), i.e, state xi is reached through the occurrence of event
ei when the current state of the system is xi−1. From this run, it is known that it
started from state x0 and that it produced the word w = e1e2...ek when state xk is
reached.
Some important aspects to consider is that a run doesn’t need to mandatorily start
from an initial state, and it is also possible to define a run with length zero, this
is run in which no transition occurs and thus the current state of the system stays
constant.

2.4.2 Languages of DFAs

As mention in the previous subsection, at the end of a run of an automata there is
a word on alphabet A that is produced. Therefore, the set of all possible runs that
start from the initial state will also be associated with all corresponding words
that define language L ⊆ A∗.

Considering a DFA G = (X, A, δ, x0, Xm), word w can be:

• generated if δ∗(x0, w)!, i.e, a run that starts from the initial state and pro-
duces w, exists;

• accepted if δ∗(x0, w) = x ∈ Xm, i.e, a run that starts from the initial state,
reaches a final state, and produces w, exists;

From these definitions, two languages can be associated with the given automata:

• the generated language, i.e, the set that has all generated words:

L(G) = {w ∈ A∗ | δ∗(x0, w)!} ⊆ A∗;

11

Chapter 2

• the accepted language, i.e, the set that has all accepted words:

Lm(G) = {w ∈ A∗ | δ∗(x0, w) ∈ Xm} ⊆ L(G);

it is important to note that the language that is generated by a DFA is always
prefix closed, i.e, L(G) = pre f (L(G)): if a word can be generated, so can all of its
prefixes.
On the other hand, the language that is accepted by a DFA is not necessarily
prefix closed, since not all prefixes of an accepted word need to be accepted, thus
it holds that Lm(G) ⊆ pre f (Lm(G)). The only way that Lm(G) = pre f (Lm(G)) is
if and only if Xm = X, i.e, all states of automaton G are final.

2.4.3 Modeling with deterministic automata

In this subsection about DFA, a brief example of a DES is discussed and a cor-
responding DFA model is presented. The system represents a communication
protocol.

Considering a system that operates in a network environment with occasional
disruptions. Initially in the standby state, when a data transmission request (re-
quest) is received, the system transitions to the preparing data state. Once the data
is ready, it is sent over the network (send), and the system awaits an acknowl-
edgment (ack) from the receiving end to confirm successful transmission. Upon
receiving the acknowledgment, the system returns to the standby state, ready for
new transmission requests.
However, if the acknowledgment is not received within a predefined time inter-
val, indicating a likely communication failure (error), the system initiates a retry
mechanism to resend the data. The process of attempting to resend the data con-
tinues until successful transmission.
A simplified representation of this protocol can be described by a DFA, and is rep-
resented in Figure 2.2. The alphabet considered is A = {req, send, error, ack}. The
proposed model has three states, the association of these to the physical mean-
ing is done next to the figure of the DFA. It is assumed that a unique final state,
perhaps the standby state, is reached because, after receiving a request, the trans-
mission process must be brought to completion.
The DFA diagram representing this system can be designed with appropriate
states and transitions to capture the dynamics of the described communication
protocol.

2.5 Nondeterministic finite automata

For this section, a second discrete event model, called Nondeterministic finite au-
tomata (NFA), is introduced. This new model can be considered a generalization
of a DFA.

12

Background

x0start

x1 x2

x0: standby
x1: preparing message
x2: waiting ackreq

send

error

ack

Figure 2.2: Model of a DFA for a communication protocol

x0start x1 x2

a

ϵ b

b a

ϵ

Figure 2.3: NFA Example

2.5.1 Definition

In Section 2.4.1, the definition of a DFA was done using a quintuple. Similarly,
the definition of a NFA is also formulated using a quintuple.

G = (X, A, ∆, x0, Xm),

where:

• X is a finite set of states;

• A is an alphabet;

• ∆ ⊆ X× Aϵ × X is the transition relation, with Aϵ = A ∪ {ϵ};

• x0 ∈ X is an initial state;

• Xm ⊆ X is a set of final states/ marked states.

It is in the transition relation where the dynamics of the automaton are specified,
since, if (x, e′, x̄) ∈ ∆, then when the system’s current state is x, the occurrence of
an e′-transition, which can be a symbol of A∗, leads to state x̄.
As it was done in 2.1, a graphical representation of an NFA can be given using
the same formalism.

13

Chapter 2

Figure 2.3 shows an NFA with X = {x0, x1, x2}, alphabet A = {a, b}, the initial
state x0 and the set of final states Xm = {x2}. The transition function can be given
by:

∆ = {(x0, a, x0), (x0, ϵ, x1), (x1, b, x1), (x1, b, x2), (x2, a, x2), (x2, ϵ, x0)}

As previously mentioned in the beginning of this section, a NFA can be seen as
a generalization of a DFA. The transition relation ∆ is essentially a generaliza-
tion of the transition function δ and it introduces two different nondeterministic
primitives, that can be observed in the figure 2.3.

• The introduction of transitions using the empty word ϵ, these are also re-
ferred to as ϵ-transitions, and they describe "silent"/"unobservable" events
which, as the name suggests, occur without being possible to observe.

• Multiple transitions outgoing from the same state having the same event in
the label. These transitions describe "indistinguishable events", i.e, it is possi-
ble to detect that an event has occurred but it is not possible to determine
uniquely which transition was taken by the system among two or more
transitions with the same label.

Another similarity between DFAs and NFAs, is that the behavior of both is given
by all of their possible evolution’s characterized by their runs.
Given an NFA G = (X, A, ∆, x0, Xm), a run of length k is a sequence of states and
transitions

x0
e1−→ x1

e2−→ . . .
ek−1−−→ xk−1

ek−→ xk

where: xi ∈ X for all i = 0, . . . , k, and (xi−1, ei, xi) ∈ ∆ for all i = 1, . . . , k. it is
important to remind that an event e ∈ Aϵ may be an event of A or the empty
word ϵ. The run that was presented, starts from state x0 and produces the word
w = e1e2 . . . ek, reaching state xk. Considering the following run of the automaton
in Figure 2.3,

x0
a−→ x0

ϵ−→ x1
b−→ x1

b−→ x1

it starts from state x0, and produces the word w = abb, reaching state x1. This run
has a length smaller than the actual number of transitions that were involved in
it, since | w |= 3, while the run contains 4 transitions.
Since the ∆ is a transition relation and not a function, it is possible to have two
distinct runs that start from the same state and produce the same word, for ex-
ample,

x0
a−→ x0

ϵ−→ x1
b−→ x1

b−→ x2

this run also starts from x0 and produces the word w = abb, reaching state x2.
This is the characteristic that makes the automaton nondeterministic. The con-
cept of nondeterminism may appear distinct from the commonly used notion in
systems theory, where a system is deemed deterministic if, given a specific initial

14

Background

condition and an input signal, there exists only one possible trajectory of evolu-
tion. However, these two notions align when a sequence of events is framed as
the input for the system and its execution as the corresponding evolution.
Following this concept, and given a NFA G = (X, A, ∆, x0, Xm), the transitive and
reflexive closure of the transition relation ∆ is the relation ∆∗ ⊆ X × A∗ × X, such
that, (x, w, x̄) ∈ ∆∗ if there exists a run

x
e1−→ x1

e2−→ . . .
ek−1−−→ xk−1

ek−→ x̄

that begins in state x and produces the word w = e1e2 . . . ek, reaching state x̄. An
importation observation is that (x, ϵ, x) ∈ ∆∗ for all x ∈ X, i.e, taking any state as
the starting point in a run with length zero, the automaton remains in the same
state and produces the empty word. For example, for the automaton in figure
2.3, it is true that

(x0, abb, x1) ∈ ∆∗ and (x0, abb, x2) ∈ ∆∗.

2.5.2 Languages of a NFAs

Since nondeterminism exists in a NFA, the notion of a word that is accepted by it
needs to be treated with particular care.
Considering a NFA G = (X, A, ∆, x0, Xm), a word w ∈ A∗ is:

• generated state x ∈ X exists, such that (x0, w, X) ∈ ∆∗, i.e, a run that starts
from the initial state, and produces w, exists;

• accepted state x ∈ Xm exists, such that (x0, w, X) ∈ ∆∗, i.e, a run that starts
from the initial state, reaches the final state, and produces w, exists;

One can conclude that, due to the nondeterminism of these systems, word w
may be produced by multiple runs that start from an initial state. A word w is
accepted, if at least one of these runs ends in a final state. Considering the figure
2.3, and the word w = abb, as shown before, its possible to obtain it through
different runs, and it is an accepted word by the system. These runs,

x0
a−→ x0

ϵ−→ x1
b−→ x1

b−→ x1

x0
a−→ x0

ϵ−→ x1
b−→ x1

b−→ x2

show that on the first one, as it doesn’t lead to a final state, the run by itself proves
that the word is generated by the system. As for the second run, since it leads to
state x2, the word abb is accepted.

Given a NFA G = (X, A, ∆, x0, Xm), two languages can be associated to it:

• the generated language, i.e, the set of all generated words:

L(G) = {w ∈ A∗ | there exists x ∈ X : (x0, w, x) ∈ ∆∗} ⊆ A∗

• the accepted language, i.e, the set of all accepted words:

Lm(G) = {w ∈ A∗ | there exists x ∈ Xm : (x0, w, x) ∈ ∆∗} ⊆ L(G).

15

Chapter 2

2.5.3 Observer of a partially observable system: Models and Con-
structions

The usual method to describe what an external observer can see in a given NFA
is to assume that it can only observe a subset Ao(Ao ⊆ A) of the events. This
notation divides the events into observable and unobservable, and the remaining
unobservable are denoted by Auo := A− Ao.
In order to map words executed in the system to the sequence of observations
associated with it, the natural projection Po : A∗ −→ A∗o can be used. It is defined
recursively as Po(sσ = Po(s)Po(σ), for all s ∈ A∗ and σ ∈ A, with

Po(σ) =

{
σ, if σ ∈ Ao,

ϵ, if σ ∈ Auo ∪ {ϵ},

where ϵ represents the empty observation.

For a given language L ⊆ E∗, it is defined that Po(L) := {Po(s) | s ∈ L}, and the
inverse is also defined, the image map of Po as P−1

o : A∗o −→ 2A∗ , where,

(∀t ∈ A∗o)P−1
o (t) := {s ∈ A∗ | P0(s) = t}.

Given language L ⊆ A∗o , it is defined that P−1
o (L) :=

⋃
s∈L P−1

o (s).

Given NFA G = (X, A, δ, x0, Xm), and after the occurrence of word s has hap-
pened in the system, the observer records the word w = Po(s), and based on
w, there are a variety of estimation tasks that the observer might partake in, in
which, they may learn about the system, for example, by estimating the current-
state or initial-state of the system. Given word w, the set of possible current states
for system G, is given by:

X̂(w) = {x ∈ X | (∃s ∈ A∗)(∃x0 ∈ X0)x ∈ δ(x0, s) ∧ Po(s) = w}

On the other hand, the set of potential initial states for system G, after observing
w, is given by:

X̂0(w) = {x0 ∈ X0 | (∃s ∈ A∗)δ(x0, s) ̸= ∅ ∧ Po(s) = w}

Other techniques to obtain systematically estimator constructions for current and
initial-state estimation can be found in [Cassandras and Lafortune, 2010] and [Sa-
boori and Hadjicostis, 2013].

The observer, also referred to as current-state estimator for the previously given
NFA G under a natural projection map Po with respect to alphabet A, that can
be divided into a set of observable events Ao, Ao ∈ A. The observer automaton
Gobs = (Xobs, Ao, δobs, X0,obs) is a DFA where:

1. Xobs ⊆ 2X, meaning that the states of Gobs are a subset of X.

2. X0,obs = {x ∈ X | (∃t ∈ A∗uo)x ∈ δ(X0, t)}, returns the initial state, i.e, X0,obs
is the set of states of G that are reachable from an initial-state in X0 via zero,
or more unobservable events.

16

Background

Figure 2.4: Plant G controlled by supervisor S

3. For xobs ∈ Xobs and σo ∈ Ao, the transition function δobs is defined as x′obs =
δobs(xobs, σo), with

x′obs = {x′ ∈ X | (∃s ∈ A∗)x′ ∈ δ(xobs, s) ∧ Po(s) = σo}.

Xobs is usually limited to be the set of states in Gobs that are reachable from the ini-
tial state X0, obs. If x′obs is the empty set, then it is not included in the construction
of Gobs, i.e, if δ(xobs, σo) = ∅, then δobs(xobs, σo) is undefined.

A fundamental property property of the observer automaton is that given any
sequence of events that occurred in G, s ∈ L(G), and generated the observed
word w = Po(s), w ∈ A∗o , it is considered that,

X̂(w) = δobs(X0,obs, w)

, i.e, given the observation of word w, the set of possible current states of G is
captured by the state reached in the observer, starting from the initial state and
applying word w.

2.6 Supervisory Control

This section is created to focus on the main theoretical topics of Supervisory con-
trol, since these concepts are used for some studies in the field of opacity.
This concept originated from the work [Ramadge and Wonham, 1989], in which
the authors define a framework for the control of logical DES. Following some of
the concepts, in supervisory control theory, a plant, i.e, a system that is going to

17

Chapter 2

x0start x1 x2

x3

a:
b

d:
c:

ef:

Figure 2.5: DFA representing a plant G

be controlled, is considered to be guided by a control agent called a supervisor.
The closed loop system, i.e, the plant subjected to the control of the supervisor, is
represented in Figure 2.4.
The supervisor oversees the events generated by the plant and influences its evo-
lution by selectively preventing certain events. it is important to note that, in
this framework, the supervisor has the capability to limit the plant’s behavior
but lacks the authority to expand it. In other words, the closed-loop system is
constrained to produce only words that were initially within the language of the
plant.

2.6.1 Components - Plant, supervisor and closed-loop system

In supervisory control theory, a plant G is a system that’s going to be controlled
by a supervisor. The behaviour of it can be described by a sequence of events it
can generate, i.e language, that are defined on an alphabet A. The alphabet of the
plant is partitioned into controllable, Ac, and uncontrollable, Auc, events alphabets.

A = Ac ∪ Auc (with) Ac ∩ Auc = ∅

A controllable event σ ∈ Ac signifies an action that can be externally disabled,
for instance, through a controller. Conversely, an uncontrollable event σ′ ∈ Auc
denotes the opposite—an event whose occurrence cannot be disabled by any con-
troller.

A practical example, can be considered with plant G, represented in Figure 2.5,
in which the character ’:’ identifies a controllable event. In this case, the alphabet
A = {a, b, c, d, e, f } is divided into Ac = {a, b, d, f } and Auc = {b, e}
This DFA represents a coffee machine that, when in idle (initial state x0), can be
activated (event a), indicating that it is ready to brew coffee (state x1). From this
state, the user can initiate the brewing process (event b), leading to the brewing
state (x2), or they can switch the machine off (event d), transitioning to the off
state (x3).
When the coffee machine is actively brewing (state x2), the operation may con-
clude successfully (event c), returning the machine to the ready state (x1). Alter-
natively, a brewing error may occur (event e), autonomously causing the machine
to shut off. Performing maintenance (event f) brings the machine back from the
off state to the idle state. In this DFA, the final state coincides with the initial one,

18

Background

signifying that after one or more brewing cycles, the machine should return to
the idle state.
Regarding the sets of controllable and uncontrollable events, they carry clear
physical meanings. For instance, event a denotes the activation of the coffee ma-
chine, a user-initiated action that could be disabled by a supervisor if needed.
Similarly, events b (start brewing), d (switch off), and f (maintenance) are con-
trollable. In contrast, event e represents a brewing fault, an undesirable event
beyond the supervisor’s control. Similarly, it is assumed that event c is uncon-
trollable, as once the brewing process has started, there is no control action to
prevent its successful completion.

As it can be seen in Figure 2.4, it is assumed that the supervisor can observe the
word of events w ∈ L(G), generated by plant G. A general definition of active
events, when DFA G = (X, A, δ, x0, Xm), can be divided into:

• For every state x ∈ X, the set of active events in G at state x is

AG(x) = {s ∈ A | δ(x, s) is defined }.

• For every word w ∈ L(G) the set of active events in G after w is

AG(w) = {e ∈ A | we ∈ L(G)}.

For the sake of simplicity, the same notationAG is used two indicate two different
functions: a mapping AG : X −→ 2A and the another mapping AG : L(G) −→ 2A.
For a DFA G, if state x = δ∗(x0, w) is reached from initial state x0, generating
word w, then it holds that AG(x) = AG(w).

After word w ∈ L(G) is generated by the plant, an active controllable event
e ∈ AG(w) ∩ Ac can be disabled by the supervisor, whereas, when it comes to
uncontrollable event, the supervisor has no way of preventing the occurrence of
an active uncontrollable event e′ ∈ A(w) ∩ Auc. An event is called enabled, when
the supervisor doesn’t disable it.

A plant’s progression is steered by a supervisor as it generates the control inputs.
Given plant G defined on alphabet A, a control input is a subset of events ξ ⊆ A,
2A is denoted as the set of all possible control inputs.
It is also important to note that, if event e ∈ ξ, then e is enabled by the super-
visor, whereas if e /∈ ξ, e is considered disabled. Due to the fact that uncontrol-
lable events can’t be disabled by the supervisor, considering a plant G and word
w ∈ L(G), a control input ξ, is called admissible after w if Auc ∩AG(w) ⊆ ξ, i.e, all
uncontrollable events that are active in G after w are contained in it.
For example, considering the plant in Figure 2.5, the control input ξ = {a, b, c}
is admissible after event a since A(a) = {b, d}, meaning that, among all active
events, only controllable event d is disabled. If the same control input is con-
sidered after ab, then it won’t be permissible since AG(ab) = {c, e}, and conse-
quently it disables the uncontrollable active event e.

Combining the earlier concepts, it is now possible to provide a precise definition
for a supervisor.

19

Chapter 2

Given plant G, the supervisor s controlling it, can be represented by the control
function

f : L(G) −→ 2A,

which generates a sequence of admissible control inputs ξ0, ξ1, ξ2, . . . ⊆ A

ξ0 = f (ϵ), ξ1 = f (e1), ξ2 = f (e1e2), . . .

in response to the generated sequence of events w = e1e2 . . . ∈ L(G) produced by
the plant.

In this definition the assumption that for all word w generated by the plant, the
control input f (w) that is produced by the supervisor is admissible after word w.

Considering the scenario depicted in Figure 2.5. The supervisor’s objective is to
ensure a good brewing process, allowing at most one brewing operation each
time while the machine is activated. In Table 2.2, the control function (f (w) of a
supervisor designed to enforce this desired behavior, is illustrated.
Examining the table, it is evident that initially, the supervisor disables no event,
meaning, f (ϵ) = f (a) = E. However, once the sequence ab is observed, indicat-
ing the start of brewing a coffee, the supervisor intervenes. It effectively disables
event b until a new activation a is registered. Consequently, f (ab) = f (abc) =
f (abcd) = f (abcd f) = E \ {b}, and f (abcda) = E. This example will be marked
with ∗, since it will be reference in the beginning of 2.6.2.

2.6.2 Representing a Supervisor as a DES and closed-loop sys-
tem

Previously, the supervisor was defined as a function f : L(G) −→ (2A). In this
subsection, it will be represented as a DES, i.e, as a DFA S = (X̂, A, δ̂, x̂0, X̂m),
using the same alphabet that is defined for the plant.
This describes the operational process of a DFA supervisor, where, upon each
event generated by the plant, the supervisor executes the same event. When the
supervisor is in a state x̂, it sends ti the plant a control input AS(x̂) which con-
tains all active events in S from state x̂.
The following procedure, describes the evolution of the closed-loop system. A
plant G = (X; A, δ, x0, Xm) that is controlled by the supervisor S = (X̂, A, δ̂, x̂0, X̂m),
is given

1. At the start, plant G is at state x = x0, and the supervisor in state x̂ = x̂0.

2. Considering w = ϵ.

3. The control input produced by the supervisor is ξw = AS(x̂).

4. An event e ∈ AG(x) ∩ ξw is generated by the plant, and it goes to state
x′ = δ(x, e).

5. The supervisor executes e and goes to state x′ = δ̂(x̂, e).

20

Background

w x ξ = f (w)

ε x0 E

a x1 E

ab x2 E\{b}

abc x1 E\{b}

abcd x3 E\{b}

abcd f x0 E\{b}

abcda x1 E

.

ad x3 E

ad f x0 E

ad f a x1 E

.

Table 2.2: Control function for the example

x̂0start x̂1

a,c,d,e,f

b

c,d,e,f

a

Figure 2.6: DFA representing the Supervisor for the plant in Figure 2.5

6. Considering w = we, x = x′, x̂ = x̂′

7. Repeat step 3.

An example to clarify the procedure is, for example, considering the Supervisor
in the last example of 2.6.1 marked with ∗, can also be represented as a DFA in
alphabet A, as it can be seen in Figure 2.6. There are two states in the DFA, state x̂0
that has all events active (enabled), and as soon as an event b occurs, S moves to
state x̂1, where event b is not active (disabled). When event a occurs, S is brought
back to state x̂0.

To demonstrate the equivalence of supervisor S to the one described by Table 2.2,
Table 2.3 displays the control inputs produced by S. For every word generated
by the plant under supervision, the state x̂ reached by S is shown along with the
set of active events that determine the control input. A simple comparison of the
two tables confirms that they describe the same control law.

21

Chapter 2

w x x̂ = δ̂(x̂0, w) ξ = AS(x̂)

ε x0 x̂0 E

a x1 x̂0 E

ab x2 x̂1 E\{b}

abc x1 x̂1 E\{b}

abcd x3 x̂1 E\{b}

abcd f x0 x̂1 E\{b}

abcda x1 x̂0 E

.

ad x3 x̂0 E

ad f x0 x̂0 E

ad f a x1 x̂0 E

.

Table 2.3: Control function for S

An inherent advantage of representing a supervisor as a DFA is the immediate
determination, in this case, of the DFA representing the closed-loop system. Fol-
lowing the procedure described before, it becomes evident that a word w gen-
erated by the closed-loop system is both a word of G (as it is generated by the
system) and a word of S (since at each step, the generated event belongs to the
control input and is consequently active in S).

Another definition to consider is how to construct the automaton of the closed-
loop system, of a plant G controlled by a supervisor S. It is the automaton S/G =
G ∩ S = G∥S, whose closed language is L(S/G) = L(G) ∩ L(S) and the marked
language is L(S/G) = L(G) ∩ L(S).

When a DFA supervisor is considered, there are two possibilities, a non-marking
supervisor, and a marking supervisor.

• A non-marking supervisor is when the supervisor doesn’t specify which
are the final words, thus making all words that supply the a final state in
the plant are considered final. In this case, it is assumed that the set of final
states of the supervisor is X̂m = X̂, i.e, all its states are final, and thus the
marked language of the closed loop system is,

Lm(S/G) = Lm(G) ∩ Lm(S) = Lm(G) ∩ L(S)

22

Background

x0, x̂0start x1, x̂0 x2, x̂1 x3, x̂1

x3, x̂0 x0, x̂1 x3, x̂1

a b

d

c

e
d

f

af

Figure 2.7: The closed-loop system

in essence, it contains all words that are accepted by the plant and survive
under supervision.

• A marking supervisor specifies which words are final, meaning that a word
is final if it produces a final state on both the plant and the supervisor. In
this case, it is assumed that the set of final states of the supervisor is X̂m ⊊ X̂,
i.e, not all states are final.

An example to be considered is regarding plant G in Figure 2.5, controlled by
supervisor in Figure 2.6, the closed-loop system S/G constructed by concurrent
composition can be see in Figure 2.7. In this case a supervisor that is non-marking
is considered: the marked states in the closed-loop systems are all states (x, x̂)
where x ∈ Xm, i.e, (x0, x̂0) and (x0, x̂1).

2.7 Opacity in DES

2.7.1 Introduction

Opacity, a confidentiality property, has gained prominence in analysing various
partially observed DES. It provides a systematic approach to capturing, verifying,
and, when needed, enforcing critical aspects of security and privacy within ap-
plications of these systems. Since its inception less than two decades ago, opacity
has become essential for addressing security and privacy concerns in DES appli-
cations.
According to [Lafortune et al., 2018], the introduction of the concept of opacity in
computer systems literature by [Mazaré, 2004]. Opacity was initially applied to
investigate security and privacy in information flow within cryptographic proto-
cols. Subsequent research built upon [Mazaré, 2004] work, with papers employ-
ing Petri nets [Bryans et al., 2005] and transition systems [Bryans et al., 2008] as
modeling formalisms. Concurrently, European researchers introduced the con-
cept of enforcing "concurrent secrets" in the dynamics of discrete event systems
in 2007 [Badouel et al., 2007].

In this section, some of the predominant formulations of opacity are reviewed,
along with the verification and enforcement of it.

23

Chapter 2

In its fundamental essence, opacity seeks to characterize the extent of inferences
and conclusions that a passive observer, one that lacks the ability to influence sys-
tem operations, can derive concerning a designated subset of a given DES behav-
ior. Typically, this subset, known as the system’s secret behavior, is encapsulated
by a predicate with a binary outcome, evaluating either to be true or false. In
this formulation, the core question posed by opacity pertains to whether specific
activities within the system can generate observations enabling an external ob-
server to affirm the truth of the predicate. If such an assertion becomes possible,
it is declared that the secret is revealed, indicating a violation of opacity.

The passive external observer, while restricted to acquiring observations gener-
ated by system activity, may possess partial knowledge of the system model. This
knowledge serves as a basis for the observer to assess, based on the gathered ob-
servations, whether the predicate holds true. It is crucial to note that the external
observer’s role is solely observational and devoid of any capacity to influence the
system’s functioning.

Opacity, as an information flow property, holds significant implications for pri-
vacy and security. Broadly, a system achieves opacity when certain secrets remain
undisclosed throughout its operation.

This dissertation centers around the exploration of logical opacity, with Chapter
2 dedicated to an in-depth examination of this specific aspect. However, it is
essential to acknowledge the existence of another variant known as probabilistic
opacity formulations. In these formulations, various system behaviors may be
linked to distinct probabilities, suggesting that external observers may also be
intrigued by scenarios where the concealed information can be deduced with a
high level of certainty.

2.7.2 Concept of Opacity

For this subsection, it will be assumed that the system in which the concepts will
be utilized is a, usually nondeterministic, finite automaton G = (X, A, δ, X0),
under the natural projection map Po with respect to an alphabet with observable
events Ao, Ao ⊆ A, as seen in 2.5.3. As previously mentioned in subsection 2.7.1,
this concept can be applied in other systems under partial observation, such as
Petri nets, and others.

Opacity can be classified into state-based and language-based, and the classification
relies on the nature of the considered secret behavior. In the case of state-based
opacity, an individual is provided with a subset of states S, S ⊂ X, and the core
investigation is focused on determining if there exists a word, w, w ∈ L(G), such
that the sequence of observations generated by it, wo = Po(w) reveals to the ex-
ternal observer that at a certain point, the state in which the system lies is in S, the
set of secret states. For instance, the scenario of current-state opacity, in which the
analysis revolves around whether the set of potential system states subsequent to
the observation of wo creates a subset of S (i.e., if X̂(wo) ⊆ S). Should this con-
dition be true, is is designated that w a violation of current-state opacity occurs
upon the occurrence of w.

24

Background

In a like manner, if the set of possible initial states, after the observation of wo is a
subset of S (i.e., if X̂(wo) ⊆ S), then there is a violation of initial-state opacity.

Regarding language-based opacity, a secret language LS ⊆ L(Gn) is provided,
and the core investigation is focused on determining if there exists a word w,
w ∈ L(G), in a way that the observation that it generates, wo = Po(w), enables
the external observer to conclude that system generated a word that lies in the
secret language LS, meaning, the set,

P−1
o,L := {s ∈ L(G) | Po(s) = w}

satisfies P−1
o,L ⊆ LS.

Opacity can be categorized into strong and weak formulations. In the context of
strong opacity, it necessitates that every behaviour within the system produces
a sequence of observations that does not result in a violation of opacity. On the
other hand, weak opacity mandates that some, though not necessarily all, sys-
tem behaviours should generate a sequence of observations that avoids violating
opacity. it is important to note that while weak opacity is encompassed by strong
opacity, the reverse is not necessarily true. In stochastic systems, one can fur-
ther enhance the definition of weak opacity by specifying the a priori probability
associated with the likelihood of the system-producing behaviour leading to an
opacity violation. In this section, the notions of opacity will all be considered in a
strong manner.

State-Based Opacity

In this section of the work, the focus lies on exploring the definitions of current
and initial-state opacity, as these represent the most prevalent applications within
the realm of opacity.

Considering an NFA G = (X, A, δ, X0) under a natural projection map Po with
respect to an alphabet of observable events Ao, Ao ⊆ A. Considering S as a set of
secret states, S ⊂ X, G is

• current-state opaque if for all w ∈ L(G) it holds that

X̂(Po(s)) ⊈ S;

• initial-state opaque if for all w ∈ L(G) it holds that

X̂o(Po(s)) ⊈ S;

it is important to remember that X̂(w) was defined in subsection 2.5.3. Therefore,
for the definition of current-state opacity it is required that, for each w ∈ L(G), it
is possible to find a t ∈ L(G), such that,

{δ(X0, t) ⊈ S} ∧ Po(t) = Po(s)

25

Chapter 2

x0start

x1start x2

x3 x4

a

a,b

b

a,c

c

a

c

a

Figure 2.8: NFA G considered for examples in the section

In a like manner, for the case of initial-state opacity, it is required that, for each
s ∈ L(G), it is possible to find a t ∈ L(G), such that,

{δ(X0,NS, t) ̸= ∅} ∧ Po(t) = Po(s)

having X0,NS := X0 − S as the set of initial states that are not secret. For initial-
state opacity, it may considered, without loss of generality, to define the secret
set as S0 := S ∩ X0. If S0 is either empty or identical to X0, then the initial-state
opacity problem becomes trivial.

Considering a NFA G = (X, A, δ, X0) in Figure 2.8, with X = {x0, x1, x2, x3, x4},
alphabet A = {a, b, c}, the transition function that can be seen in figure, and the
set of initial states X0 = {x0, x1}. It is assumed that the alphabet of observable
events Ao = {a, b, c}, meaning that, Ao = A.

To better understand current-state opacity, three different cases can be consid-
ered:

• Case 1: Assuming the set of secret states is S1 = {x4}, various scenarios
exist in which current-state opacity is violated. For instance, words like aa
or aca enable the external observer to infer that (X̂(aa) = X̂(aca) = {x4})
(more generally, X̂(ac∗ac∗) = {x4}. Consequently, it is concluded that G is
not current-state opaque with S1.

• Case 2: Considering the scenario where the set of secret states is S2 = {x3},
once again, there exist multiple situations in which current-state opacity is
violated. For instance, words in the form of acc∗ allow the external observer
to deduce that X̂(acc∗) = {x3}. As a result, it is concluded that G is not
current-state opaque with respect to S2

• Case 3: Now, if the set of secret states is S3{x1}, there are no identified
sequences that permit the external observer to ascertain that the system is
in state 2 (a systematic demonstration of this is done in the next subsection).
Consequently, it is concluded that G is current-state opaque concerning S3.

26

Background

The same can be done for the concept of initial-state opacity:

• Case 1: Assuming the set of secret initial states is S1 = {x4}. In this case,
there is no violation of initial-state opacity since the set of initial states X0 =
{x0, x1} does not include state x4. Consequently, it is concluded that G is
initial-state opaque with respect to S1.

• Case 2: Now, considering the scenario where the set of secret initial states
is S2 = {x0}. Under various scenarios, the external observer can be cer-
tain that the initial state was state {x0}. For instance, words like ac, ab,
and aa can only be initiated from state x0 (but not state x1), i.e., X̂0(ac) =
X̂0(ab) = X̂0(aa) = {x0}. Actually, if the first observation is a then the ex-
ternal observer will know that the initial state is state {x0}. Consequently,
it is concluded that Gn is not initial-state opaque with respect to S2.

• Case 3: Now, let’s assume the set of secret initial states is S3 = {x1}. In this
case, no sequence of observations allows the external observer to conclude
that the system’s initial state was x1. Any word initiated from state x1 is
of the form b(a + c)∗ and can also be generated starting from state x0, i.e.,
X̂0(b(a+ c)∗) = {x0, x1}. Consequently, it is concluded that G is initial-state
opaque with respect to S3 (systematic verification of initial-state opacity is
discussed in the next subsection).

There are other notions of state-based opacity that can be considered, but as these
fall out of the scope of this dissertation, these won’t be explored, but some ref-
erences for works exploring them are given. These notions are K-step opacity, it
can be explored in [Falcone and Marchand, 2015] and [Saboori and Hadjicostis,
2011a], infinite-step opacity, [Saboori and Hadjicostis, 2011b].

Language-Based Opacity

Considering an NFA G = (X, A, δ, X0) under a natural projection map Po with
respect to an alphabet of observable events Ao, Ao ⊆ A. Given a secret language
LS, LS ⊂ L(G), it is said that language-based opacity is not violated for G, if for
all t ∈ LS, there is another word w ∈ (L(G)− LS), such that Po(t) = Po(w). Put
differently, for the external observer any secret sequence of events t ∈ LS seems
is identical to the appearance of at least one other non-secret sequence of events
w ∈ (L(G)− LS).

2.7.3 Verification of Opacity

The validation of different aspects of state-based opacity relies on the assessment
of whether the estimations of possible states at specific time points possess a par-
ticular undesirable characteristic, at least under certain system behaviors.
For example, in the context of current-state opacity, the focus is on determining
whether the set of potential current states of the system (for any given sequence of
observations) is a subset of the secret states S. Notably, the observer automaton,

27

Chapter 2

x0, x1start

x1, x3

x2

x4

x3

x2, x3

x2, x4

a
b

b

ac

a,c

c a

c

a

a

c

a c

Figure 2.9: Observer Gobs of G considered for examples in the section

detailed later in this subsection, serves as a systematic tool for tracing the poten-
tial current states of the system based on any sequence of observations, playing a
pivotal role in verifying the notion of opacity.

As mentioned in 2.5.3, the construction of the observer for a given NFA G ensures
the property that any word wo = Po(w), wo ∈ A∗o , it is true that,

X̂(w) = δobs(X0,obs, w).

Utilizing the mentioned characteristic of the observer, it is easy to verify current-
state opacity for a given system G, since:
Supposing that there exists a state xobs of the observer that,

1. is non-empty,

2. is reachable from X0,obs,

3. satisfies xobs ⊆ S;

then, the system can’t be current-state opaque, and current-state opaque if no
such state can be found.

Considering again the NFA G = (X, A, δ, X0) in Figure 2.8, with X = {x0, x1, x2, x3, x4},
alphabet A = {a, b, c}, the transition function that can be seen in figure, and the
set of initial states X0 = {x0, x1}. As for the previous example, it is considered
that the alphabet of observable events Ao = {a, b, c}, meaning that, Ao = A.
The first step is to build the observer Gobs for Gn, following the procedure al-
ready mentioned, and it can be observed in Figure 2.9. It is of the form, Gobs =
(Xobs, Ao, δobs, X0,obs), where,

Xobs = {{x0, x1}, {x1, x3}, {x2}, {x4}, {x3}, {x2, x3}, {x2, x4}}

X0,obs = x1, x2 and δobs is as observed in the figure.

28

Background

Considering again the three different cases for current-state opacity in the previ-
ous example,

1. Case 1: Assuming the set of secret states is S1 = {x4}. Owing to the pres-
ence of state {x4} in the observer and the fact that this state is reachable
from the initial state via at least one word (e.g., aa, aca), it is concluded that
G is not current-state opaque with respect to S1.

2. Case 2: Now, let’s consider the scenario where the set of secret states is S2 =
{x3}. Again, due to the presence of state {x3} in the observer and the fact
that this state is reachable from the initial state via at least one sequence of
observations (e.g., ac, acc), it is concluded that G is not current-state opaque
with respect to S2.

3. Case 3: Now, let’s assume the set of secret states is S3 = {x1}. In this case,
no (non-empty) state in the observer is found to be a subset of S3 (i.e., there
is no {x1} state), and it is concluded that G is current-state opaque with
respect to S3.

2.7.4 Enforcing Opacity

In this section, approaches proposed to enforce opacity in situations where cer-
tain system behaviors violate it are described. Specifically, the section explores
strategies based on supervisory control to minimally restrict and disable system
behavior that leads to opacity violations.

Enforcing through Supervisory Control

For this part of the sub-subsection of the chapter, the enforcement of current-state
opacity by using supervisory control strategies is described. Considering a NFA
G = (X, A, δ, X0), under a natural projection map Po with respect to an alpha-
bet of observable events Ao, Ao ⊆ A, and assuming a basic supervisory control
setting where a certain subset of events Ac, Ac ⊆ A, are referred as controllable
events and can be disabled ate any given time, by the supervisory control system.
To be more precise, alphabet A can be divided into an alphabet of controllable
events Ac and an alphabet of uncontrollable events Auc, such that Ac ∩ Auc = ∅
and Ac ∪ Auc = A. it is also assumed that controllable events are observable,
meaning that Ac ⊆ Ao.
With the previously outlined setup, it becomes evident that for the supervisory
control system to effectively enforce current-state opacity, the system, obtained by
constraining the behavior of G to uncontrollable events, for example, by having
the supervisor disable all controllable events), must exhibit current-state opacity.
Considering system G′ = (X, Auc, δ′, X0), where δ′ : X× Auc −→ 2X is a restriction
of δ to Auc, meaning that, for all x ∈ X and all σuc ∈ Auc, it holds that,

δ′(x, σuc) = δ(x, σuc).

29

Chapter 2

Additionally, it is assumed that G′ is observed under the natural projection PA′o
in which the set of observable events is A′o = Ao ∩ Auc.
Given the assumptions, it becomes clear that if system G′ is not current-state
opaque, then no supervisory control strategy will be able to enforce it for the
system, since, if G′obs is considered for G′, and G′ is not current-state opaque, then
the observer contains a reachable state x′obs that x′obs ⊆ S. Evidently, state x′obs is
also in the observer Gobs of G under any supervisory control strategies since it
is reachable from uncontrollable events. In this instance, the condition for veri-
fying the existence of a supervisory control strategy enabling the enforcement of
current-state opacity for a system G is both necessary and sufficient.
As a strategy that disables all controllable events at all times may be overly re-
strictive, the challenge that arises is if it is possible to create a supervisory control
strategy that disables events only when absolutely necessary, thus maintaining
minimal restrictiveness.

A minimally restrictive supervisory control strategy can be created, since a super-
visor has access to all observable events, and can obtain an estimate of the system
state based on the observations that are generated by the system. Considering
Gobs = (Xobs, Ao, δobs, X0,obs) of system G, this estimate can be obtained, though
it needs to be considered that any reachable state xobs ∈ Xobs that holds xobs ⊆ S
means that there is a violation of current-state opacity, and must be avoided. The
simplest way to deal with such state is to verify all transitions that go to said state
and disable them, if possible, the following cases are considered:

• Assuming that δobs(x′obs, σc) = xobs for a controllable, thus observable, event
σc ∈ Ac. This scenario outlines a situation in which, by having the super-
visor disable event σc whenever the system is at state x′obs, it is possible to
avoid state xobs.

• Given that δobs(x′obs, σuc) = xobs for uncontrollable event σuc that σuc ∈
(Auc ∩ Ao). In this case, since event σuc can’t be disabled, the solution is
to altogether avoid reaching state x′obs. To clarify, although state x′obs doesn’t
violate current-state opacity, as uncontrollable event σuc can lead the system
from this state to a state that does, state x′obs has to be avoided.

The preceding remarks imply that it is possible to disable transitions to states that
have to be avoided, until all of the paths that lead to them have been eliminated.
When this is not possible to do, it means that G′, previously defined as a restric-
tion of system G to uncontrollable events, is not current-state opaque, implying
that no supervisory control strategy can be applied to enforce this type of opacity.

An example to demonstrate how the methodology described before to obtain a
minimally restrictive supervisory control strategy is, if NFA G = (X, A, δ, X0)
from 2.8, with X = {x0, x1, x2, x3, x4}, alphabet A = {a, b, c}, the transition func-
tion that can be seen in figure, and the set of initial states X0 = {x0, x1}. It is as-
sumed that the alphabet of observable events Ao = {a, b, c}, meaning that, Ao =
A. The observer is in Figure 2.9. It is of the form, Gobs = (Xobs, Ao, δobs, X0,obs),
where,

Xobs = {{x0, x1}, {x1, x3}, {x2}, {x4}, {x3}, {x2, x3}, {x2, x4}}

30

Background

X0,obs = x1, x2 and δobs is as observed in the figure. Several cases for the alphabet
of controllable events, Ac, and set of secret states S, can be considered:

1. Case 1: Assuming Ac = Ao = {a, b, c} and S = {x3}. In this scenario, one
supervisory control strategy to enforce opacity would be to disable event c
at state {x1, x3} of the observer. Note that this strategy observes all events
in Ao and, if it observes a, disables c until a or b occurs. This ensures that
state {x3} of the observer is not visited, thereby preventing a violation of
current-state opacity. This would be a maximally permissive supervisory
control strategy. Another strategy (not maximally permissive) could be to
disable a at startup until b occurs.

2. Case 2: Assuming Ac = Ao = {a, b, c} and S = {x4}. In this case, the maxi-
mally permissive supervisory control strategy to enforce current-state opac-
ity would be to disable event a at states {x1, x3} and {x3} of the observer.
Another strategy (not maximally permissive) might involve disabling event
a at startup.

3. Case 3: Assuming Ac = {a, b} (i.e., event c is uncontrollable) and S = {x3}.
In this scenario, the maximally permissive supervisory control strategy to
enforce current-state opacity would be to disable event a at observer state
{x0, x1}. This is because if a occurs, it leads to the state {x1, x3}, which is
weakly forbidden since it can reach the forbidden state {x3} via an uncon-
trollable event.

Determining which events to disable at each observer state to enforce current-
state opacity may need multiple iterations, especially when dealing with situa-
tions involving the disablement of an event leading to blocking. Blocking refers
to a scenario where no events are permitted to occur at a particular state. In such
cases, it becomes imperative to ensure that the state deemed blocking is not vis-
ited, and this is achieved by strategically disabling events prior to reaching this
state. The need for several iterations becomes apparent in resolving these intri-
cate scenarios, contrasting with the simpler example provided earlier.

2.8 Summary

This chapter explores key concepts essential for understanding the background
of the dissertation. The exploration begins with an examination of DES and their
characteristics. Formal languages and Finite Automata are introduced, covering
elements such as alphabets, words, and operators. DFAs are defined, and their
languages and modeling applications are discussed.

The study extends to NFAs, delving into their definition, languages, and the ob-
servation of partially observable systems. Supervisory Control is introduced,
breaking down its components—plant, supervisor, and closed-loop system—while
representing a supervisor as a DES and closed-loop system.

31

Chapter 2

Opacity in DES is a key focus of this work. The concept is initially explored, cov-
ering both state-based and language-based notions. Following this, verification
and enforcement methods are explored. This exploration establishes the founda-
tion for understanding the significance of Opacity within the context of Discrete
Event Systems, serving as the basis for comprehending the rest of the work.

32

Chapter 3

State of the Art

3.1 Introduction

This dissertation delves into security within the context of DES. Furthermore, it
explores the concept of opacity, adding a unique perspective to its application
in these systems. As detailed in Chapter 2, the adversary in a DES employing
opacity is passive. This implies that the attacker cannot tamper with or influence
system operations in any manner.

The primary focus of this work is to investigate how a system, aiming to maintain
opacity, responds when subjected to active attackers. Through the development
of a technique, the goal is to enhance the system’s security against these malicious
actors while preserving the core concept of opacity.

This section aims to provide a comprehensive understanding of the current land-
scape in the field. By exploring recent research, methods, and key developments,
this chapter sets the foundation for the upcoming analysis and discussion, while
also doing a brief discussion about the usefulness of the literature and an analysis
of the existing gap.

From Section 3.4 onwards, the content is focused on the conclusions taken from
the works analysed in the following sections.

3.2 Research Regarding primary objectives of Work

For this section of the state-of-the-art, a systematic review of papers and docu-
ments related to the dissertation is conducted.

3.2.1 Methodology for the Systematic Review

The systematic review was initially structured around two primary objectives.

The first objective aimed to analyze the methodologies employed in the literature

33

Chapter 3

concerning cyber-attacks against DES. Specifically, it sought to identify the main
techniques applied and studied, with a focus on addressing active attacks against
these systems.

The second objective, which is closely related to the first, involved reviewing
literature where opacity was implemented in scenarios involving active attackers.
This objective aimed to explore how opacity was utilized as a defence mechanism
in the presence of active adversaries.

With these objectives in mind, the next part is divided into these objectives, where
the keywords will be specified, and a review of the gathered literature is done.

Research Questions

RQ1 – what are the main characteristics of DES, regarding this problem? Discover if
the DES that is subject to active attacks implement any kind of controllers, like
supervisors.

RQ2 – what kind of active attack will be more useful, concerning the amount of literature?
Understand what the most suitable type of active attack for the systems is.

Due to the evolution of the Dissertation document, the segment addressing the
answers to the initial research questions has been removed. However, in Section
3.4, although not explicitly identified as answers, the choices and conclusions
drawn regarding the initial research and technique evolution implicitly address
both research questions.

3.2.2 Active Attacks in DES

The set of keywords chosen for the search regarding this first objective was the
following:

Discrete Event Systems, Cybersecurity

This dissertation predominantly focuses on opacity and active attacks, but the
foundational elements are DES and cybersecurity. Hence, these keywords are
deemed appropriate for the initial stage of the systematic review, where the main
objective is to understand which are the more frequent types of attacks against
DES and understand the security techniques used to mitigate them.

Aligning with the defined objective, the paper by [Oliveira et al., 2023] conducts
an analysis and categorization of multiple papers, guided by the distinct charac-
teristics of cybersecurity strategies, the types of attacks considered, and the em-
ployed modelling formalism. This specific paper was chosen since it contained
a relevant systematic review of the required concepts, thus revealing that review
should have been added to the keywords, as the other papers from the results
were technique-specific, for example, the works of [Zheng et al., 2023] and [Fritz
and Zhang, 2023].

In the work done in [Oliveira et al., 2023], the systematic exploration is driven by
the goal of synthesizing relevant research in the literature to present the current

34

State of the Art

state of the art in cybersecurity strategies for DES. Which aligns perfectly with
the objective defined.

From the review conducted, findings uncover a predominant focus on cybersecu-
rity methods designed to safeguard systems against passive attacks. The use of
automata as the chosen modelling formalism is also verified. Nevertheless, recent
years have witnessed a noteworthy shift in emphasis, with a growing body of lit-
erature addressing the critical aspect of active attacks. This shift is substantiated
by an increasing number of publications across various journals and conferences,
providing valuable insights into the evolving landscape of research in this field.

As the proposed technique advanced, the emphasis within the work outlined in
[Oliveira et al., 2023] also evolved, focusing more on the category of security mea-
sures to counteract active attacks, more so, regarding the subcategory of Attack-
Tolerant Control, where the literature aligns with the objectives for the technique.

3.2.3 Opacity Against Active Attackers in DES

This subsection focuses on the research and review of works that apply opacity in
systems that are subjected to active attacks, therefore, the keywords chosen were:

Discrete Event Systems, Opacity, Active Attacks

The research results underscored that this field has not received significant atten-
tion in recent years, as the limited number of findings suggests a relative scarcity
of comprehensive studies. However, three papers on this subject were found,
[Hélouët et al., 2018], [Partovi et al., 2020] and [Yao et al., 2024]. The work done
in [Hélouët et al., 2018], upon reading the abstract proved to be out of scope for
this dissertation, since the modelling format and the mathematical approach were
different to the one learnt during the background development. The remaining
two papers adopted distinct perspectives and were selected to be reviewed. Ana-
lyzing these papers will be valuable, as certain ideas can be repurposed in future
work and integrated into the proposed technique.

Opacity of Discrete Event Systems with Active Intruder - [Partovi et al., 2020]

The paper states that traditional treatments of opacity in the DES literature of-
ten assume the presence of passive intruders—observers who merely scrutinize
the system’s behaviour. However, in cybersecurity contexts, particularly in web
services, addressing active intruders who can exert influence beyond passive ob-
servation becomes essential. This prompts extending existing opacity notions to
encompass scenarios involving active intruders.

To tackle this challenge, the system is modelled as a non-deterministic finite-state
transducer. The modelling assumes that intruders possess comprehensive knowl-
edge of the system structure and can interact by injecting diverse inputs while
observing system responses. Within this context, the paper introduces the notion
of reactive current-state opacity (RCSO), characterizing a property indicating that

35

Chapter 3

the system does not reveal its secret state, regardless of the intruder’s manipula-
tions.

This concept is further extended to language-based and initial-state reactive opac-
ity notions, with an exploration of the relationships among them. Notably, the
paper reveals that all proposed reactive opacity notions are equivalent to RCSO.
Consequently, the focus narrows to RCSO, and the paper delves into the associ-
ated verification problem. The study demonstrates that RCSO verification can be
achieved by constructing an observer automaton. Throughout the paper, illustra-
tive examples are provided to clarify key definitions and highlight the effective-
ness of the proposed opacity verification approach.

As mentioned, the system is modelled as a non-deterministic finite-state trans-
ducer (NFT), which is a type of DES that captures the transformation of data by
processing inputs and generating outputs with finite memory, thus characteriz-
ing the interaction between the system and its environment, and emphasizing a
system model capable of receiving input from an active intruder.
Due to the characteristics of the system used, the authors quickly demonstrate
that the technique employed to evaluate whether a system is current-state opaque,
specifically in systems where only the occurrence of events is considered, does
not apply in these cases. To show these discoveries, all the figures shown that
regard this work were taken from the original paper. To summarize the work pre-
sented in this paper, attention is directed towards a key example prominently fea-
tured throughout the text. This example, crafted by the original authors, serves
as a central illustration to facilitate a clearer understanding of the methodologies
and findings outlined in the paper. It is essential to acknowledge that the creation
of this example is attributed to the original authors, and any figures or adapta-
tions provided herein are solely for clarification.

Considering the open DES G depicted in Figure 3.1 with ∆o = {δ1, δ2, a}, ∆uo =
{b}, and Qs = {3}. In the passive intruder scenario, only observable outputs are
accessible through the projection function P. To assess current-state opacity on
G, associate a NFA A with the open DES G. Let AG = (Q, ∆, Q0, T′a), where the
transition function T′a, for any q, q′ ∈ Q, and δ ∈ ∆, is defined as q′ ∈ T′a(q, δ),
if there exists x ∈ X such that q′ ∈ T(q, x) and δ ∈ λ(q, x); otherwise, T′a(q, δ) is
not defined. An observer automaton can be constructed to check if AG is current-
state opaque for P and Qs. The observer, shown in Figure 3.2, indicates that the
secret state {3} never entirely lies on a single state of the observer. Hence, A is
current-state opaque concerning Qs and P.

However, if the intruder is capable of providing a certain input word to the sys-
tem and observing the system’s output through P, she can infer when the system
is in a secret state. Specifically, consider the input word w = x1x∗2 x1 that drives
the system to land on one of the states {2, 3}. If the active intruder chooses x2,
i.e., w · x2, and observes a, she can infer the current state of the system is certainly
at the secret state {3}. However, if a is an unobservable event, the active intruder
with the same input word x1x∗2 x1x2 cannot determine whether the system is at
{3} or {2}.

36

State of the Art

0start

1

3

2

x1/{δ1δ2}

x2/{δ2}

x1/{δ1δ2}

x2/{b, a}

x
1 /{δ2 }

x1/{δ2, a}, x2/{b}

x2/{δ1}

x2/{δ1}

x1/{δ2}, x2/{a}

x 1/
{δ 2}

Figure 3.1: Open DES G. Noting that ϵ ∈ λ(q, x), for all q ∈ Q, and x ∈ Xϵ.
Transitions with ϵ were removed for clarity purposes. See 1.

Figure 3.2: Observer automata for Figure 3.1

37

Chapter 3

1

To answer the problem shown in the previous example, the authors of the paper
introduce the concept of Reactive Current State Opacity (RCSO), stating that, given
an open DES G = (Q, X, ∆, Q0, T, λ), with projection function P, and set of secret
states QS ∈ Q, a system is RCSO, if for any w ∈ L(G), exists q0 ∈ Q0 that verifies:

• T(q0, w) ∩ {Q−QS} ̸= ∅,

• ∀t ∈ P(O(w, q0)), having Q̃q0 ∩ {Q−QS} ̸= ∅

Thus, this means that for G to be RCS-opaque, if, for any input word w recognized
by G, w ∈ L(G), the following conditions are met:

1. There exists an initial state q0 ∈ Q0 such that the system with w does not
exclusively reach the secret states;

2. For any potential observable output word associated with the input, t ∈
P(O(w, q0)), it is known that Q̃q0(w, t) ∩ {Q− QS} ̸= ∅. This implies that
the intruder cannot utilize the observed output events to resolve the non-
determinism of the transition function T(q0, w) and infer the current secret
state of the system.

Considering this definition, a solution is then possible to derive, to be able to ver-
ify if a system is RCS opaque. Similarly, with the concept of current-state opacity
involving a passive intruder, the authors propose the utilization of an observer
automaton to assess the RCS opacity of an DES. In the context of reactive opac-
ity, it is important to note that the intruder possesses knowledge of the injected
input word, thereby having awareness of the system’s non-deterministic transi-
tions. For RCS-opacity verification, the observer must account for both poten-
tial input variations and observable output behaviours to monitor the estimated
states. Additionally, it is noteworthy that an open DES might exhibit only a sin-
gular, and possibly unique, unobservable output event for a given input, which
could potentially unveil a secret state. In contrast to traditional opacity scenar-
ios involving passive intruders, an active intruder is capable of leveraging even
an unobservable response to deduce the states of the open DES. This capability
needs to be explicitly incorporated into the observer for an active intruder.

Given the previous definition, and considering the open DES G in Figure 3.1, with
∆o = {δ1, δ2, a}, ∆uo = {b}, and Qs = {3}, the observer that regards the previous
definitions is represented in Figure 3.3, where an edge label is of the form x, δ,
where x ∈ X and δ ∈ ∆o,ϵ. From an analysis of the figure, it is concluded that the
secret state {3} is reachable from the initial state of the observer, thus meaning
that G is not RCS-opaque, as initially predicted in the first example.

1This representation was recreated for this dissertation, as the original had a small overlap.

38

State of the Art

Figure 3.3: Observer automata for Figure 3.1, using to verify RCS opacity

Sensor deception attacks against security in supervisory control systems - [Yao
et al., 2024]

This paper delves into the synthesis of sensor deception attacks concerning secu-
rity within the realm of supervisory control for DES. The focus is on a DES plant
controlled by a supervisor with a security requirement to conceal the initial-state
of the system, ensuring it remains undetected—that is, avoiding any disclosure of
its initiation from a secret state. In this scenario, an active attacker is present, ca-
pable of manipulating the observations that the supervisor will receive. This ma-
nipulation could involve actions such as hacking into the communication channel
between the sensors and the supervisor. The primary objective of the attacker is to
deceive the supervisor, leading to the revelation of the secret initial-state, through
incorrect control actions.

This investigation adopts the attacker’s perspective and concentrates on synthe-
sizing attack strategies that threaten the system’s security. Two levels of success
for the attacker are considered: one requires the attacker to almost surely detect
the initial-state, while the other only necessitates the possibility of detecting the
initial-state. For both cases, the paper presents algorithms designed for synthe-
sizing successful attack strategies. The approach is rooted in the All Attack Struc-
ture (AAS), which records state estimates for both the supervisor and the attacker.
Additionally, structural properties of the security requirements are leveraged to
mitigate synthesis complexity.

To illustrate the proposed synthesis procedures, a running academic example is
provided throughout the paper. This example is present in Figure 3.4 fig a), and
it represents system G, where A0 = {o1, o2, o3, o4, o5, o6} is the alphabet of observ-
able events and X0 = 1, 2, 3 is the set of initial states, supervisor S is modelled as
figure b) of Figure 3.4, and figure c) of Figure 3.4 is the closed-loop system under
control S/G is modelled through the automaton G× H.

This paper delves into the perspective of the attacker, which doesn’t seem as use-
ful as the paper [Partovi et al., 2020], since, for now, the perspective that will be
taken into consideration in the dissertation, will be of the system. Nonetheless,
a protection against the All Attack Structure (AAS) methodology, could be ex-
plored, but, as it’s mentioned in the paper, the simplified version of this approach,
regarding an attacker that discovers the secrets of the system and remains unde-
tected by the supervisor, has a complexity that is exponential concerning the size

39

Chapter 3

Figure 3.4: Figures present in [Yao et al., 2024]

of the system, in the worst case scenario.
It’s worth noting that the authors also highlight the inevitability of encounter-
ing exponential complexity in the worst-case scenario for the majority of partial-
observation synthesis problems.

3.3 Enforcing opacity and Attack detection followed
by mitigation

This literature section discusses some of the conclusions taken from the proposed
technique. As explained in Chapter 4, there is the need to find techniques for the
enforcement of Current-State Opacity in a system and to detect and mitigate an
active attack. Considering this, this section explores the literature found regard-
ing these three concepts.

3.3.1 Enforcement of Current-State opacity

In Chapter 4, it will be explained that a system not opaque by default needs
transformation to acquire this characteristic. The literature examined, focusing
on DES modelled using automata and Current State Opacity, displayed varying
characteristics in the approaches used. The following keywords were used for
the research conducted:

Discrete Event Systems, Current-State Opacity, Enforcement, Automata

From the usage of these, the results obtained were evaluated based on the ab-
stract, how recent the literature was and the number of citations. It is also im-
portant to mention that if Utility or Supervisory Control was in the title, then
it would be analysed, since keeping the utility of the system is also one of the

40

State of the Art

main objectives to achieve, and the usage of a supervisor to achieve opacity in a
system can also be useful. From the results obtained, a first selection of literature
was done, through the elimination of publications before 2016. This made it so
that the literature selected was: [Tong et al., 2016], [Barcelos and Basilio, 2023]
and [Tong et al., 2018].

In [Barcelos and Basilio, 2023], the title suggests that the utility of the system is
maintained, and in the abstract, it is mentioned that one of the main criticisms
regarding opacity enforcement, concealing the system’s secret behaviour from
intruders requires obfuscating additional information from legitimate receivers,
is addressed in it.

On the other hand, the works in [Tong et al., 2016] and [Tong et al., 2018] focus on
a supervisory approach. In [Tong et al., 2016], despite being an older publication,
the approach presented has not been replicated in more recent years with com-
parable characteristics, since the concept of "Uncomparable Observation" was in-
troduced, where it is assumed that the supervisor can only observe and control
a subset of events within the system. There is no predefined containment rela-
tionship between the events that are observable by the intruder and those by the
supervisor. The paper [Tong et al., 2018], which shares some of the authors of
[Tong et al., 2016], considers the approach of multiple and simultaneous attacks,
which falls outside the scope of the research. Both of these papers fall outside the
scope of this dissertation since the specific considerations about the observations
in [Tong et al., 2016] and the multiple simultaneous attackers in [Tong et al., 2018]
would require the rest of the techniques, attack detection, and mitigation, to also
consider these, which is infeasible.

Nonetheless, from the references of both these papers, literature that takes into
consideration the supervisory control, for opacity enforcement where the super-
visor and the attackers have the same event observability was analysed. The
following paper was identified [Yin, 2015].

After analysing the paper [Yin, 2015], as this publication is older, after a search
looking for other publications about opacity enforcement through supervisory
control in Partially-Observed DES, the paper [Barcelos and Basilio, 2023] was also
analysed.

As both techniques present in [Barcelos and Basilio, 2023] and [Yin, 2015] are
different, the chosen technique to be applied to the proposed technique in this
dissertation will be inspired in the one of [Yin, 2015]. The reasons behind this
decision were the need to adapt the opacity enforcement technique with the ac-
tive attack mitigation technique, the technique developed in [Yin, 2015] due to its
complexity of application was chosen to be used in the proposed technique. It is
important to mention that the technique in [Barcelos and Basilio, 2023] could still
prove to be important to implement in future work under the same characteris-
tics.

41

Chapter 3

Figure 3.5: Model of system G in [Yin, 2015]

A New Approach for Synthesizing Opacity-Enforcing Supervisors for Partially-
Observed Discrete-Event Systems - [Yin, 2015]

The authors of this paper delve into the critical realm of cybersecurity and privacy
within discrete-event systems. The primary objective revolves around enforcing
opacity on systems that are initially not opaque, employing supervisory control
to restrict system behaviour effectively.

A notable contribution of this research lies in the development of a novel transi-
tion system termed the "All Inclusive Controller for Opacity" (AIC-O). This finite
bipartite transition system encapsulates all valid opacity-enforcing supervisors
within its structure. Through the construction of the AIC-O, the authors present
an algorithm facilitating the synthesis of opacity-enforcing supervisors, thereby
ensuring maximal permissiveness while enforcing opacity.

One distinctive aspect of the approach is its applicability to scenarios involving
partial observations, where not all controllable events are observable. By relaxing
the assumption of complete observability, the authors offer a more flexible and
realistic framework for opacity enforcement via supervisory control. Moreover,
the methodology extends beyond previous works by accommodating diverse ob-
servability properties of controllable events, thereby broadening the scope of ap-
plicability in practical settings.

In the concluding remarks, the authors highlight the potential avenues for future
research, emphasizing the need to address challenges such as relaxing the as-
sumption of identical observable events between the supervisor and the intruder,
as it was later explored in the already cited paper [Tong et al., 2016]. Additionally,
prospect of leveraging the AIC-O framework for optimal opacity enforcement
control, incorporating cost considerations into the synthesis process is also anal-
ysed. Overall, the innovative approach and theoretical contributions pave the
way for advancements in ensuring the security and privacy of cyber and cyber-
physical systems.

An analysis of the technique presented in the paper, regards Figure 3.5(a), which
is the representation of system G, of which the sets Eo = {o1, o2} and Ec =
{a, b, c} represent the set of observable and controllable events, respectively, and
are deemed incomparable. As perceived by the model of system G, it is not
opaque regarding its secret state 5, since the intruder can infer that the system’s
current state is state 5 once event o2 is observed. To enforce opacity, a sub-

42

State of the Art

Figure 3.6: Incomparable solutions example in [Yin, 2015]

Figure 3.7: Construction of the AIC-O. Blue rectangles correspond to Y-states and
yellow oval states correspond to Z-states.

language of L(G) that is controllable, observable, and opaque needs to be found.
In Figures 3.6(a), 3.6(b), solutions L(G1) and L(G2) are shown. These are two
maximal controllable, observable and opaque solutions, however, the union of
these two solutions, represented in 3.6(c), is not a valid solution, since event a
needs to be enabled at state 1 and disabled at state 3, by the system. Since states
1 and 3 are indistinguishable in L(G3), the property of observability is therefore
violated.
Regarding the Bipartite Transition System, the algorithm and definitions are present
in the original paper, a remark to this type of system, regarding G, is in Figure
3.7(b), which is a type of BTS. Regarding the initial Y-state y0 = {0}, with the
control decision γ = {a, b, o1, o2}, uncontrollable events o1, o2 are omitted in the
figure. The Z−state z = hT

YZ(y0, γ) = ({0, 3, 4}, {a, c, o1, o2}). From z, event
o1 is the only one that may occur, thus leading the system to the next Y−state
y = hT

ZY(z, o1) = {5, 6}. The BTS represented in Figure 3.7(b) is considered com-
plete. If control decision {o1, o2}, represented as {} in the figure, is used at the
initial Y−state {0}, no future behavior may occur, thus leading to a supervisor
SP that is BTS-included, and is defined by SP(ϵ) = {o1, o2}.

The referenced BTS in Figure 3.7(b) is the AIC−O of system G, this can be shown
at initial Y−state {0}, control decision {a, b, c} cannot be made, since it would
lead to Z−state ({0, 1, 2, 3, 4}, {a, b, c}). This is due to the occurrence of event
o2, Y−state 5 would be reached, and no other control decision could be taken to
make the system not reveal its secret.

By applying algorithm FIND-AIC-O to system G, the resulting BTS obtained after
procedure DoDSF is executed is represented in 3.7(a). The depth-first search ends
at Y−state {5}, since any control decision made at state 5 will result in encounter-

43

Chapter 3

ing a Z−state (marked in red in figure 3.7(a)) that reveals the secret of the system.
After this procedure, function Prune is executed, starting by removing Y−state
{5}, since there is no successor state defined from it. Following the removal of
the state, all its predecessor Z−states, i.e., ({0, 3}, {c}), ({0, 1, 2}, {a, b}), should
be removed. In the final step, inaccessible states {2, 5, 6} and {2} are removed,
and the AIC-O represented in Figure 3.7(b) is obtained.

When deciding on the control decision, if locally maximal control decision {a, c}
at the initial Y−state {y0} and the unique control decision ∅ at the reach-able
Y−state are picked, meaning that all controllable events are disabled, the solution
obtained will be the maximal solution, which was shown in Figure 3.6(a). On
the other hand, if the control decision {b} at {0} is picked, also being another
locally maximal decision, then no behaviour may happen after, meaning that it
corresponds to the maximal solution shown in Figure 3.6(b).

3.3.2 Detection and Mitigation of an Active Attack

For this segment of the state-of-the-art, the research aimed to find a technique that
could successfully detect and mitigate an active attack against a DES, through the
usage of a supervisor. The research for such a technique was not easy and proved
to be unsuccessful.
Although some literature regarding this problem used both a technique to detect
and mitigate an active attack, it proved to be the case that in the analyzed litera-
ture, the mitigation technique would simply require the Supervisor to deactivate
all controllable events, effectively halting the system, this technique, originally
present in [Carvalho et al., 2018].
As a result, the research had to be divided, and later on, the proposed technique
would combine both selected techniques. The research for a mitigation technique
appears first since it was the primary focus, aiming to find an alternative ap-
proach distinct from the one proposed in [Carvalho et al., 2018].

Mitigation

When researching about possible mitigation techniques, the keywords used were
the following:

DES, Automata, Supervisor, Attack Mitigation

From the results of the search, not many options that could be applied to the
dissertation were left, since the modelling of the systems needs to be done with
using automata. The work done in [Yao et al., 2020] aligns with the research
objectives, and is based on a mitigation technique for an actuator enablement
attack. This work is an important finding since the mitigation technique does not
solely rely on disabling all the controllable events of a system.

The following section is dedicated to the main principles and concepts introduced
by the authors, with the example of the presented mitigation algorithm working

44

State of the Art

in a system. As the paper is quite complex, the full description of all the con-
cepts can not be present in this subsection, as it will focus on showing how the
technique works.

On Attack Mitigation in Supervisory Control Systems: A Tolerant Control Ap-
proach - [Yao et al., 2020]

In this paper, the authors delve into the challenge of mitigating attacks within
supervisory control systems for discrete event systems. The authors make a dis-
tinction between controllable events, which the regular supervisor can deactivate
but are susceptible to attacks, and defendable events, which can be definitively
disabled by a specialized mitigation module although potentially at higher costs.
The primary aim of the paper is to develop a strategy to mitigate attacks effec-
tively while minimizing resultant damage.

The authors approach the problem by formulating it as a tolerant control problem
under partial observation. The goal of this paper has a dual objective: to maxi-
mize the desirable behaviour, which aligns with normal system specifications,
while simultaneously minimizing tolerable but undesirable behaviour. To tackle
this challenge, the authors propose an innovative online algorithm. This algo-
rithm offers a novel attack mitigation strategy, expanding upon existing method-
ologies found in the literature. Notably, the authors demonstrate that their pro-
posed strategy has the capability to prevent damage even in scenarios where the
safe-controllability condition, a prerequisite in conventional strategies, is not met.
A sub-chapter is present in the literature, where the authors analyse the technique
present in [Carvalho et al., 2018], mentioning that such technique waits for the at-
tack to be detected, and only after the mitigation module will defend the system,
by disabling all the events in the set of controllable events.

To illustrate the proposed technique procedure, an example is given at the end of
the paper, which is going to be included here.

Considering system G shown in Figure 3.8 (a) with Σc = {a, b, d, e} and Σo = {c}.
It is supposed that the system is originally controlled by SP to achieve the de-
sirable specification L(SP/G) = {acde, aac} and SP/G is shown as Figure 2(b).
Specifically, the supervisor disables event b initially and disables event a after ob-
serving c. It is assumed that the vulnerable events set is Σv = {a, b}, defendable
events set is Σd = {b}, and Xbad = {5, 13} is the set of unsafe states. Under AE-
attack, in both unsafe states, 5 and 13 can be reached. Furthermore, the strategy
in [Carvalho et al., 2018] cannot prevent unsafe states.

To apply the online mitigation strategy, first, the DFA G̃a is constructed, shown
in Figure 3.8 (c) with Σc,a = {ba, d, e}. It is of relevance to mention that the state
space of Ga is already partitioned as XD = {1, 2, 4, 6, 7, 9, 10}, XT = {3, 8, 11, 12},
and XF = {5, 13}. Since state 3 can reach unsafe state 5 via an uncontrollable
event aa, it is assumed that X+

F = {3, 5, 13}. It is then possible to construct the
mitigation strategy M using Algorithm 1. To start, α = ε and Ê(α) = {1}. Pro-
cedure CHOOSEACTION({1}) is then called as detailed in Algorithm 2. Initially,
γ ← {c, aa} and it is assumed that events in EventList are ordered by [ba, d, e].

45

Chapter 3

Figure 3.8: Figures present in [Yao et al., 2020]

46

State of the Art

First, we test whether or not event ba can be added to γ. However, by doing so,
state 3 which is in X+

F will be reached; therefore, it is deleted. Then events d and
e are tested, in order, and both events are not feasible within the unobservable
reach. Consequently, these are skipped and M(ε) = {c, aa} is returned, i.e., the
mitigation module needs to defend event b initially. Next, when event c is ob-
served, it is known that α = c and Ê(α) = {6, 7}. Again, procedure CHOOSEAC-
TION({6, 7}) is called to compute the current decision to be made. First, event ba

is assessed, which is not feasible and, therefore is skipped. Then by adding event
d, state 13 becomes reachable and so event d is deleted. For event e, although it
is feasible from state 8, which is in the unobservable reach of Ê(α) = {6, 7}, it is
not feasible in XD. Therefore, event e also needs to be skipped because it does
not contribute to the desirable behaviour although it is safe. Then, the returned
decision M(c) = {c, aa} is obtained. The overall closed-loop system under the
mitigating strategy M is shown in Figure 3.8 (d). The closed-loop system sacri-
fices two desirable strings acd and acde, reaches two tolerable but not desirable
states 8 and 12, but successfully avoids reaching unsafe states.

It is important to reference once again that the Algorithms mentioned for the
execution of this technique are present in the original paper, and will be examined
in Chapter 4. These were chosen not to be included here, only the main example
that explains how to apply such technique and the end result for a system.

Detection

When researching about detection techniques, the keywords used were the fol-
lowing:

DES, Automata, Supervisor, Attack Detection

From the results obtained, some that have already been previously mentioned, as
is the case of [Carvalho et al., 2018], the main interest was also regarding the com-
plexity of said technique. Therefore, the literature in [Tong et al., 2022] seemed
appropriate to analyse, for this objective.

A Polynomial Approach to Verifying the Existence of a Threatening Sensor
Attacker - [Tong et al., 2022]

In this paper, the authors address the issue of cyber-attacks targeting supervised
discrete event systems within cyber-physical systems (CPS). These attacks in-
volve manipulating sensor readings to make the closed-loop system reach un-
desired states. To combat this threat, the authors propose a novel attack detection
mechanism where the supervisor only needs to monitor the most recent observ-
able event. They introduce the concept of a sensor attacker defined as a threat
capable of pushing the system into forbidden states. The primary objective is to
determine whether such a menacing sensor attacker exists for a given controlled
system. To achieve this, they introduce the All Sensor Attack (ASA) structure, de-
signed to encompass all potential sensor attacks orchestrated by the attacker. Uti-
lizing the ASA automaton, the authors establish a necessary and sufficient condi-

47

Chapter 3

Figure 3.9: (a) System G, (b) Supervisor S, (c) Controlled System S/G

tion for the existence of a stealthy threatening sensor attacker. Importantly, they
demonstrate that this condition can be verified efficiently in polynomial time,
offering a promising avenue for practical implementation and real-time cyber-
security management in CPS.

AS previously done in other analysed literature, the main example used through-
out this paper will be exposed, thus revealing how this technique works.

Considering the plant G in Figure 3.9, where Ec = {a, c}, Eo = {b, c}, and
Xl = X \ {5}. A supervisor S that prevents G from reaching state 5 is shown
in Fig. 1(b), which encodes the control function φ(c∗) = ΓS(0) = {a, b, c} and
φ(c∗b) = ΓS(1) = ∅. The controlled system S/G is shown in Fig. 1(c). Con-
sidering this system, and assuming that the sets of events subject to SE-attacks
(Sensor-Erasure) and SI-attacks (Sensor-Insertion) are Esi = {c} and Ese = {b},
respectively. Its supposed that the sensor attacker is ξ, for w = ϵ;

ξ(w) =

{
ϵ, for w = ϵ;

cn1b− cn2 , for w = cn1bcn2 , with n1, n2 ∈N.

In words, the attacker erases event b after observing it. Supposing that σ = acb oc-
curs in L(S/G). The plant reaches state 4. The attacker observes Po(acb) = cb and
erases b (i.e., P̂o(ξ(cb)) = c). As a result, the supervisor observes c and reaches
state 0, where event c is enabled. Therefore, the plant reaches the forbidden state
5 from state 4 with the occurrence of c. Since cc ∈ Po(L(S)), the attack on acbc is
stealthy.

Analogously, the controlled system under the attack of ξ can be constructed,
which is identical to G.

The controlled system under the action of the sensor attacker ξ is denoted as
Sξ/G.

The corresponding Ĝ and Ŝ are shown in Figure 3.10. To make the construction
more illustrative, additional transitions of events in E+, E−, and Euc are coloured
in red, blue, and green respectively.

The ASA model H = Ĝ || Ŝ can be observed in Figure 3.11. It is known that
Qd = {q2, q9} (marked in grey), and Q f = {q7} (marked in red).

Since Q f = {q7}, by Theorem 1, for G and S in Figure 3.9, Esi = {c} and
Ese = {b}, there exists a threatening sensor attacker. Indeed, the string ab_c,

48

State of the Art

Figure 3.10: (a) Model Ĝ of the plant under attack. (b) Model Ŝ of the supervisor
under attack

Figure 3.11: ASA model H of Ĝ and Ŝ of Figure 3.10

for instance, leading to q7 implies that for σ = ab (i.e., after observing b), the at-
tack erasing b misleads the supervisor to enable c and causes the plant to reach
5. This string captures one attack action of the attacker ξ previously mentioned,
using the attack string acbc.

The threatening attacker does not always exist. If the supervisor is replaced with
the one in Figure 3.12. To check whether there exists a stealthy threatening at-
tacker, first the corresponding S (as shown in Figure 3.12 is constructed, and then
the ASA model H in Figure 3.13. It is known that Qd = {q3, q5} and Q f = ∅. By
Theorem 1, there is no threatening sensor attacker with the capability of Esi = {c}
and Ese = {b} that can cause damage to the controlled system S/G.

Figure 3.12: (a) Example of a supervisor S enforcing the specification G, (b) corre-
sponding model Ŝ of the supervisor under attack

49

Chapter 3

Figure 3.13: The ASA model H of Ĝ in Figure 3.10(a) and Ŝ in Figure 3.12(b)

3.4 Discussion of the Literature and Gap Analysis

The literature explored in this chapter proves the interest of the scientific commu-
nity in investigating the the definition of novel methodologies to take advantage
of opacity to secure DES.

An important observation and step towards the development of the technique
proposed in this thesis work arose with the analysis of the automata reported in
Figures 3.1 and 3.3, presented in the work [Partovi et al., 2020]. This automaton
has a crucial characteristic: State 1 always preserves current-state opacity when
within the set of secret states, i.e., S = {1}. This means that even though the DES
is influenced by an active attacker, having State 1 as the sole secret state makes
it impossible for the attacker to discover it, due to the redundancy of observable
events that occur, never truly revealing that the system’s current state is state 1.

In the case a system is not intrinsically current-state opaque with respect to active
attacks, then the work done in [Yao et al., 2024], as mentioned, it delves into the
attacker’s perspective. The automaton considered in the paper is initially opaque
through the enforcement of opacity by a controller, in this case, a supervisor, a
technique analyzed in subsection 2.7.4. Figure 3.4 shows the original model of
the system considered. A system with these characteristics is significant because
a system being opaque does not necessarily need to be an inherent feature, as in
[Partovi et al., 2020]; it can be implemented through a controller. The objective
of the literature was to deceive the supervisor into revealing the system’s secret,
specifically the set of secret initial states, thereby subjecting the system to a Man-
in-the-Middle (MitM) attack.

3.5 Systems to be Considered and Security by opacity

Considering both types of referenced systems, the objective of the technique and
the concept of security by opacity evolve once again.

50

State of the Art

3.5.1 Opaque System by default

In an inherently opaque system, like the one described in [Partovi et al., 2020],
opacity is a built-in characteristic. This original system includes a state that pre-
serves current-state opacity against all types of attackers. Therefore, if the main
goal is to safeguard a critical state of the system, having such a characteristic en-
sures that the system’s critical state remains undisclosed to any type of attacker,
whether active or passive.

It’s crucial to note that in a Man-in-the-Middle (MitM) attack, opacity remains
unbroken since the system cannot reveal the secret. However, additional security
measures are necessary because the attacker could still disrupt the system’s ac-
tions, potentially creating new risky states by blocking transitions or preventing
actions from actuators. While this consideration is important for this dissertation,
which aims to explore securing a DES through opacity, it falls outside the main
objective. Nevertheless, the system’s ability to maintain the secrecy of the state
remains theoretically intact.

3.5.2 Opaque System through controller enforcement

When a system is already developed, it’s unlikely to be inherently opaque. Thus,
a controller like a supervisor needs implementation to achieve opacity, as demon-
strated in [Yao et al., 2024]. However, systems of this type are vulnerable to cyber
attacks, such as Man-in-the-Middle (MitM) attacks, which can deceive the su-
pervisor and compromise the system’s secrecy. This means, that another type of
security technique needs to be employed, opacity will not be sufficient to protect
the system from revealing its secret. These vulnerabilities are particularly pro-
nounced in networked control systems, where powerful attackers can actively
manipulate sensor observations to mislead feedback decisions, a tactic known as
sensor deception attacks. For example, attackers could exploit sensor deception
attacks to compromise a supervisor enforcing current-state opacity, as depicted
in Figure 3.14 (b), being originally in the work of [Yao et al., 2024].

In systems with this characteristic, the proposed technique operates as a system
with two layers. At its core, the supervisor controls the system to prevent the rev-
elation of the secret. Surrounding this core is an outer layer comprising a security
mechanism against Man-in-the-Middle (MitM) attacks to ensure the supervisor
isn’t deceived into revealing the secret. In essence, the technique in such a system
must detect and mitigate the interference of an active attacker while safeguarding
the secret.

51

Chapter 3

Figure 3.14: Sensor deception Attacks

3.6 Opacity and Active Attackers

As explained in the previous section, two types of systems are considered, ei-
ther a system is inserted in Subsection 3.5.1 or Subsection 3.5.2. Accordingly, the
defense technique for each will to be different.

For systems falling under the category of Subsection 3.5.1, no additional security
technique is necessary. These systems inherently maintain the secrecy of the sys-
tem’s state, ensuring opacity aligns with the thesis’s focus. Consequently, any
other security measures are beyond the scope of this thesis.

In contrast, the systems described in Subsection 3.5.2 require a different approach,
which will be the focus of this section. Building upon the literature analyzed in
Chapter 3, particularly in Section 3.3, this technique will be developed based on
the insights gained from the literature review.

Starting with the Detection and Mitigation defense techniques discussed in the
literature review, there’s a notable gap regarding mitigation techniques for Active
Attacks against DES modeled using automata. While many techniques in the
literature adopt the approach proposed by [Carvalho et al., 2018], as discussed in
[Yao et al., 2020], this technique may not always be sufficient to mitigate attacks
without repercussions to the system.

52

State of the Art

The analysis in [Yao et al., 2020] reveals that while it successfully mitigates active
attacks, the developed technique has some drawbacks. Firstly, it assumes the in-
vulnerability of "defending" events, implying that attackers cannot interfere with
the actions of the specialized mitigation module. While this assumption may
hold in some real-world scenarios, it’s a crucial consideration to bear in mind.

Although the initial intention was to search for detection and mitigation tech-
niques separately to combine them for the proposed technique within this disser-
tation, the work of [Yao et al., 2020] showed that such a technique doesn’t require
a separate detection system. Therefore, attempting to merge the techniques from
[Yao et al., 2020] and [Tong et al., 2022] is unfeasible.

Consequently, the action plan regarding the proposed technique evolved to merg-
ing the Opacity Enforcement technique in [Yin, 2015] with the Active Attack mit-
igation technique of [Yao et al., 2020]. If successfully implemented, this technique
would maintain the system’s current-state opacity even when under the influence
of an active attacker, pioneering a novel approach in the field. The work done to
implement this

3.7 Summary

This chapter delved into related works, initiating with an initial search. The ex-
ploration extends to a focused investigation on opacity and active attackers. The
chapter aims to offer insights into existing literature, emphasizing discoveries
from both the general search and the specific inquiry into opacity, active attackers,
enforcement of opacity and attack mitigation techniques. The final sections of the
chapter delve into a discussion of literature and the gap present in it. From this
discussion, the findings and conclusions will be applied in the following Chapter,
the proposed technique developed for this dissertation.

53

Chapter 4

Opacity-Based Defense for DFA
Against Passive and AE-Attacks

4.1 Introduction

The dissertation’s primary objective is to contribute to the area of cybersecurity
that regards DES and explores the concept of opacity and how it may be applied
in a different environment. This technique started with the intention of securing a
DES using opacity, and, as it will be explained, evolved to something more com-
plex, as an active attacker was regarded. The following sections aim to explore
and explain the technique that has been created and the steps that were needed
to reach it.

4.2 Enforce opacity and mitigate attacks via supervi-
sory control

Here the aim is to merge the techniques by [Yin, 2015] and [Yao et al., 2020] to
achieve the proposed novel technique to defense DFAs from passive and actuator-
enabling attacks. To this purpose the system specific characteristics considered in
both works need to be analysed, so as to define the assumptions to be consid-
ered for the application of the novel methodologies. A test system is used as an
example and for initial tests.

First, considering the system and technique in [Yin, 2015], the system must satisfy
the following assumptions:

• Set of Controllable and Observable Events - There exist 4 sets, Ac, Auc,
Ao, and Auo, where Ac ∩ Auc = ∅ and Ao ∩ Auo = ∅. An observable event
does not necessarily have to be controllable or vice versa, i.e., Ac ∩ Ao =
∅ ∨ Ac ∩ Ao ̸= ∅;

• Existence of a Secret State in the System - To maintain opacity, the secret

55

Chapter 4

of the system must be identified before applying the technique. The secret
can be one ore multiple states of the system.

In this literature, when defining a Bipartite Transition System, Information States
are introduced. A Y-state is an information state from which the supervisor can
issue control decisions, while a Z-state is an information state where observable
events occur within the set of enabled events. Although these states characterize
the system, they do not need specific characteristics associated with them. The
existence of the previously mentioned sets will automatically ensure these states
exist in a system.

Regarding the work from [Yao et al., 2020], it is important to mention that the
technique defends a system from actuator-enablement attacks. Therefore, sensor
erasure, sensor insertion and actuator disablement attacks are not considered for
this technique.

For the technique presented in the paper, there are system specific considerations
that need to be taken into account, such are:

• Set of Controllable and Observable Events - As previously exposed for
the works of [Yin, 2015], the same characteristic is a requirement for this
technique.

• Events influenced by the Attacker - To simulate the active attack in the
system, certain events Av ⊆ Ac a set of vulnerable events. These may be
observable or not, and the attacker is able to enable a vulnerable event even
if it has been disabled by the supervisor. The set of attacked actuator attacks
is defined by Aa

c,v = {θa : θ ∈ Av}, and thus Aa = A ∩ Aa
c,v is defined. The

usage of θa represents the occurrence of θ after being originally disabled by
the supervisor but enabled by the attacker.

• Systems’ Behavior - We assume that the system can present certain types
of behavior. In particular, the system presents the following types of be-
haviours:

– The desirable behavior, described by the normal language Kdes =
D(L(SP/G)) = D(L(H || G)), which is the language generated by
a system G under supervision of SP SP/G without an attack.

– The tolerable behavior, described by the language of strings that fall
out of Kdes but also out of the unsafe language, defined by:

Ktol = {s ∈ L(Ga) : ∀t ≤ s, δa(x0, t) ̸= Xbad}

– Types of states: It is considered that, XD, XT and XF represent, desir-
able states, tolerable states and unsafe states, respectively.

• Defendable Events - The mitigation module of this system has the ability
to disable all defendable events. The set of defendable events is assumed to
be Ad, having: Ad ⊆ Av ⊆ Ac.

56

Opacity-Based Defense for DFA Against Passive and AE-Attacks

The starting system must comply with all the requirements from both lists of
characteristics. The proposed technique aims to preserve Current-State (CS) Opac-
ity in a system under the influence of an active attacker. The principle behind the
technique is that a supervisor enforcing CS Opacity can be influenced by an ac-
tive attacker, potentially revealing the system’s secret. This technique will involve
enforcing CS Opacity followed by applying the mitigation technique against ac-
tuator enablement attacks.

From the analysis of both lists of requirements, it becomes easier to grasp the nec-
essary details to implement both techniques. To better understand the changes
needed to create a unified technique that incorporates both approaches, we will
start with the example depicted in Figure 3.5 in Subsection 3.3.1.

Considering the characteristics of both algorithms, the technique needs to be ap-
plied to a system that has a-priori the set of vulnerable events defined, and the
desirable behavior of it.

Immediate observations regarding the application of the mitigation technique,
after the enforcement of opacity is done, warrant attention. For instance, as evi-
dent in Figure 3.8, particularly with respect to sub-figures (b) and (d), the desir-
able behavior of system G and its representation post-mitigation, respectively. In
sub-figure (b), states {9, 10} exist in the system’s desirable representation but are
eliminated after the mitigation technique is applied. Initially, it was considered
crucial to keep the Secret State within the system during mitigation, as its removal
could jeopardize the primary objective of maintaining opacity. However, as the
technique evolved, it was concluded that the removal of the Secret State does not
pose a significant problem. Therefore, the Secret State does not require special
consideration or protection during mitigation.

Evolution of Procedures and System Adjustments

This subsection regards some changes that were considered at an initial develop-
ment phase, for the successful application of the technique. Since this material
and considerations lead to the creation of the final technique, it’s of great impor-
tance to include them.

To transition from enforcing CS Opacity to implementing the attack mitigation
technique, the resulting system obtained from the former will be regarded as the
desired behavior of the system. From the results of the procedure FIND-AIC-
O, the Supervisor will always opt for the transformation that keeps most of the
functionalities of the original system.

The transformation will then be regarded as the desirable functioning of the sys-
tem. As mentioned, the mitigation technique considers three types of states, de-
sirable, tolerable, and faulty. This is something that is intricate in the algorithm
developed in the literature, so it’s useful if maintained for the proposed technique
of this dissertation. However, the grading of these states based on risk levels may
not be as useful, where a faulty state is considered a state of risk for the system.
For this dissertation, the approach will be changed regarding how the state may

57

Chapter 4

reveal opacity, following the nomenclature of:

• Desirable State: A state present in the desirable behavior of the system.

• Tolerable State: A state that is not included in the desirable behavior of the
system, but none of the transitions that depart from it violate CS opacity.

• Disclosing State: A state that is not included in the desirable behavior of
the system, and one of the transitions that depart from it will violate CS
opacity.

The decision to utilize the algorithm from [Yao et al., 2020] derives from its suit-
ability for integration into a system featuring three distinct state types. By ac-
commodating these adaptations, the algorithm remains applicable without ne-
cessitating the addition of risk states to the original system. This alignment with
the dissertation’s objective underscores its significance.

Additionally, it is pertinent to address the treatment of the secret state within the
system. As previously outlined, the secret state is predefined before the imple-
mentation of this security technique, and during the application of the technique,
this state can be removed from the system.

4.2.1 First Application of the security technique and its Discov-
eries

The following subsection aims to explain how the technique started to be im-
plemented and the general idea behind said technique and the requirements. To
make the application of this phase of the technique easier to understand, a formal
application regarding the technique to a specific system will be done in the end.
With this application, the drawbacks will be exposed, as well as the modifications
needed to create and reach the final’s technique form.

When implementing the technique, the following steps will be executed to achieve
a system that maintains current-state opacity, even when confronted with an ac-
tive attacker. It is crucial to emphasize that this technique does not necessitate the
detection of an active attacker. Instead, it is proactively applied to a system be-
fore deployment. Consequently, the final system configuration will serve as the
new system representation, ensuring its resilience against active attackers while
upholding opacity.

The first step involves applying the Bipartite Transition System, which catego-
rizes the system using Information States. This is accomplished by employing a
bipartite structure comprising two types of states. Transitioning from a Z-state
to a Y-state signifies an observable transition. In contrast, transitioning from a
Y-state to a Z-state indicates an unobservable reach and preserves the set of en-
abled events from the preceding Y-state. This implies that I(z) captures the set
of states reachable from a preceding Y-state through enabled unobservable event
sequences, while Γ(z) records the control decision made in the preceding Y-state.

58

Opacity-Based Defense for DFA Against Passive and AE-Attacks

To advance with the application of the technique, Algorithm 1 from [Meira-Góes
et al., 2023] must be utilized. This algorithm requires two inputs: the system
under evaluation and the OP function. The OP function is a binary function that
operates on the Information states of the system. If an information state belongs
to the set of secret states XS, the function returns 0; otherwise, it returns 1.

Algorithm 1 FIND-AIC-O
1:
2: procedure FIND-AIC-O(G, OP)
3: AICO.Y ← {y0}, AICO.Z ← ∅, AICO.h← ∅
4: DoDFS(G, y0, AICO, OP)
5: Prune(AICO)
6: AICO← Accessible(AICO)
7: end procedure
8:
9: procedure DODFS(G, y, AICO, OP)

10: for γ ∈ Γ do
11: z← hYZ(y, γ)
12: if OP(I(z)) = 1 then
13: AICO.h← AICO.h ∪ {(y, γ, z)}
14: if z /∈ AICO.Z then
15: AICO.Z ← AICO.Z ∪ {z}
16: for e ∈ γ ∩ Eo do
17: y′ ← hZY(z, e)
18: AICO.h← AICO.h ∪ {(z, e, y′)}
19: if y′ /∈ AICO.Y then
20: AICO.Y ← AICO.Y ∪ {y′}
21: DoDFS(G, y′, AICO, OP)
22: end if
23: end for
24: end if
25: end if
26: end for
27: end procedure
28:
29: procedure PRUNE(AICO)
30: while exists Y-state in AICO that has no successor do
31: Delete all such Y-states in AICO and delete all their predecessor Z-states
32: end while
33: end procedure

After applying algorithm 1, the output is the AIC-O of the system, indicating the
desirable behavior while maintaining the system’s Current-State opacity when
there is a passive attacker present. Subsequently, this initial step identifies the
preferred behavior of the system, ensuring opacity in its Current-State. During
the application of this algorithm, procedure DoDSF will explore all the combina-
tions of Control Decisions a supervisor can make, regarding all the Y-states, and
the Prune procedure will eliminate all the changes required, to obtain the AIC-O.

59

Chapter 4

Algorithm 2 Online Mitigation M

1: Input: AE-attacked model Ga = (X, Σa, δa, x0) with Σuc,a, observation map-
ping PC

2: Output: control decision γ at each instant
3: α← ϵ
4: Ê(α)← {x0}
5: γ← ChooseAction(Ê(α))
6: defense by disabling events not in γ
7: E(α)← URγ(Ê(α))
8: while new event σ ∈ Σo is observed do
9: α← ασ

10: Ê(α)← NXσ(Ê(α))
11: γ← ChooseAction(Ê(α))
12: defense by disabling events not in γ
13: E(α)← URγ(Ê(α))
14: end while

Algorithm 3 CHOOSEACTION

1: Input: estimate Ê(α), controllable events Σa,c, and attacked system G̃a =(
X, Σa, δ̃a, x0

)
2: Output: control action γ
3: γ← Σuc,a
4: i← 0
5: EventList← Σa,c
6: while EventList ̸= ∅ and i < |EventList| do
7: σ← EventList[i]
8: if UR+

γ∪{σ}(Ê(α)) ∩ XDis ̸= ∅ then
9: EventList← EventList\{σ}

10: else
11: if ∃x ∈ URγ(Ê(α)) : δ(x, σ) ∈ XD then
12: γ← γ ∪ {σ}
13: EventList← EventList\{σ}
14: i← 0
15: else
16: i← i + 1
17: end if
18: end if
19: end while

Considering the application of the first algorithm, it is feasible to consider that
the system protects its secret against the existence of a passive attacker. The re-
maining application of the technique is applied when the passive attacker gains
some influence over the system and gets control over some of the events. When
this situation is created in the system, the application of Algorithms 2 and 3 will
ensure that the system can still be secured.

60

Opacity-Based Defense for DFA Against Passive and AE-Attacks

When applying algorithms 2 and 3, the requirements previously mentioned need
to be present in the system. Therefore, when the set of vulnerable and defendable
events is defined, the application of said algorithm can be done. The definitions
and organization of the sets of states is partitioned as follows, and the formal
definition of sets is the equal to the one present in Algorithm 3.

• Desirable State: A state present in the desirable behavior of the system,
included in the set XD.

• Tolerable State: A state that is not included in the desirable behavior of the
system, but none of the transitions that depart from it violate CS opacity.
These are included in the set of states XT.

• Disclosing State: A state that is not included in the desirable behavior of
the system, and one of the transitions that depart from it will violate CS
opacity. The set is represented by XDis.

From the application of the Online Mitigation M algorithm, the output will be a
limited version of the system that will sustain an active attack and won’t reveal
the secret state of the system. It is important to reinforce the idea that this appli-
cation is limited to the set of vulnerable, defendable and the desirable behavior
returned from Algorithm. The results obtained will be different if any of these
change.

Example for the application of the technique

To apply the technique, the following system can be considered. Considering
system G present in chapter 3, more specifically in Subsection 3.3.1 where the
analysis of the work done in [Yin, 2015] is done. If we consider system G with
the same characteristics, the result obtained in the AIC-O from Figure 3.7 will
be desirable behaviour of the system. From this, we know that the system is
composed by the following sets of events and states.

• Controllable and Uncontrollable Events: Ac = {a, b, c}, Auc = {o1, o2}.
No special distinction using colours is needed.

• Observable and Unobservable Events: Ao = {o1, o2}, Auo = {a, b, c}. No
special distinction using colours is needed.

• Vulnerable Events: AV = {a, b, c}. Identified using red.

• Defendable Events: AD = {b}. Identified using green.

• Desirable States: XD = {0, 3, 4, 5, 6}. Identified using black.

• Tolerable State: XT = {1}. Identified using dark red.

• Disclosing State: XDis = {2}. Identified using blue.

• Secret State: XS = {5}. Identified using red.

61

Chapter 4

0start

31

2

4

5 6

b c

a

o1

o2

o1

a

o1

o1 o1

Figure 4.1: System G with the classification of States and Events

Figure 4.1 is the representation of system G considering the desirable behaviour
obtained from the AIC-O and the set of events defined above. This representation
includes the utilization of colours to improve the interpretation and the meaning
of specific states and events, these colours are in accordance with the previous
enumeration of sets of states and events.

From this representation, the application of algorithms 2 and 3 is easy. Starting
from state 0, the algorithm will explore state 1 and state 2. When the algorithm
evolves to state 1, a Tolerable state in the System, the system can only evolve
with the occurrence of vulnerable event a. This means that since b is defendable,
the system will immediately use the mitigation module M and defend event b,
making it impossible to occur. The next state to examine is state 3, which is in the
desirable behaviour and that is the same for the rest of the system, meaning that
the system will not need to deactivate or defend any other events. This means
that the final representation of the system, under the influence of an active attack
and with the sets previously defined will have the following representation.

As observable in the figure above, system G can function in a limited way un-
der the influence of an active attacker. The edge in orange means that the event
associated with it has been defended by Mitigation Module M.

Applying the technique to a real Cyber-Physical System

Utilizing these three algorithms within the technique demonstrates that it is pos-
sible to defend a system from an Actuator-Enablement Attack without revealing
the system’s secret. As shown in Figure 4.2, the results indicate that the system
can be effectively protected while maintaining the confidentiality of the secret
state.

62

Opacity-Based Defense for DFA Against Passive and AE-Attacks

0start

31

2

4

5 6

b c

a

o1

o2

o1

a

o1

o1 o1

Figure 4.2: System G defended against an Active Attacker using the Mitigation
Module M

Since system G is not associated with a real Cyber-Physical System, some as-
sumptions made for the technique do not have significant repercussions. How-
ever, when applied to the simpler Hydra System, mentioned in Chapter 5, some
issues with this approach become evident.

The first and most notable implication is that the technique, at this stage, requires
the system’s current state to be state 0 when an attacker is detected. In a system
like Hydra’s, this assumption is not feasible because the system changes states
based on the occurrence of cyber and physical events. For example, if the sys-
tem’s current state is state 4 when an attacker is detected, it would result in the
immediate loss of all water from its tanks, which is not practical.

Another issue is that algorithms 1, 2, and 3, when combined, unnecessarily tra-
verse the entire system more than once. This can be resolved by utilizing the
output of procedure DoDFS and making a slight modification to it when ap-
plied within Algorithm 1. The output can then be used to determine defensibility,
which will be explored in the next subchapter. This approach demonstrates how
Algorithms 2 and 3 can be omitted, thereby reducing the time complexity of the
technique’s application. This is ought to be explained in the next subsection.

4.2.2 Changing the Approach for the Technique

As mentioned in the previous subsection, the proposed technique has some flaws
related to the current state of the system and the temporal complexity of the al-
gorithm. Therefore, these issues will now be mitigated.

With this new approach, the assumptions regarding the current state of the sys-
tem when a new attacker is detected can be relaxed. This allows the system to

63

Chapter 4

be characterized based on the limitations and type of attacker present. The fol-
lowing list characterizes the three modes of operation that a system can now be
operating in:

• Normal: The system is configured to be functioning in its original configu-
ration. There is no passive or active attacker present, so the system will not
reveal the secret to an external observer.

• Passive Attacker: The system is now configured so that its secret will not be
revealed to the passive observer. This is done through the implementation
of a Supervisor S, by enforcing Current-State Opacity.

• Active Attacker: The system will enter its most restrictive behaviour, with
the activation of Mitigation Module M. By having both Supervisor S and
Mitigation Module M active, the system will mitigate an active attack’s
repercussions, such as revealing the Secret State of the System.

Regarding the second problem related with the proposed technique, as men-
tioned, there are redundant passes through the system, to defend it. This way,
algorithm 1 needs to be changed, to fulfill the premises. The first change is re-
garding Algorithm 1, more specifically, procedure DoDFS. Given that the pro-
cedure is useful because it can traverse the whole system, the only thing to be
changed in it, is line 12. As previously explained, function OP will return 1 if
I(Z) ∈ XS, since the objective is to traverse the whole system, the if condition
associated is therefore removed. Due to the removal of this line in the code, the
Prune procedure will not be necessary, since the system will not need to be anal-
ysed for the existence of Y-states without a successor Z-state, since it will not be
possible due to the changes made.

From the application of this algorithm, the output of procedure DoDFS will be
sufficient to successfully defend the system, therefore Algorithms 2 and 3, can be
removed from the technique, and consequently the grading given for all types of
states, such as , desirable, tolerable, and disclosing. The application of the tech-
nique will only need the existence of the Mitigation Module M, that will decide
its actions based on the systems current state and the sets of controllable and
defendable events.

This way, using system G that was used in the previous subsection 4.2.1, and
keeping the same characteristics, the output from the refined proposed technique
will be the following.

64

Opacity-Based Defense for DFA Against Passive and AE-Attacks

Algorithm 4 FIND-AIC-O
1:
2: procedure FIND-AIC-O(G, OP)
3: AICO.Y ← {y0}, AICO.Z ← ∅, AICO.h← ∅
4: DoDFS(G, y0, AICO, OP)
5: end procedure
6:
7: procedure DODFS(G, y, AICO, OP)
8: for γ ∈ Γ do
9: z← hYZ(y, γ)

10: AICO.h← AICO.h ∪ {(y, γ, z)}
11: if z /∈ AICO.Z then
12: AICO.Z ← AICO.Z ∪ {z}
13: for e ∈ γ ∩ Eo do
14: y′ ← hZY(z, e)
15: AICO.h← AICO.h ∪ {(z, e, y′)}
16: if y′ /∈ AICO.Y then
17: AICO.Y ← AICO.Y ∪ {y′}
18: DoDFS(G, y′, AICO, OP)
19: end if
20: end for
21: end if
22: end for
23: end procedure

Start

0

{0}, {}

1

{0, 1}, {b}

2

{0, 1, 2, 3, 4}, {a, b, c}

6

{0, 1, 2, 3}, {b, c}

7

{0, 3}, {c}

8

{0, 1, 2}, {a, b}

9

{0, 3, 4}, {a, c} 3

{5, 6}4 {5, 6}, {}

5

{2, 5, 6}
10

{5}
11

{2}
12

{2, 5, 6}, {}

13

{5}, {}14

{2}, {}15

{}

{b}

{a, c}

{a, b, c}

{b, c}

{c}

{a, b}

O1

{}

O1

O1

O2

O1

O1

O1

O2

{}

{}

{}

O2

O1

O1

O2

Figure 4.3: Application of the refined Technique to System G

When comparing the results obtained in Figure 4.3 above with the results in Fig-
ure 3.4, the only difference is the existence of a new Z-state, derived from the
Y-state that contains the system’s secret state, state 5. This change is due to the
modifications made in procedure DoDFS, which ensure that the output includes
the Y-state with the secret state and the remainder of the system that would oth-

65

Chapter 4

erwise not be visited.
Assumption 1. To ensure the technique’s feasibility based on the current state of the
system, it must be assumed that there is at least one control decision preventing the system
from evolving towards revealing the secret. In other words, the secret state cannot be part
of the path dictated by any control decision. If no such control decision exists, neither the
Supervisor nor the Mitigation Module M can protect the system.

Although not directly connected with the defense technique, Algorithm 5 in-
cludes a possible procedure description that can be used to identify the set of
Current-States that follow Assumption 1. This algorithm will remove all the
states that are not deemed possible for the systems current-state when an attacker
is detected.

Algorithm 5
1: procedure IDENTIFY POSSIBLE CURRENT-STATES(AICO)
2: while exists a Y-state in AICO that is in the set of Secret-States or a Y-state that

has no successor do
3: if state ∈ XS then
4: Delete all such Y-states in AICO, delete the successor Z-state with control

decision {} and delete all the predecessor Z-states;
5: else
6: Delete all such Y-states in AICO and delete all their predecessor Z-states;
7: end if
8: end while
9: end procedure

Given the output in Figure 4.3, Assumption 1, and Algorithm 5, the system sys-
tem’s reaction to the attacks is described below.

When in the presence of a Passive Attacker, the AIC-O provides a map for a
system administrator to issue control decisions. Based on Assumption 1, the set
of possible current states is XCS = {0, 1, 2, 3, 4, 5}. To obtain this set of states
using Algorithm 5, the first state to be marked as a state to be avoided is state
11, followed by states 13, 14, 15, 7, and 8. States 2 and 10 are the marked next,
as these will lack a successor Z-states that is not marked, followed by states 10
and 12, which are the respective predecessor Z-states of these Y-states. A visual
representation of the system can be observed in Figure 4.4

The remaining states will uncontrollably reveal the secret state. The possible con-
trol decisions for the supervisor are: {{}, {b}, {a, c}}, which ensure that the sys-
tem remains safe from revealing its secret.

In the presence of an Active Attacker, the approach considers the control deci-
sions used before the attacker was active. The next step is identifying vulnerable
and defendable events. A vulnerable event that is not defendable must be con-
sidered active in the control decision, while a defendable event can be disabled.
Given the set of defendable events AD = {c} and the set of vulnerable events
AV = {b, c}:

Considering the possible current states XCS, previously defined, event c has to be
defended, as shown in Figure 4.5. Control decisions {{a, b, c}, {b, c}} will lead to

66

Opacity-Based Defense for DFA Against Passive and AE-Attacks

Start

0

{0}, {}

1

{0, 1}, {b}

2

{0, 1, 2, 3, 4}, {a, b, c}

6

{0, 1, 2, 3}, {b, c}

7

{0, 3}, {c}

8

{0, 1, 2}, {a, b}

9

{0, 3, 4}, {a, c} 3

{5, 6}4 {5, 6}, {}

5

{2, 5, 6}
10

{5}
11

{2}
12

{2, 5, 6}, {}

13

{5}, {}14

{2}, {}15

{}

{b}

{a, c}

{a, b, c}

{b, c}

{c}

{a, b}

O1

{}

O1

O1

O2

O1

O1

O1

O2

{}

{}

{}

O2

O1

O1

O2

Figure 4.4: System G with marked states

marked states if event c is not defended when the system is in state 0. This is the
only state that issues any control decisions in this system. In this particular case,
although the system is left with an active control decision b, which is under the
influence of the active attacker, nothing detrimental can happen to the system by
leaving it active, since the transition is to state 2, which is a final Z-state.

Start

0

{0}, {}

1

{0, 1}, {b}

2

{0, 1, 2, 3, 4}, {a, b, c}

6

{0, 1, 2, 3}, {b, c}

7

{0, 3}, {c}}

8

{0, 1, 2}, {a, b}

9

{0, 3, 4}, {a, c} 3

{5, 6}4 {5, 6}, {}

5

{2, 5, 6}
10

{5}
11

{2}
12

{2, 5, 6}, {}

13

{5}, {}14

{2}, {}15

{}

{b}

{a, c}

{a, b, c}

{b, c}

{c}

{a, b}

O1

{}

O1

O1

O2

O1

O1

O1

O2

{}

{}

{}

O2

O1

O1

O2

Figure 4.5: System G with vulnerable events in red and defendable events in dark
green.

This application successfully proves that it is possible to successfully secure the
system, while relaxing the assumptions for the systems current state to be the
initial state of the system, and reducing the time complexity substantially.

67

Chapter 4

The next section will formally present the technique as this subsection was its
deduction and a simple proof of concept. A practical application of this technique
is provided in chapter 5, where it is shown how it can be applied to a cooling
system as the Hydra adaptation in Figure 5.3.

4.3 Securing a DES with Opacity Against Active At-
tackers

4.3.1 Overview

The technique developed for the dissertation, as previously mentioned, aims to
secure a DES system that is not inherently opaque through the usage of current-
state opacity against the influence of active attackers. Such technique is a novelty
in the field of opacity, as there are not many approaches that study the integration
of an active attacker when studying the opacity, as explained in Chapter 3.

4.3.2 Integrating the Technique

Preliminaries

To apply the technique, the starting ground will be to have the following require-
ments in the system. There is a system, that can be modeled using a DFA, denoted
as G = (X, A, λ, X0), with X being the finite set of events, A denoting the alphabet
of events, and λ representing the transition function. Here, λ(x, θ) = y signifies
that there is a transition labeled by event θ from state x to y. Additionally, X0 is
a subset of or equal to X (X0 ⊆ X), serving as the set of initial states of the sys-
tem. As the technique will make system G be controlled by a supervisor, that will
dynamically enable/disable events of the system so that the post-technique spec-
ification is achieved. Therefore, the alphabet A is partitioned into two disjoint
subsets: A = Ac ∪ Auc, Ac representing the set of controllable and Auc the set of
uncontrollable events, the rules presented in Chapter 2 are followed rigorously
throughout the implementation of the technique. The system is also assumed
to be partially observed, having alphabet A partitioned into two other disjoint
subsets, A = Ao ∪ Auo, Ao representing the set of observable and Auc the set of
unobservable events. The natural projection P : A∗ → A∗o , is defined as

P(ϵ) = ϵ and P(sσ) =

{
P(s)σ, if σ ∈ Ao,

P(s), if σ ∈ Auo

, since a supervisor can only base decisions on observations, a partial-observation
supervisor can be defined as a function SP : P(L(G)) → Γ. The notation SP/G
is used to represent the controlled system and the language generated is denoted
by L(SP/G).

68

Opacity-Based Defense for DFA Against Passive and AE-Attacks

The model of the Actuator Enablement Attack (AE-attack) presupposes that Av ⊆
Ac comprises a set of vulnerable actuator events, which may be either observable
or unobservable. This implies that an attacker possesses the capability to enable
an event, even if the supervisor has disabled it. The set of attacked actuator events
is delineated by Aa

c,v = σa : σ ∈ Av, and Aa = A ∪ Aa
c,v encapsulates all attacked

events. Here, σa symbolizes the occurrence of event σ initially disabled by the
supervisor but subsequently enabled by the attacker.

For the technique it is also assumed that Ad is the set of defendable events, where
Ad ⊆ Av ⊆ Ac. Meaning that the events in Ad are vulnerable in the original
closed-loop system, but the existence of the mitigation module may these to be
defended, meaning that the controllability of events can be partitioned into three
categories:

• Ac \Av - events that can be deactivated directly by the supervisor in the
usual manner, as they are not susceptible to attack.

• Av \Ad - events that cannot be consistently disabled; in other words, for
any σ ∈ Av \ Ad, σa can always be enabled by the attacker, even when σ is
disabled by the supervisor.

• Ad - Events that can be effectively disabled (or defended) by the mitigation
module, despite potentially at a higher cost.

Mathematically, the mitigation module is represented by M.

When applying the technique, the sets previously defined need to be established
and the systems current-state needs to comply with Assumption 1. It is then
possible to apply the technique.

As explained in the previous section, the system has 3 modes of operation, a brief
overview of each is:

• Nominal: Original system configuration with no attackers present, ensur-
ing secret remains unrevealed.

• Passive Attacker: System configured with Supervisor S to enforce Current-
State Opacity, preventing secret disclosure to passive observers.

• Active Attacker: System activates Mitigation Module M alongside Supervi-
sor S to mitigate the impact of active attacks, such as preventing disclosure
of the Secret State.

The algorithm to be applied to the system is depicted in Algorithm 4, and the out-
put will be the AIC-O of the system. Using the AIC-O, the system’s administrator
can adjust control decisions based on the type of attacker and the predefined sets
of events.

It is important to emphasize that this technique does not need to be applied to
the system when an attack is detected; it only needs to be enforced. This means

69

Chapter 4

that to obtain the AIC-O, the person in charge of defending the system can ap-
ply Algorithm 4 while the system is operating under normal conditions, as the
sets of events are predefined. This way, when a passive attacker is detected, the
supervisor can take the control decisions that avoid states that would reveal the
secret. These are the states not included in the set of possible current states, XCS,
obtained by applying Algorithm 5 to the AIC-O, meaning that the system cannot
transition to them.
When the attacker becomes active, the approach remains similar. By knowing the
sets of vulnerable and defendable events, the system will always enable control
decisions involving non-defendable vulnerable events, as these cannot be deac-
tivated. It is important to note that the system’s defendability against an active
attacker depends on the sets of defendable and vulnerable events. For instance,
in the scenario shown in Figure 4.3, if the set of vulnerable events is AV{a, b, c}
and AD{c} is the set of defendable events, it will not be possible to defend the
system. In state 0, the possible control decisions are, {{a, b, c}, {a, b}} leading the
system to naturally transition to states that will reveal the secret.

70

Chapter 5

Case Study

5.1 Hydra System

5.1.1 Introduction

The HYDRA testbed serves as a compact model of an automated water distribu-
tion system, incorporating a physical plant with structures, tanks, and connecting
pipes. Additionally, it features a control system equipped with sensors, actuators,
and microcontrollers. It’s essential to note that the HYDRA testbed diverges from
a system regulation model, where physical quantities aim to achieve predicted
reference values continuously. Instead, it operates as an event-driven system,
with occurrences taking place at irregular intervals that are not predetermined.
Due to the unpredictable timing of events, the HYDRA testbed can be effectively
described using DES.

This testbed, originally developed for a project by a PhD student, will undergo
examination in the presence of an active attacker. The study will specifically focus
on the utilization of opacity to safeguard certain aspects of the system under the
described attack conditions. Notably, all the figures used for this section were
generously provided by the student as part of the project.

5.1.2 Physical Model

The model consists of three tanks, each with the same capacity. A reservoir (S) at
the base level simulates an infinite source of water.

• Placed at the highest level, Tank 1 (T1) has a connecting pipe allowing
gravity-driven water flow to Tank 2 (T2).

• Connected through a pipe at the same height, T2 and T3 behave like com-
municating vessels, influencing water flow based on the water level in each
tank.

71

Chapter 5

Figure 5.1: Hydra System Physical Configuration

Figure 5.2: Sensors in the Water Tanks

• The final tank, T3, has a connecting pipe enabling water flow from T3 to T1,
facilitated by an external pump.

Each tank is equipped with two types of sensors:

• An ultrasonic sensor placed on top of the tank measuring the water level.

• A pressure sensor measuring the air pressure created by the fluid in which
the sensor is immersed.

The passage of water from T1 to T2 is regulated by an electromechanical valve
(V12). Another electromechanical valve (V23) regulates water flow between T2
and T3.

Both V12 and V23 can be opened or closed mechanically.

Tank T1 receives water through two ways:

72

Case Study

• A pump (P1) inside reservoir S.

• A pump (P2) taking water from tank T3.

Both P1 and P2 can be turned on or off.

There is also a flow meter between T3 and T1 measuring the flow rate of water
passage.

Finally, each tank is equipped with pipes with manual valves (MV1, MV2, MV3)
that can be opened or closed manually. These are used in safety cases or as fault
simulations.

Figures 5.1 and 5.2 are provided to help visualize how the system functions.

5.1.3 General Architecture

The general architecture of the system is provided to establish a clear definition,
considering its detachment from the rest of the dissertation.

Sensors transmit measurements from the physical plant to an Arduino labelled
"Sensori", which organizes the data into a unified string structured as follows:

ultr1 ∗ ultr2 ∗ ultr3|pres1 ∗ pres2 ∗ pres3|media1 ∗media2 ∗media3| f low (5.1)

The data is then transmitted serially to the Raspberry labelled "Sensori." This
Raspberry device is responsible for extracting information from the received string,
encrypting the data, and subsequently retransmitting it within a Modbus TCP
packet. This process ensures that the values travel securely over the network. The
encrypted data are received by another Raspberry labelled "Decrypting," which
possesses the capability to decipher the information. The decrypted data are then
forwarded to the PLC by encapsulating them into a new Modbus TCP packet.

In order to transmit data, the Raspberry Sensori functions as a Modbus client,
establishing a connection with the server running on the Raspberry
Decrypting/Encrypting. The Raspberry Decrypting also establishes a new client-
server connection with the PLC, in which it operates as a client.

Initially, the Raspberry Decrypting/Encrypting queries the PLC regarding the
operations to be performed. The PLC responds by sending information on the
states to be assumed by the pumps and motorized valves, represented by Boolean
values [1,0].

Subsequently, the Raspberry Decrypting encrypts the data and transmits it to the
Raspberry Actuators. The latter is capable of deciphering the data and forward-
ing it to the Arduino Actuators, which is responsible for issuing commands to the
physical plant.

73

Chapter 5

5.1.4 Different Configurations

From the given physical system, two distinct configurations have been devised,
representing alternative projects that can be loaded onto the PLC software.

3 Tanks Configuration: The primary objective of this configuration is to maintain
a continuous flow of water within the three tanks while endeavoring to distribute
it uniformly. This process unfolds in two main phases:

• Set-up Phase: In this initial stage, water is extracted from reservoir S and
initiated into the distribution across the three tanks.

• Cyclical Phases: The subsequent phases involve repetitive cycles where a
consistent quantity of water circulates among the multiple tanks.

2 Tanks Configuration: This configuration, involves the utilization of only tanks
T1 and T3. Notably, its distinctive feature lies in the faster dynamics it exhibits
compared to the 3 tanks configuration. As a result, it proves more suitable for
assessing the system’s responsiveness to potential cyber-attacks.

5.2 Adapting the Hydra System - A simpler approach

To create a simpler environment in which the Hydra System could be applied,
the following environment was created. Considering Figure 5.1, and changing so
that T2 and T3 are merged into a single tank, T2, that has twice the capacity of
T1. In this situation, the following description of the system normal functioning
is considered.

Identifier Meaning
T1 Tank 1

T2 Tank 2, twice the size of T1

V1 Valve 1, connects T1 to T2

P1 Pump 1, connected to T1 from the outside

P2 Pump 2, connected to T1 from T2

Table 5.1: Information about components.

The system is deployed to grant the water supply for a cooling system. It is
assumed that the external source of water is limited, so the usage of P1 is re-
stricted. The set of states is X = {0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17},
the set initial states is X0 = {0}, the alphabet A = {a, b, c, d, e, f , g, h, i, j}, and
the transition function depicted in Figure 5.3. The set of controllable events is

74

Case Study

Ac = {a, c, d, f , h, j}, Ao = {b, e, g, i} is the set of observable events, and the se-
cret states are in set XS = {5, 11}. The selection of secret states was based on the
characteristics of the system in these states. In states 5 and 11, T1 is at the lowest
capacity allowed in the system, 10%, while V1 remains open. Consequently, the
tank is losing water in both states, making these the riskiest states of the system.
Therefore, these states were chosen.

To better understand the system’s normal functioning, the following description
outlines its typical evolution, emphasizing the sequence of steps over the various
states of the system. The meaning of each state is also defined in Table 5.4.

0

start

1 2 3

4

5

6

7

8

9

10

11121314

15

16

17

a b c

d

e

f

a

b

c

d

g

fab

c

h

i

j

Figure 5.3: DES of a simpler Hydra
System.

State T1 T2 V1 P1 P2 ei

0 0 0 0 0 0
a

1 0 0 0 1 0
b

2 100 0 0 1 0
c

3 100 0 0 0 0
d

4 100 0 1 0 0
e

5 10 45 1 0 0
f

6 10 45 0 0 0
a

7 10 45 0 1 0
b

8 100 45 0 1 0
c

9 100 45 0 0 0
d

10 100 45 1 0 0
g

11 10 90 1 0 0
f

12 10 90 0 0 0
a

13 10 90 0 1 0
b

14 100 90 0 1 0
c

15 100 90 0 0 0
h

16 100 90 0 0 1
i

17 10 45 0 0 1
j

6 10 45 0 0 0 -

Figure 5.4: Meaning of the states of the
Hydra Adaptation.

The system operates with two tanks, Tank 1 (T1) and Tank 2 (T2), both initially
empty. The sequence begins with Pump 1 (P1) activating in State 1, filling T1 until
it reaches full capacity by State 2. P1 deactivates in State 3, followed by Valve 1
(V1) opening in State 4, allowing water from T1 to flow into T2 by State 5. Once

75

Chapter 5

90% of T1’s water has transferred to T2, V1 closes in State 6, stabilizing T1 at 10%
and T2 at 45% capacity.

The cycle repeats with P1 activating again in State 7, filling T1 to 100% in State 8,
and then deactivating in State 9. V1 opens in State 10, allowing T1 to empty to
10% while T2 increases to 90% by State 11. V1 then closes in State 12, stabilizing
T1 at 10% and T2 at 90% in readiness for the next cycle.

The second phase involves P1 re-engaging in State 13, refilling T1 to 100% by
State 14, and then deactivating in State 15. P2 opens in State 16, allowing Pump
2 (P2) to return water from T2 to T1, with the system stabilizing in State 17 at T1:
10%, T2: 45%, and turning it off, bringing the system to State 6, and repeating the
operational sequence.

Overall, the system cycles through a series of steps. P1 fills T1, and then V1 trans-
fers water from T1 to T2. This process ensures that T1 and T2 reach the correct lev-
els before stabilizing. Each cycle involves controlled movements of water through
pump activation, valve openings, and closures, maintaining a consistent pattern
between the two tanks.

5.3 Defending the Hydra System with the Proposed
Approach

This section is dedicated to the application of the security technique to the Hydra
system that has been described in previous section 5.2. As explained in Chapter
4, an attacker does not need to be detected, for Algorithm 4 to be applied. Based
on this, the following subsection will explain how a system administrator would
react to the attackers, and how Algorithms 4 and 5 are applied and the usefulness.

The application of this technique in a system like the adapted Hydra system is
important because the technique is based purely on a theoretical approach. This
system will demonstrate the limitations of such a technique. In this specific sys-
tem, all events associated with the sets of controllable and observable events are
applicable in a real-world context. Events related to physical changes in the sys-
tem are in the set of controllable events, while events related to sensor readings
are in the set of observable events.

In a large-scale Hydra system, if there is no visual contact with the system’s
pumps and valves, it is possible to turn these on or off, but the physical process
remains unobservable. In contrast, sensor readings cannot be controlled when the
values reach the desired threshold, but these values are observable, for example,
through a Human Machine Interface (HMI).

For this technique, the main idea is to have a real system, create a DFA model of
the system, define the sets of events, and apply algorithms 4 and 5. By applying
the technique, a system like a Supervisor will know the control decisions to have
enabled and disabled, based on the system’s current-state and the type of active
attacker. The Mitigation Module M that is referenced in Chapter 4, can be viewed

76

Case Study

like a physical switch for the deactivation of a controllable event, such as turning
on a Pump or opening a valve.

5.3.1 Nominal Functioning

It is considered that the system is functioning normally when there are no at-
tackers present. The system’s responsible personnel, having all the necessary
information, may apply the technique to obtain the AIC-O of the simpler Hydra
system. To achieve this, Algorithm 4 needs to be applied using the previously
defined sets of events and states, these being:

• The set of states is X = {0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17}.

• The initial state set is X0 = {0}.

• The alphabet is A = {a, b, c, d, e, f , g, h, i, j}.

• The set of controllable events is Ac = {a, c, d, f , h, j}.

• The set of observable events is Ao = {b, e, g, i}.

• The secret states are in the set XS = {5, 11}.

After obtaining the AIC-O of the system, there is nothing for the system or the
administrator to do, since no attackers have been detected.

5.3.2 Passive attacker in the system

When a passive attacker is detected in the system, Supervisor S must immedi-
ately enforce opacity. This is achievable due to the existence of the AIC-O and
Assumption 1, which guarantee the supervisor’s control through the system’s
control actions. The system’s current state must be within the set of events out-
put by Algorithm 5; otherwise, the Assumption is violated. The algorithm is also
useful when combined with the Supervisor, as it identifies states that need to be
avoided.

For example, in the Hydra System, the algorithm will identify secret-state 7, state
8, and state 6 for avoidance, followed by secret-state 15, state 16, and state 14.
Since state 3 and state 11 have other Y-state successors, they remain active in
the system. Thus, all states are potentially current states of the system, except
those specifically marked for avoidance. Using this information, the Supervisor
S deactivates control decisions leading to these states, as illustrated in Figure 5.6.

When the supervisor is active in the system and the attacker is passive, it ensures
that the system’s secrets will not be violated. Depending on the current state,
certain functionalities can be preserved, as the application of the technique is not
overly restrictive.

From this system state, the system can either return to its original behavior or the
attacker can escalate to an active type.

77

Chapter 5

{0}start 0

{0}, {} 1

{0, 1}, {a} 2

{2}
3

{2}, {}

4

{2, 3}, {c}

5

{2, 3, 4}, {c, d}

6

{5}
7

{5}, {}

8

{5, 6}, { f }

9

{5, 6, 7}, { f , a} 10

{8}
11

{8}, {}

12

{8, 9}, {c}

13

{8, 9, 10}, {c, d} 14

{11}
15

{11}, {}

16

{11, 12}, { f }

17

{11, 12, 13}, {a, f } 18

{14}
19

{14}, {}

20

{14, 15}, {c}

21

{14, 15, 16}, {c, h} 22{17}
23

{17}, {} 24

{17, 6}, {j}

25

{6, 7, 17}, {a, j}26

{}

{a}

b

{}

{c}

{c, d} e

{}

{ f }

{a, f }

b

{} {c}

{c, d}

g

{} { f }

{a, f }

b

{} {c}

{c, h}

i

{}

{j}

{a, j}

b

Figure 5.5: AIC-O Hydra System

78

Case Study

{0}start 0

{0}, {} 1

{0, 1}, {a} 2

{2}
3

{2}, {}

4

{2, 3}, {c}

5

{2, 3, 4}, {c, d}

6

{5}
7

{5}, {}

8

{5, 6}, { f }

9

{5, 6, 7}, { f , a} 10

{8}
11

{8}, {}

12

{8, 9}, {c}

13

{8, 9, 10}, {c, d} 14

{11}
15

{11}, {}

16

{11, 12}, { f }

17

{11, 12, 13}, {a, f } 18

{14}
19

{14}, {}

20

{14, 15}, {c}

21

{14, 15, 16}, {c, h} 22{17}
23

{17}, {} 24

{17, 6}, {j}

25

{6, 7, 17}, {a, j}26

{}

{a}

b

{}

{c}

{c, d} e

{}

{ f }

{a, f }

b

{} {c}

{c, d}

g

{} { f }

{a, f }

b

{} {c}

{c, h}

i

{}

{j}

{a, j}

b

Figure 5.6: AIC-O of the Hydra System with marked States and Transitions

79

Chapter 5

5.3.3 Active attacker in the system

For the purposes of this technique, it is assumed that the system’s attacker may
gain influence while initially passive, eventually becoming active. As previously
explained, when such an event occurs, two new sets of events come into consid-
eration: EV for vulnerable events and ED for defendable events.

When the Supervisor enforces opacity, some control decisions may be compro-
mised depending on disabled events in the presence of the active-attacker. There-
fore, with both sets of events defined, the procedure is as follows:

1. Every event that belongs to the set of vulnerable events EV but does not be-
long to the set of defendable events ED must always be considered enabled,
because its disablement cannot be assured.

2. Any defendable event that needs to be deactivated becomes a task for the
mitigation module. These events are specifically identified as those in ED
that are intended to be disabled to maintain system security, although to
great cost to the system.

As previously explained, both sets EV and ED are defined for the technique. There
is no mechanism that detects which specific events are in these sets. For this
example, consider EV = {a, c, d} and ED = {d}. The first step involves treating
the vulnerable events as active. In this specific case, when applied to the AIC-O in
Figure 5.6, the transitions leading to marked states are in danger because events
c and d are now active.

It is known that event d is defendable, although at great cost to the system. There-
fore, this event must be defended to prevent the secret from being revealed to the
active attacker. Once these defensive actions are employed into the system, it
will keep this configuration until the active attacker is removed from it, resuming
then the normal operation.

5.4 Conclusions regarding the Case-Study and Future
Work

This application of the technique successfully ensures that the active attacker can-
not reveal the secret, thus maintaining the security and opacity in this system.
Although the system’s functionality is reduced, it is ensured that opacity is used
against both passive and active attackers, which is a something new for the field,
and the current-state of the system is not limited to the initial-state of the system,
something that in a Physical system like the Hydra is not feasible .

The usage of the AIC-O is of great importance because it provides a map for
the system’s administrator to understand the control decisions being issued. A
clear limitation of the technique arises when an active attacker is detected in the
system. Due to the lack of literature on Intrusion-Detection Systems with DFA

80

Case Study

and Opacity, and the fact that most literature defines the sets of vulnerable events,
defining these sets was also mandatory for applying the technique. Although this
approach is not feasible in practice, it remains an important and relevant field
for future work. Future developments should aim to create a comprehensive
technique that does not require predefined sets of events and can react to new
types of attackers that have not been previously identified, such as using other
sets of vulnerable events.

Another interesting future approach concerns the definition of defendable events
and the relaxation of Assumption 1. The definition of a defendable event is cur-
rently done without any specific requirements or assumptions beforehand, which
may lead to situations where the technique cannot effectively defend the system.
Understanding the rules that could improve the criteria for an event to be de-
clared defendable, thereby reducing these instances, is a promising direction for
future research. Additionally, while Assumption 1 is less restrictive than the orig-
inal works on which the technique is based, it still imposes significant constraints
on the normal evolution of the system. Exploring ways to relax this assumption
without compromising security could also enhance the technique’s practical ap-
plicability.

5.5 Summary

Throughout this chapter, the focus was on applying a theoretical security tech-
nique to the Hydra test-bed. The Hydra system, initially introduced with its
physical model, architecture, and various configurations, served as the backdrop
for demonstrating the technique’s applicability. The emphasis was on defend-
ing the system against both passive and active attackers using predefined sets of
controllable and observable events.

The technique’s effectiveness was explored in scenarios where normal system
functioning, detection of passive attackers, and response to active threats were
analyzed.

The chapter concluded by outlining the limitations encountered, such as the re-
liance on predefined event sets and assumptions about attacker behavior. Future
work was suggested to enhance the technique’s adaptability and responsiveness
to emerging threats, aiming for more robust and autonomous defense mecha-
nisms in dynamic system environments.

81

Chapter 6

Methodology and Planning

6.1 Introduction

This chapter delves into the systematic approach employed to address the re-
search problem. It unfolds by detailing a phased work plan and providing an up-
date on the progress made to date. The identification of risks takes center stage,
where we consider their probabilities, potential impacts, and proposed mitiga-
tion. The meticulous planning and methodology outlined here lay a robust foun-
dation for the ensuing exploration and analysis phases of the study. As this is
being written for the intermediary delivery, this chapter is susceptible to change,
nonetheless, there is an estimation of how the work is going to be divided, and
the expected progress.

6.2 Methodology

6.2.1 Introduction

In this section, a methodology for addressing the identified problem in the dis-
sertation is provided. The chosen research paradigm and methodology for this
work is Design Science Research (DSR). A concise definition of how this method-
ology operates is presented, followed by its application to this dissertation. The
utilization of DSR is expected to bring greater organization to the steps involved
and enhance the understanding of the identified problem.

6.2.2 Design Science Research

Design Science Research (DSR) is a problem-solving paradigm that seeks to en-
hance human knowledge by systematically creating and applying innovative ar-
tifacts, [Brocke et al., 2020]. In essence, DSR strives to address real-world prob-
lems and enhance the environment in which these artifacts are implemented. This

83

Chapter 6

research approach emphasizes the importance of practical solutions and the iter-
ative development of tangible contributions to both knowledge and application
domains. As outlined in [Brocke et al., 2020], the implementation of Design Sci-
ence Research (DSR) projects has relied on various process models, with partic-
ular distinction given to the framework proposed in [Peffers et al., 2007]. This
Design Science Research Methodology (DSRM) identifies six fundamental steps,
each can briefly be defined as:

• Problem identification and motivation - This step defines the research prob-
lem and justifies the need for a solution, motivating both the researcher and
the audience. Resources required include understanding the problem’s cur-
rent state and its importance.

• Definition of the objectives for a solution - The solution’s objectives are
derived from the problem definition and an understanding of what is pos-
sible and feasible. These objectives can be either quantitative, specifying
improvements over current solutions, or qualitative, describing how a new
artifact is expected to address previously unexplored problems. The ratio-
nal inference of objectives from the problem specification is essential.

• Design and development - An artifact is created, representing any designed
object wherein a research contribution is included in the design. This in-
volves outlining the artifact’s desired functionality and architecture, fol-
lowed by the actual creation of the artifact.

• Demonstration - This activity demonstrates using the artifact to solve in-
stances of the problem, such as through experimentation, simulation, case
studies, or proofs.

• Evaluation - The evaluation assesses how effectively the artifact supports a
solution to the problem. It entails comparing solution objectives to observed
results from using the artifact. Evaluation formats vary based on the prob-
lem venue and the artifact. Researchers can decide whether to iterate for
improvement or proceed to communication, leaving further enhancements
for subsequent projects.

• Communication - All aspects of the problem and the designed artifact are
communicated to relevant stakeholders. The choice of communication meth-
ods depends on research goals and the audience, which may include prac-
ticing professionals.

The steps given were adapted from [Brocke et al., 2020].

This process will be employed in the methodology of this dissertation. Subsection
6.2.3 provides detailed integration.

6.2.3 Applying DSR in the dissertation

From the initial division of objectives in the introduction of this work, there is al-
ready a preliminary alignment with the steps outlined in this methodology. How-

84

Methodology and Planning

ever, a more detailed integration can be specified through a comprehensive list of
steps, similar to the one provided in the previous subsection.

• Problem identification and motivation - The problem defined for this dis-
sertation is the usage of security by opacity against active attacks in DES.
DES can be used to describe many systems that are used regularly on a
daily-basis, and active attacks are the most predominant nowadays. The
application of opacity in this context aims to bridge a literature gap, given
the current lack of investigation into its usage in this specific scenario.

• Definition of the objectives for a solution - The primary goal of the dis-
sertation is to formulate the proposed technique, aiming for a best-case
scenario where it has a quantifiable impact on current security techniques.
Additionally, the exploration will consistently emphasize the qualitative as-
pect, given the limited literature on this specific problem.

• Design and development - The development of the proposed-technique to
protect a system from a specific active attack, using opacity.

• Demonstration - This topic is addressed through the usage of the Hydra
System to create a case study, where the proposed technique will be em-
ployed and tested.

• Evaluation - Upon applying the proposed technique in the case study, con-
clusions regarding its utility and effectiveness will be drawn. This entails
assessing whether the technique can effectively safeguard a representation
of a real system. Some limitations may arise due to the limited amount of
literature on the topic, potentially making it more challenging to address
difficulties when applying the technique to the system.

• Communication - Given that this is an academic dissertation, that is being
done with coordinators from the University of Coimbra and University of
RomaTre, bi-weekly meetings are held to discuss progress and address de-
fined objectives. These meetings involve collaborative discussions among
all parties to make informed choices and ensure comprehensive develop-
ment.

85

Chapter 7

Conclusion

In conclusion, this study has successfully introduced and applied a novel security
technique using opacity against active attackers within a DFA. This technique,
distinct from previous approaches, addresses the challenge of maintaining sys-
tem confidentiality and integrity in the face of Actuator-Enablement attacks, a
type of active threat. By adapting theoretical foundations into practical imple-
mentations, Algorithms 4 and 5 demonstrate how system administrators can ef-
fectively manage control decisions against both passive and active attacks, using
the AIC-O framework to strategically map out responses.

The efficacy of the developed technique was validated through practical experi-
ments within the Hydra system, showcasing its ability to enhance defendability
against various attack scenarios. Notably, the study highlights the importance
of defining defendable events within the AIC-O framework, particularly in sce-
narios involving active attackers. While limitations were identified, such as the
reliance on predefined sets of events, these findings underscore areas for future
research to explore more adaptive techniques capable of dynamically responding
to emerging threats.

Furthermore, this dissertation underscores the need for refining assumptions to
enhance system defendability. While the developed technique forms a robust
foundation, future advancements should focus on reducing constraints on system
evolution and establishing clearer criteria for event defendability. These refine-
ments are crucial for advancing intrusion detection systems and ensuring system
integrity in dynamic cybersecurity scenarios.

In summary, this research bridges theoretical insights with practical applications
to develop a pioneering security technique tailored for DES, specifically DFAs,
using opacity to safeguard against both passive and active attacks. Moving for-
ward, continued refinement and exploration of adaptive security measures will
further contribute to the field, effectively addressing evolving cybersecurity chal-
lenges.

87

References

Badouel, E., Bednarczyk, M., Borzyszkowski, A., Caillaud, B., and Darondeau, P.
(2007). Concurrent secrets. Discrete Event Dynamic Systems, 17:425–446.

Barcelos, R. J. and Basilio, J. C. (2023). Ensuring utility while enforcing current-
state opacity. IFAC-PapersOnLine, 56(2):4595–4600.

Basilio, J., Hadjicostis, C., and Su, R. (2021). Analysis and Control for Resilience
of Discrete Event Systems: Fault Diagnosis, Opacity and Cyber Security.

Battisti, F., Bernieri, G., Carli, M., Lopardo, M., and Pascucci, F. (2018). Detecting
integrity attacks in iot-based cyber physical systems: a case study on hydra
testbed. In 2018 Global Internet of Things Summit (GIoTS), pages 1–6.

Brocke, J. v., Hevner, A., and Maedche, A. (2020). Introduction to Design Science
Research, pages 1–13.

Bryans, J. W., Koutny, M., Mazaré, L., and Ryan, P. Y. (2008). Opacity generalised
to transition systems. International Journal of Information Security, 7(6):421 –
435.

Bryans, J. W., Koutny, M., and Ryan, P. Y. (2005). Modelling opacity using petri
nets. Electronic Notes in Theoretical Computer Science, 121(SPEC. ISS.):101 –
115.

Carvalho, L. K., Wu, Y.-C., Kwong, R., and Lafortune, S. (2018). Detection and
mitigation of classes of attacks in supervisory control systems. Automatica,
97:121–133.

Cassandras, C. and Lafortune, S. (2010). Introduction to Discrete Event Systems,
page 800.

Falcone, Y. and Marchand, H. (2015). Enforcement and validation (at runtime) of
various notions of opacity. Discrete Event Dynamic Systems, 25:531–570.

Fritz, R. and Zhang, P. (2023). Detection and localization of stealthy cyber at-
tacks in cyber-physical discrete event systems. IEEE Transactions on Automatic
Control.

Hélouët, L., Marchand, H., and Ricker, L. (2018). Opacity with powerful attackers.
IFAC-PapersOnLine, 51(7):464–471.

89

Chapter 7

Lafortune, S., Lin, F., and Hadjicostis, C. N. (2018). On the history of diagnosabil-
ity and opacity in discrete event systems. Annual Reviews in Control, 45:257–
266.

Mazaré, L. (2004). Using unification for opacity properties. Proceedings of the
4th IFIP WG1, 7:165–176.

Meira-Góes, R., Wintenberg, A., Matsui, S., and Lafortune, S. (2023). Mdesops:
An open-source software tool for discrete event systems modeled by automata.
IFAC-PapersOnLine, 56(2):6093–6098.

Oliveira, S., Leal, A. B., Teixeira, M., and Lopes, Y. K. (2023). A classification
of cybersecurity strategies in the context of discrete event systems. Annual
Reviews in Control, 56:100907.

Partovi, A., Jung, T., and Hai, L. (2020). Opacity of discrete event systems with
active intruder.

Peffers, K., Tuunanen, T., Rothenberger, M., and Chatterjee, S. (2007). A design
science research methodology for information systems research. Journal of
Management Information Systems, 24:45–77.

Ramadge, P. and Wonham, W. (1989). The control of discrete event systems.
Proceedings of the IEEE, 77(1):81–98.

Rosa, L., Alves, P., Cruz, T., Simões, P., and Monteiro, E. (2015). A compara-
tive study of correlation engines for security event management. In Iccws
2015-The Proceedings of the 10th International Conference on Cyber Warfare
and Security, page 277.

Rosa, L., Cruz, T., de Freitas, M. B., Quitério, P., Henriques, J., Caldeira, F., Mon-
teiro, E., and Simões, P. (2021). Intrusion and anomaly detection for the next-
generation of industrial automation and control systems. Future Generation
Computer Systems, 119:50–67.

Saboori, A. and Hadjicostis, C. N. (2011a). Verification of k-step opacity and
analysis of its complexity. IEEE Transactions on Automation Science and
Engineering, 8(3):549–559.

Saboori, A. and Hadjicostis, C. N. (2011b). Verification of infinite-step opac-
ity and complexity considerations. IEEE Transactions on Automatic Control,
57(5):1265–1269.

Saboori, A. and Hadjicostis, C. N. (2013). Verification of initial-state opacity in
security applications of discrete event systems. Information Sciences, 246:115–
132.

Tong, Y., Cai, K., and Giua, A. (2018). Decentralized opacity enforcement in dis-
crete event systems using supervisory control. In 2018 57th Annual Conference
of the Society of Instrument and Control Engineers of Japan (SICE), pages 1053–
1058.

90

References

Tong, Y., Ma, Z., Li, Z., Seatzu, C., and Giua, A. (2016). Supervisory enforcement
of current-state opacity with uncomparable observations. pages 313–318.

Tong, Y., Wang, Y., and Giua, A. (2022). A polynomial approach to verifying
the existence of a threatening sensor attacker. IEEE Control Systems Letters,
6:2930–2935.

Yao, J., Li, S., and Yin, X. (2024). Sensor deception attacks against security in
supervisory control systems. Automatica, 159.

Yao, J., Yin, X., and Li, S. (2020). On attack mitigation in supervisory control sys-
tems: A tolerant control approach. In 2020 59th IEEE Conference on Decision
and Control (CDC), pages 4504–4510.

Yin, X. (2015). A new approach for enforcing opacity via supervisory control for
partially-observed discrete-event systems.

Zheng, S., Shu, S., and Lin, F. (2023). Modeling and control of discrete event sys-
tems under joint sensor-actuator cyber attacks. IEEE Transactions on Control
of Network Systems.

91

Appendices

93

Appendix A

Planning

A.1 Planning for work after the Intermediate Deliv-
ery

The work plan for this dissertation involved several key steps:

Starting with a foundational phase, the initial focus is on acquiring comprehen-
sive knowledge about DES and understanding their characteristics. This serves as
a crucial building block, facilitating a more straightforward exploration of opac-
ity.

Following this phase, the next step is a detailed literature review. The objective
is to gather state-of-the-art information on cybersecurity in DES, with a specific
emphasis on active attacks and the implementation of security through opacity.

Having a solid understanding of the fundamental concepts, the subsequent phase
involves the development of a security technique. This technique aims to effec-
tively defend DES against the identified types of attacks.

With the security technique in place, the dissertation progresses to a practical
application through a case study. The Hydra System is chosen as the subject for
this study. The application of the developed security technique to this real-world
scenario allows for a thorough analysis of results and the drawing of conclusions
regarding the system’s security and resilience against the specified attack.

In essence, this approach ensures a logical and comprehensive progression, from
basic knowledge acquisition to the practical application and analysis of a devel-
oped security technique within the context of the Hydra System.

A.1.1 Planning for the next phase

Considering that the next phase of work relies heavily on in-person collaboration,
the work plan can be divided as follows:

95

Appendix A

• During January to mid-February - Focus on the intermediate delivery and
presentation. After completing these, return to the literature review. Iden-
tify the type of cyber-attack that best aligns with the dissertation, focusing
on active attacks against DES.

• Mid-February to mid-March - Around this period, in-person work will
commence, facilitating a smoother flow of progress. Develop a more de-
tailed understanding of the Hydra System, starting with a representation
using a DES. Based on this representation and the previously studied at-
tacks, create a simple representation of a specific attack on the system, initi-
ating the development of a proposed technique for its defense.

• Mid-March to mid-April - During this period, fully develop the proposed
technique so that the case study can begin execution. Depending on progress,
ideally, start drafting conclusions regarding the usefulness and effectiveness
of the technique. This phase also allows for considering and implementing
possible upgrades or changes based on the ongoing progress and findings.

• Mid-April to the end of May - As this marks the final period for in-person
work, there will be a priority in completing as much of the work that re-
quires physical presence as possible.

• June - Dedicate time to work on the dissertation document, aiming to con-
solidate all achieved objectives. Ensure that the document is comprehensive
and ready for presentation.

Throughout the specified months, it is understood that documentation for the
dissertation document is being recorded. This approach ensures greater preci-
sion in capturing the occurrence of events as they happen, rather than relying on
retrospective documentation at the end.

In Appendix B, there is a Gantt Chart that provides a condensed division of work
for the tasks that were completed, along with their duration.

96

Appendix B

Gantt Chart with a Condensed
Division of Work

97

Chapter 7

M
a

ste
rs T

h
e

sis - Jo
ã

o
 M

e
lo

B
a

ckg
ro

u
n

d
 a

n
d

 in
tro

d
u

ctio
n

 to
 D

E
S

 th
e

o
ry

W
rite

/U
p

d
a

te
 th

e
 T

h
e

sis D
o

cu
m

e
n

t

Lite
ra

tu
re

 R
e

vie
w

A
d

a
p

t th
e

 H
Y

D
R

A
 syste

m

C
o

m
b

in
e

 th
e

 te
ch

n
iq

u
e

s

D
e

�
n

e
 th

e
 P

ro
p

o
se

d
 T

e
ch

n
iq

u
e

D
e

�
n

e
 th

e
 sim

p
le

r H
yd

ra
 syste

m

A
p

p
ly th

e
 T

e
ch

n
iq

u
e

 T
h

e
o

re
tica

l

U
p

d
a

te
 th

e
 T

e
ch

n
iq

u
e

 - C
h

a
n

g
e

 A
ssu

m
p

tio
n

s a
n

d
 A

lg
o

rith
m

A
p

p
ly U

p
d

a
te

d
 te

ch
n

iq
u

e
 to

 th
e

 S
im

p
le

r H
yd

ra
 S

yste
m

1
1

1
8

2
5

0
2

0
9

1
6

2
3

3
0

0
6

1
3

2
0

2
7

0
4

1
1

1
8

2
5

0
1

0
8

1
5

2
2

2
9

0
5

1
2

1
9

2
6

0
4

1
1

1
8

2
5

0
1

0
8

1
5

2
2

2
9

0
6

1
3

2
0

2
7

0
3

1
0

1
7

2
4

0
1

0
8

1
5

2
2

2
9

S
e

p
 2

0
2

3
O

ct 2
0

2
3

N
o

v
 2

0
2

3
D

e
c 2

0
2

3
Ja

n
 2

0
2

4
F

e
b

 2
0

2
4

M
a

r 2
0

2
4

A
p

r 2
0

2
4

M
a

y
 2

0
2

4
Ju

n
 2

0
2

4
Ju

l 2
0

2
4

→

D
is

s
e

r
ta

tio
n

 G
a

n
tt

R
e

a
d

-o
n

ly
 v

ie
w

, g
e

n
e

ra
te

d
 o

n
 2

6
 Ju

n
 2

0
2

4

98

	Introduction
	Context and Motivation
	Objectives and Contributions
	Structure

	Background
	Introduction
	Discrete Event Systems
	Formal Languages and Finite Automata
	Alphabets and Words
	Operators on Words
	Languages
	Operators on Languages

	Deterministic Finite Automata (DFAs)
	Definition
	Languages of DFAs
	Modeling with deterministic automata

	Nondeterministic finite automata
	Definition
	Languages of a NFAs
	Observer of a partially observable system: Models and Constructions

	Supervisory Control
	Components - Plant, supervisor and closed-loop system
	Representing a Supervisor as a DES and closed-loop system

	Opacity in DES
	Introduction
	Concept of Opacity
	Verification of Opacity
	Enforcing Opacity

	Summary

	State of the Art
	Introduction
	Research Regarding primary objectives of Work
	Methodology for the Systematic Review
	Active Attacks in DES
	Opacity Against Active Attackers in DES

	Enforcing opacity and Attack detection followed by mitigation
	Enforcement of Current-State opacity
	Detection and Mitigation of an Active Attack

	Discussion of the Literature and Gap Analysis
	Systems to be Considered and Security by opacity
	Opaque System by default
	Opaque System through controller enforcement

	Opacity and Active Attackers
	Summary

	Opacity-Based Defense for DFA Against Passive and AE-Attacks
	Introduction
	Enforce opacity and mitigate attacks via supervisory control
	First Application of the security technique and its Discoveries
	Changing the Approach for the Technique

	Securing a DES with Opacity Against Active Attackers
	Overview
	Integrating the Technique

	Case Study
	Hydra System
	Introduction
	Physical Model
	General Architecture
	Different Configurations

	Adapting the Hydra System - A simpler approach
	Defending the Hydra System with the Proposed Approach
	Nominal Functioning
	Passive attacker in the system
	Active attacker in the system

	Conclusions regarding the Case-Study and Future Work
	Summary

	Methodology and Planning
	Introduction
	Methodology
	Introduction
	Design Science Research
	Applying DSR in the dissertation

	Conclusion
	References
	Appendix Planning
	Planning for work after the Intermediate Delivery
	Planning for the next phase

	Appendix Gantt Chart with a Condensed Division of Work

