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Abstract

An Intrusion detection system (IDS) is an essential component in information
security, offering monitoring capabilities across various scenarios and alerting for
possible breaches in security. The visibility and processing capabilities of these
systems become an essential aspect of their effectiveness.

The extended Berkeley Packet Filter (eBPF) is a technology that allows dynamic
kernel modifications, enabling traffic analysis very early in the process through
the eXpress Data Path (XDP). The level at which eBPF operates and its perfor-
mance makes it an excellent addition to an IDS. Furthermore, the deployment of
eBPF can extend to the hardware domain.

In the realm of eBPF-IDS solutions, when it comes to the mechanism by which
intrusions are detected, the use Machine Learning (ML) emerges as a new area of
research. Moreover, the incorporation of ML with eBPF in the hardware domain
is relatively unexplored, suggesting, that further investigation should take place.

This thesis explores the integration of eBPF and IDS, developing a proof of con-
cept that uses both technologies. The developed solution incorporates a Random
Forest (RF) model with eBPF to differentiate between normal traffic and various
types of port scans. Additionally, the proposed method can partially operate in
the hardware domain using XDP Offload, enhancing its performance and effi-
ciency.

The evaluation of the final solution presented promising results. The system pos-
sessed high packet processing capabilities and effective detection in the domain
of port scans. This suggests that real-world scenarios could benefit from imple-
menting this type of solution.

Keywords

extended Berkeley Packet Filter, Intrusion Detection System, Machine Learning,
Port Scanning, eXpress Data Path
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Resumo

Um Sistema de Deteção de Intrusões (IDS) é um componente essencial na se-
gurança da informação, oferecendo capacidades de monitorizar vários cenários
e alertar para possíveis intrusões. A visibilidade e as capacidades de processa-
mento destes sistemas tornam-se um aspeto essencial para a sua eficácia.

O Filtro de pacotes Berkeley estendido (eBPF) é uma tecnologia que possibilita
modificações dinâmicas no kernel, permitindo analisar o tráfego através do Rota
de Dados Expressa (XDP). O nível em que o eBPF opera e seu desempenho fazem
dele uma excelente adição a um IDS. Além disso, a implementação do eBPF pode
estender-se ao domínio do hardware.

No âmbito das soluções eBPF-IDS, no que diz respeito ao mecanismo pelo qual
as intrusões são detetadas, o uso de Aprendizagem de Máquina (ML) surge como
uma nova área de estudo. Além disso, a incorporação de ML com eBPF no
domínio do hardware é relativamente inexplorada, sugerindo que mais inves-
tigação deve ser realizada.

Esta tese explora a integração de eBPF e IDS, desenvolvendo uma prova de con-
ceito que utiliza ambas as tecnologias. A solução desenvolvida incorpora um
modelo de Floresta Aleatória (RF) com eBPF para diferenciar entre tráfego nor-
mal e vários tipos de varreduras de portas. O método proposto pode operar
parcialmente no domínio do hardware com XDP Offload, melhorando o seu de-
sempenho e eficiência.

A avaliação da solução final apresentou resultados promissores. O sistema pos-
suí altas capacidades de processamento de pacotes e deteção eficaz no domínio
das varreduras de portas. Isto sugere que cenários reais poderiam beneficiar da
implementação deste tipo de solução.

Palavras-Chave

Filtro de pacotes Berkeley estendido , Sistema de Deteção de Intrusões, Apren-
dizagem de Máquina, Varredura de Portas, Rota de Dados Expressa
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Chapter 1

Introduction

This document serves as a comprehensive presentation of the research and ac-
complishments achieved in the context of the Dissertation component of the Mas-
ter’s program in Information Security, conducted at the Faculty of Sciences and
Technology, University of Coimbra, for the academic year 2023/2024.

The undertaken Dissertation topic relates to Intrusion detection system (IDS) and
the extended Berkeley Packet Filter (eBPF) technology. IDSs are a critical com-
ponent in the domain of Information Security, therefore their place is well estab-
lished within this realm. eBPF is a tool that allows to change the kernel behaviour
dynamically. At this level, one can possess greater visibility over various security
affairs, with which, they can make more informed decisions. The combination of
these two tools can be very beneficial.

This chapter is divided into four sections, in Section 1.1 we will centre our atten-
tion on elucidating the motivation behind the undertaken work. Section 1.2 will
delve into the Dissertation objectives as well as the strategies followed to mitigate
the risks that can be encountered in trying to achieve them. Section 1.3 presents
the contributions made. Finally, Section 1.4 will entail a succinct global structure
of the document.

1.1 Motivation

Organizations worldwide must allocate resources to implement enhanced secu-
rity measures and keep their training programs up to date, given the continuous
sophistication of threats and the increasing importance of information security.
According to [Morgan, 2020], the average cost of a cyber breach was predicted to
increase by 15 percent per year, wherein 2015 started at 3 trillion USD and will
reach 10.5 trillion USD by 2025. For this reason, the search for better solutions
will go on.

At its core, the security of any environment relies heavily on safeguarding the
integrity of data transactions taking place within networks. As a consequence,
the ongoing demand for faster, more robust methods to manage, monitor, and
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trace network events has led to the continuous evolution of technology. In this
context, an IDS emerges as a pivotal tool in the realm of cyber-security, enabling
the oversight of these network activities.

The speed at which an IDS can process packets becomes a critical factor in net-
work security. Software-based IDSs present an attractive solution due to their
scalability and cost-effectiveness. However, when it comes to operational envi-
ronments where performance is crucial, professionals may face the challenging
decision of balancing security efficiency against system performance. In contrast,
hardware-based IDSs offer a way to maintain system efficiency as they operate
on a separate plane, further providing superior packet processing throughput.

In the dynamic landscape of cybersecurity, the emergence of new threats is a
constant, therefore countermeasures are also ever-evolving. A technology that
has the potential to address these challenges is eBPF. This innovative technology
facilitates real-time kernel modifications and is often associated with offloaded
solutions, making it a compelling choice for enhancing the capabilities of IDS
systems.

Every attack is mostly accompanied by a precursor. This usually entails some
form of reconnaissance, which is a method by which each attacker attempts to
gather information about a system. Networking probing activities are usually
methods associated with this step. When developing an IDS, there should be an
attack vector for which the solution is designed. With this in mind, combating
probing activities like port scanning is a great domain to fight against.

1.2 Objectives and Associated Risks

Our first objective surrounds the understanding of eBPF with an in-depth explo-
ration of the intricacies surrounding it, examining whether it is a viable solution
and delving into the most effective strategies for its integration.

One risk associated with this item is the complexity of the topic at hand, resulting
in a poor understanding of certain issues and subsequently poor decisions. eBPF
is a complex subject, and for that reason, to guarantee that the fundamentals can
be well understood, enough time needs to be dedicated to this topic. The best
solution is to resort to the documentation on this topic. The documentation covers
not only the examination of features but also the reference guides. In addition,
books that may provide even greater insight, namely those usually indicated for
further reading, can prove very valuable to reach this target objective.

Considering the mentioned strategy, the documentation [eBPF Documentation]
was deemed essential for our initial understanding of the issue. A book reference
for further reading in this document was [Rice, 2023]. This book allowed for a
deep dive into the topic proving itself extremely important for the understanding
of the domain. Finally, the reference guide [BPF & XDP Reference Guide] was also
established as a fundamental for this goal.

In this domain, one established objective was that the final proposed practical so-
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lution encompassed offloading. Taking this into account, to fulfil this objective,
we identified, from the previous documents, the domain that entailed this fea-
ture. Analysis of technical papers [Kicinski and Viljoen, a], [Kicinski and Viljoen,
b] and viewing of the webinars like [Kicinski, 2018].

In the following phase, we will direct our attention towards IDS. Our objective
is to identify how these solutions can be deployed and how they can achieve
detection among other intricacies.

IDS is an item that has already been addressed extensively throughout the Master
Course in Information Security, so background knowledge is firmly established,
providing a solid foundation for the upcoming research and analysis. Consid-
ering this, the research conducted is more to provide an auxiliary exploration,
delving deeper into specific aspects, and contributing nuanced insights to the ex-
isting body of knowledge. In addition to some selected papers, the book [Mell,
2003] was the one most heavily used for this auxiliary research.

The issues associated with this topic relate to how broad it is, as a result, not al-
lowing for an in-depth understanding of key features. Therefore, a well-defined,
manageable scope is necessary. With this in mind, the research will encompass
ML models used in IDS and the attack vector.

ML models become a subsequent objective to understanding IDSs. A risk that
may arise is the availability of high-quality data that need to be used for the
training of the model. If from the identified attack vector no data can support the
intended development, either a change in the attack perspective or, ultimately
resorting to the development and creation of data, needs to take place. To ensure
that this risk is mitigated, we must define the characteristics of the desired data,
and having that in mind, research the literature thoroughly.

Recognizing the importance of identifying an attack vector upon which we can
develop our solution, port scanning stands out as a notable concern. Conse-
quently, another key objective of this thesis is to gain a comprehensive under-
standing of port scanning and explore techniques for its detection.

A risk associated with this objective is concerning if it is relevant and realistic.
The selection must fall within the overall topic and be an issue that is important
within the IDS solutions. There is also the issue of examining whether there exists
enough literature and resources available not only for insight into the topic but
also for the development of the mechanisms that will combat and detect this in
the practical scenario. To try and address this, the best solution is to first exam-
ine the issues IDSs try to combat. From there analyse literature concerning the
identified attack for insights on the issue; also how researchers have formulated
solutions to fight against them.

Having established the background knowledge needed, we move on to a litera-
ture review. Here we attempt to evaluate the existing body of knowledge con-
cerning eBPF-IDS solutions and port scanning detection with ML, with the final
goal of intersecting both.

There may be limited literature on the specific intersection of eBPF and IDS, and
port scanning and ML. For this reason, to mitigate the risk of developing a poorly
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informed solution, more elaborate research is required. Conducting a systematic
review of the issue may provide the best insights into the topics.

An important objective is the development of a practical proof of concept. This
solution must encompass the decisions taken during the previous stages.

There could be issues one may encounter when implementing the solution. It is
important to give enough time not only for development but also for subsequent
research necessary to solve the problems one may encounter. An established fea-
ture of this solution is that it employs an ML algorithm. However, there is the
risk that this feature may be out of the reach of the eBPF capabilities. To address
this, the review conducted on the state of the art must analyse with great detail
the algorithms employed to try and determine if this is possible and if not, what
circumvention one can take to allow an ML algorithm to coexist with eBPF.

Once the proof of concept is developed, our final objective is to conduct an as-
sessment of the eBPF-IDS solution, evaluating its performance, efficiency, and
security capabilities. This step will allow us to determine the practicality and
effectiveness of our proposed intrusion detection system.

There is the risk that our evaluation metrics are improper, resulting in conclu-
sions that do not align with the truth. With that, we must consider proper met-
rics of evaluation, within this context it is important to examine other proposed
solutions metrics so that comparisons can be made to allow placing our work
concerning the others.

1.3 Contributions

During the development of this thesis, there were some contributions made:

• The early stages of development, encompassing the integration of ML in the
kernel via eBPF and related results, were presented in the thirty-fifth instal-
ment of the Mobile Communications Thematic Network (RTCM) seminar
[RTCM] on February 9th, 2024;

• The final solution was also presented in the CISUC’s NCS workshop [NCS
Workshop] on May 15th, 2024. Here, the proposed offload solution and
results obtained were discussed, alongside future work that could evolve
from the current solution.

• The developed work was also made public. This can be used by others to
conduct further research. This is present in the following GitHub repository
[eBPF-IDS].

• During development, an error was found in one of the tools that did not al-
low hardware offloading. The bug correction was proposed in the following
merge [BCC pull request 5051], which as been accepted.
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• From the developed work a scientific paper was produced and submitted to
the IEEE NFV-SDN 2024 conference [NFVSDN]. This paper is still waiting
for acceptance.

1.4 Thesis Outline

The primary objective of the initial chapter of this thesis is to demonstrate the
significance of the research that was undertaken. It will delineate the context and
importance of the work.

Moving on to the second chapter, we extensively examine the tools that will be
employed to serve as a reference for upcoming chapters. These tools pertain to
both eBPF, IDS and port scanning. This comprehensive review plays a vital role
in providing valuable insights and knowledge which, in turn, will help in the
development of a practical proof of concept.

Entering the third chapter, a literature review concerning the topic was executed.
This examination of the current state of eBPF IDS solutions and port scanning
can help guide practical development. This examination also helps to put work
developed in the context of the existing literature.

The fourth chapter is dedicated to the practical development phase. In here all
details surrounding the examination of the Dataset, training the ML model and
implementing it in eBPF are discussed.

The fifth chapter will entail the evaluation of the solution. It examined its capabil-
ities and also to put it into perspective to other works. Determining its suitability
for real-world applications.

The final chapter, sixth, corresponds to the conclusion of this document. Giving
context to what future work can be developed.

Appendix A documents the research conducted with private firmware. This pro-
cess was carried out to assess its suitability for the final solution.

Appendix B provides a guide on the installation of firmware. This was included
to allow this document to be self-contained.
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Reference Technologies

This chapter will delve into existing technologies across a range of pertinent top-
ics. By delving into these sources, we aim to enhance our comprehension of the
prevailing tools and establish a robust foundation upon which we can construct
a compelling proof of concept. This comprehensive examination of the technolo-
gies will aid in the development of a concrete and well-informed solution.

Section 2.1 will handle extended Berkeley Packet Filter (eBPF) and contextual-
ize the reader on its importance, how it can be used as a solution and other
details that may concern the development of the proof of concept. Section 2.2
will delve into Intrusion detection system (IDS) alongside the details surrounding
their characteristics. Finally, Section 2.3 will comprehensively cover the domain
of port scanning, as it aligns with the identified attack vector that our practical
solution aims to combat. Section 2.4 will provide an overview of the chapter.

2.1 extended Berkeley Packet Filter

The Linux kernel serves as the intermediary software layer, bridging the gap be-
tween software applications and the underlying hardware on which they operate.
Applications do not possess direct access to hardware. The domain on which they
operate, user space, is restricted, for that reason an application makes its requests
via the system call interface which are then handled by the kernel [Rice, 2023], as
depicted in Figure 2.1.

The eBPF is a technology developed to allow one to change the kernel’s be-
haviour. An interesting feature of eBPF is that it allows programs to be loaded
dynamically. This means that at any time the process is running, or not, an eBPF
program can be attached or removed. eBPF programs operate on an event-driven
basis, as shown in Figure 2.1, executing when a hook (system call, network event
or other) is triggered. In the case that the hook is not pre-defined it is possi-
ble to create a kernel or user probe (kprobe and uprobe respectively) to attach the
eBPF program nearly anywhere in the kernel or application [eBPF Documenta-
tion; Rice, 2023].
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As mentioned previously, adopting IDSs comes as a necessity to monitor and
provide visibility over applications, networks and others. This tool should also
not constrain system performance and be reliable on the measured data. Given
the properties of eBPF, it can provide this need and it proves to be a good solution
for solving this issue [eBPF Documentation; Rice, 2023].

Figure 2.1: Userspace concerning the kernel and insertion of eBPF programs

2.1.1 eBPF Verifier and JIT Compiler

Modifying the Linux kernel is a highly intricate task due to its complexity, requir-
ing a profound understanding and a set of skills that would otherwise render it
incredibly challenging. The kernel does contain means of loading and unload-
ing modules on demand, known as kernel modules. But again, these still require
highly complex kernel programming. Furthermore, these modules must be thor-
oughly scrutinized to ensure safety. This means that they will not crash, cause
if they do, they will take down the machine alongside it, and do not pose any
security vulnerabilities. eBPF can be used to assess these challenges [Rice, 2023].

In comparison to kernel modules, eBPF offers an approach to tackle the safety of
programs to make sure that they don’t crash, compromise data or lock the ma-
chine in a hard loop state. For this reason, after having identified the desired
hook to which the program will be attached, the program goes through two steps
before being loaded into the kernel. Firstly, the verification, where various condi-
tions like the previously mentioned must be met. The verification stage must be
considered when choosing and developing the algorithms used in the practical
stage, as it will impose limitations on its selection. Secondly, to make sure that
the program executes with the same efficiency as kernel code that has been na-
tively compiled or code loaded into the kernel as a module, the Just-in-Time (JIT)
compiler is used to achieve just that, this can be seen in Figure 2.2. So, besides
natively changing the kernel, which requires a deep knowledge of the codebase,
or loading kernel modules, which poses a risk of kernel corruption, there is eBPF,
which makes kernel modifications safely [eBPF Documentation; Rice, 2023].
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Figure 2.2: High-level visualization of the Verifier and JIT compiler

2.1.2 eBPF Maps

As seen in Figure 2.2 an element called "eBPF Maps" is depicted. These maps are
not just ordinary structures, rather they play a pivotal role in the eBPF develop-
ment by allowing data storage and retrieval. These maps are accessible both by
eBPF programs running within the kernel and by user-space applications. This
dual accessibility allows a bidirectional flow of data, allowing eBPF programs
to seamlessly retrieve information from user space while also enabling the ex-
change of data between various eBPF programs. According to [Linux’s uapi/lin-
ux/bpf.h, a] there are 30 different map types. The decision behind the use of
each is reflected in the desired solution trying to be implemented. One example
could be in a situation where the solution being developed requires a queue data
structure, for this specific necessity the BPF_MAP_TYPE_QUEUE could be employed.

Each Map may possess variants, like Least Recently Used (LRU) and PER_CPU.
When elements within LRU maps undergo updates, it can potentially trigger
eviction actions once the map’s capacity is exceeded. The update algorithm em-
ploys a series of steps aimed at preserving the LRU property. PER_CPU maps
indicate that each individual CPU has its dedicated copy of the underlying mem-
ory.

2.1.3 eBPF Programming

As illustrated in Figure 2.2, the front-end frameworks play a crucial role in the
eBPF ecosystem. When delving into the realm of eBPF programming, one dis-
covers an array of toolchains and resources designed to enhance the development
process. These toolchains offer valuable support, ranging from code compilation
to program debugging and performance analysis, making eBPF programming
more accessible and efficient [eBPF Documentation; Rice, 2023]. Examples de-
picted in Figure 2.2 are: BCC, which makes use of Python and compiles eBPF
programs into bytecode, loads them into the kernel and enables data collection
and display for tracing and profiling tasks; Rust, which allows writing both user
space and kernel code; Go which possesses a lot of frameworks around it such as
Gobpf, Ebpf-go and Libbpfgo.
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2.1.4 eBPF and XDP for Networking

In the context of the thesis, the kernel’s behaviour to handle is related to network
operations. There is a framework that enables the attachment of a program at
the instant a network driver accepts a packet. This framework is named eXpress
Data Path (XDP). XDP offers raw packet handling at the deepest software layer.
This enhances the performance of processing packets. However, it is important
to note a big constraint of XDP, which is that it can only examine the incoming
traffic [Rice, 2023].

After a packet arrives, it initiates the execution of an XDP program. As men-
tioned earlier, eBPF programs operate on an event-driven basis. This program
will analyze the incoming packet and, based on its analysis, return a code that
specifies the appropriate action to be taken with the packet. The return codes are
as follows [BPF & XDP Reference Guide; Rice, 2023]:

• XDP_PASS informs that the packet will continue to the network stack.

• XDP_DROP results in the immediate deletion of the packet.

• XDP_TX sends the packet through the same interface at which it arrived.

• XDP_REDIRECT sends the packet through a different interface.

• XDP_ABORTED also results in the drop of the packet, however, it implies the
occurrence of an error and not a conscious decision of its deletion.

The application of XDP is extensive. Various solutions can be implemented using
these return codes, from DDoS and firewall protection to forwarding and load
balancing. However, one application that stood out was the mitigation of packet-
of-death vulnerabilities. This is a class of kernel vulnerabilities where a received
packet, which is maliciously crafted, results in unsafe processing. Exploitation
of this issue can cause the kernel to crash. In the presence of this vulnerability,
one has to resort to installing a new kernel with the appropriate remediation,
resulting in machine downtime. With the eBPF properties, a solution that detects
these packets and uses the return codes can be dynamically deployed [BPF &
XDP Reference Guide; Rice, 2023].

A mentioned constraint of traditional IDSs lies in their inability to analyse en-
crypted packets, particularly those safeguarded by encryption protocols like TLS.
However, with eBPF, it becomes feasible to attach custom programs at precise
junctures in the network traffic flow, either right before encryption or imme-
diately after decryption, providing visibility over the communications in user
space. With this, an IDS could then have more visibility over the traffic being
exchanged. Considering SSL/TLS, if one desires to observe the data, hooking an
eBPF program with uprobes to functions like SSL_write() or SSL_read(), func-
tions used by OpenSSL, would allow doing so. No need for keys or certificates
would be required as these are already provided by the application [Rice, 2023].
This IDS needed to be deployed on the same host it is trying to monitor.
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2.1.5 XDP Operation Modes

The operation modes used for the XDP programs will, consequently, determine
their performance, as these modes of operation are inserted at different parts of
the network handling infrastructure. These modes are native, generic, and of-
floaded [BPF & XDP Reference Guide; Karlsson and Brouer, 2019]:

• The default mode, and the one typically implied when discussing XDP, is
native, also referred to as driver mode. In this mode, the eBPF program will
run in the earliest path of the network driver [BPF & XDP Reference Guide].
A driver hook becomes accessible immediately after Direct Memory Access
(DMA) packet transfer from the NIC to the NIC driver. It handles packets
before allocating Socket Kernel Buffers (SKB), which are the data structures
used by the kernel to represent and manage network packets [Karlsson and
Brouer, 2019]. Not all drivers support this mode, however, according to
[BPF & XDP Reference Guide], many solutions are already available.

• Generic or SKB is a mode used by developers who wish to test programs
that make use of the kernel’s XDP API. This mode is also used for drivers
that do not support the native or offloaded modes. Generic mode will
not operate at near performance levels compared to native and offloaded
[BPF & XDP Reference Guide]. It provides a hook called from the function:
netif_receive_skb(). This function takes a received packet in the form
of an SKB, which means that the packet is only processed after the packet
DMA transfer to SKB [Karlsson and Brouer, 2019].

• The offloaded mode is the one that can provide the best performance out of
the three. The reason for this is that in this mode the host machine does not
spend CPU cycles on handling the packet, instead, all processing is done
on the Network Interface Card (NIC) itself. This means that the packet gets
processed, dropped and so on, before reaching the kernel network stack.
However, to deploy such a mode, specific hardware is required. Not all
NICs support offloading, this task is typically employed by SmartNICs. Ac-
cording to [BPF & XDP Reference Guide], only one vendor supports XDP
offloading drivers, the NFP driver owned by Netronome 1 [Netronome].

Figure 2.3 offers a concise high-level visualization that illustrates the operational
modes concerning the hardware, kernel, and userspace. This depiction provides
a quick reference for understanding the positioning of these modes within the
system architecture.

Taking into account these inherent characteristics, the optimal choice to maximize
the performance of an IDS is undoubtedly the offload mode. Therefore, in devel-
oping the proof of concept, special attention will be dedicated to addressing and
accommodating these feature and hardware requirements. In doing so, we aim
to ensure that the IDS operates at its peak efficiency.

1The validity of the list of drivers presented by [BPF & XDP Reference Guide] is supported by
[Rice, 2023]
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Figure 2.3: High-level visualization of each XDP mode, native, generic and of-
floaded

2.1.6 XDP Offloading Netronome NFP

The use of XDP for security applications, whether it involves comprehensive net-
work monitoring or the implementation of effective security solutions, represents
an excellent choice due to its speed and efficiency. As data transfer rates increase,
the importance of CPU utilization becomes more pronounced. In shared CPU en-
vironments, this can lead to a compromise in effectiveness, where neither appli-
cations nor XDP solutions can operate at their peak efficiency. With an offloaded
infrastructure in the kernel, this issue could be addressed.

Previous endeavours aimed at promoting broad networking offloads within the
Linux kernel have encountered limitations. Historically, only initiatives with nar-
row scopes have achieved success, primarily due to a convergence of factors. One
significant factor has been the constrained capabilities of NICs, which prioritize
performance over flexibility and predominantly offer rudimentary, stateless, and
task-specific offload functionalities. Furthermore, the scalability of CPU archi-
tectures like x86 and other general-purpose processors has accommodated the
evolving demands of networking, effectively supporting comprehensive state-
ful networking tasks. Another contributing element has been the prevalence
of vendor-specific solutions. To allow universal offloading capabilities, it is im-
perative to establish an infrastructure that caters to diverse hardware platforms
[Kicinski and Viljoen, b]. This type of solution is provided by Netronome with
the Netronome Flow Processors (NFPs) driver.

According to technical papers provided by Netronome, [Kicinski and Viljoen, b]
and [Kicinski and Viljoen, a], there is an ongoing development of the model, it is
unclear if the last proposal has been integrated or rejected. However, the overall
structure of their solution can be observed.
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Hardware

The NFP architecture comprises a sequence of hardware modules arranged into
islands, designed for specialized tasks, consisting of two instances of a network-
ing block which processes all basic networking functions, like check checksums
of packets and provides some parsing, two memory units, internal and external,
in the middle, the flow processing cores which are the foundation of the chip
where advanced packet processing is performed, the PCIe interfaces, the security
island, as the name suggests, is used for security, where cryptographic operations
like encryption and authentication can be done by using the hardware accelera-
tors, the ARM subsystem for management, and finally, the Interlaken LA used to
connect between various chips [Kicinski, 2018].

These elements are also depicted in Figure 2.4, which shows the overall structure
of the modules and their elements, along with the identification of where eBPF
Maps and Programs are stored and accompanied by the packet flow through the
hardware.

Figure 2.4: NFP SoC Architecture 2

2This image was edited from [Kicinski, 2018]. As can be seen, Maps reside in the device’s
memory entirely, for that reason the Host does not have access to these offloaded maps and vice
versa. Within the userspace perspective, the operations go through a system call path and that
system call is redirected to the device, but as previously mentioned other kernel programs do not
have access to these maps.
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Software

The offload model was introduced with the primary goal of improving trans-
parency and simplification. The design of the offload mechanism was aimed at
ensuring that existing programs could seamlessly operate with minimal adjust-
ments compared to their operation on the host. This was achieved through the
implementation outlined in Figure 2.5, which involved the incorporation of an
NFP JIT component into the driver. As mentioned in section 2.1.1 to make eBPF
programs operate with the same efficiency as kernel modules or native kernel
modification it requires the JIT to convert the program bytecode to machine code,
in this case, the nfp_bpf_jit.c is the solution used to make the conversion from
bytecode to NFP machine code. This innovation empowers users to compile the
same program whether it is executed on the NFP or on the host [Kicinski and
Viljoen, a].

Certain operations, which align with the host architecture, may be accepted by
the Verifier but not supported by the offload device. In response to the need for a
more comprehensive verification per instruction, a callback into the kernel eBPF
Verifier was integrated [Kicinski and Viljoen, a].

Figure 2.5: XDP offload high-level model
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2.2 Intrusion Detection System

An intrusion detection system (IDS) holds a significant position within cyberse-
curity. Considering that the thesis is dedicated to crafting such a tool, a profound
understanding of the inner workings of these systems is necessary. This compre-
hension is crucial to ensure that well-informed decisions guide the development
of the proof of concept.

An IDS can be categorized as a hardware or software solution with the capability
to discern unauthorized actions. An intrusion, characterized by an illicit entry
into a system, has the potential to wreak havoc. Such actions can inflict substan-
tial harm upon the confidentiality, integrity, and/or availability of information.

The main reason for the acquisition of an IDS revolves around the issues of detect-
ing unpreventable attacks, preventing network probing, or documenting threats.
In many legacy systems, updating may not be an option, either due to a lack of
resources to replace the systems, compatibility issues resulting from deep inte-
gration with other applications, or even the vendor no longer providing support
[Mell, 2003]. Considering the scenario of a Supervisory Control and Data Acqui-
sition (SCADA) system reliant on the unencrypted Modbus protocol, a challenge
arises when the manufacturers of the system’s components cease to provide sup-
port for these outdated devices. Consequently, to maintain operational continu-
ity, the system is forced to maintain this vulnerability. For that reason, an IDS
could be a great solution, given that an attack cannot be prevented but can be
detected, this would allow one to perform damage control and recovery. In a
network without an IDS, an attacker can freely explore its weaknesses. If a vul-
nerability is present, the attacker will eventually find it and exploit it. However,
if within the presence of an IDS, the probing activities performed by an attacker
can be detected. These attempts can be blocked, diverted to a honeypot or used
to alert security personnel responsible for the network security. An IDS allows
documentation of threats that can then be used to analyse the frequency and
characteristics of attacks. With this information, appropriate security solutions
and measures can be taken [Mell, 2003].

The operational characteristics of an IDS are influenced by its deployment context
and the specific threat detection solutions it employs. Furthermore, the nuanced
aspects of its functionality contribute to its overall effectiveness. In the depiction
represented in Figure 2.6, a fundamental taxonomy of IDS attributes is illustrated.
This taxonomy serves as a conceptual framework to better understand how IDS
systems function, taking into account the diverse factors that shape their opera-
tion [Mell, 2003].

3This depiction draws from references in various academic papers which include [Axelsson,
2000; Liao et al., 2013]
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Figure 2.6: Taxonomy of an Intrusion Detection System3

2.2.1 IDS Monitoring Strategy

Categorizing an IDS hinges on the approach it employs for threat monitoring.
Two fundamental categories for IDS are host-based and network-based solutions.
Host-based Intrusion Detection System (HIDS) focusses on individual devices
and their internal activities, while Network-based Intrusion Detection System
(NIDS) monitors network traffic and patterns.

A deeper dive into these categories allows us to gain a clearer perspective on
how each one deals with various security threats. As we carefully examine and
compare the strengths and weaknesses of each type, we can more easily identify
the most suitable option for our practical proof of concept.
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Network Based IDS

In the context of network-based IDSs, these devices determine intrusions from
analysing captured packets. These devices consist of a dedicated host or multiple
sensors, that may be located at different parts of the network, and they then report
to a single control console. Network-based IDSs can effectively monitor a large
network. Installing them does not significantly affect the network’s performance,
and they operate without disrupting regular network activities. A network pre-
viously designed without an IDS solution in it can easily adopt a network-based
IDS. However, this may often have limitations in the face of a large, busy net-
work with high traffic, as the processing mechanisms may not recognize an attack
[Mell, 2003].

Typically, this form of deployment often necessitates the use of multiple sensors.
These sensors can come in two varieties: appliance-based, employing dedicated
hardware solutions, requiring specialized NICs and their corresponding drivers;
or software-based, where software is installed on hosts. In the case of software-
based sensors, the host environment must meet specific system requirements to
ensure the effective operation of the software components [Babatope et al., 2014].

Another aspect of this solution is the location at which the IDSs are inserted. The
location can be inline. This type of deployment involves a monitoring strategy
upon which the IDS is positioned directly in the network traffic path. This is usu-
ally employed to allow immediate action, such as blocking or diverting malicious
traffic. Its location can also be in a passive mode. In this solution, a copy of the
traffic is taken, and no actual traffic passes through it. A common example of this
solution is through the use of a network Test Access Port (TAP), where all traffic
is copied from a physical network device like a router [Babatope et al., 2014].

Host Based IDS

Host-based IDSs focus on analyzing the activity that occurs on a specific com-
puter, requiring them to collect data directly from the host. This level of access
allows these IDSs to scrutinize host activities with great precision. In the context
of networking, the amount of data to be analysed is much smaller and for that
reason attacks that may have gone unnoticed have a higher probability of being
detected given this localized perspective. As mentioned previously, through the
use of eBPF, encrypted traffic can now be analysed, this is only one of the many
new solutions that host-based IDSs can possess. However, there are disadvan-
tages to consider. The maintenance of this solution is also not trivial given that
attention must be given to every host that is monitoring intrusions. Moreover,
not only is the host allocating resources for the execution of this solution which
may lead to performance loss, but because it resides within the host itself, if this
falls victim to an attack, the IDS may also be hijacked [Mell, 2003].

In the context of developing a proof of concept, the host-based implementation of
eBPF stands out as the most logical and effective approach. This is due to several
key factors. One of the primary reasons for favouring a host-based eBPF ap-
proach is its ability to provide deep insight into network traffic at the host level,
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gaining visibility and control that is difficult to achieve using alternative meth-
ods. Furthermore, the performance impact of eBPF in a host-based configuration
is minimal, effectively addressing the issue of resource allocation.

2.2.2 IDS Event Examination Approach

In the realm of event analysis and processing methods, two primary categories
emerge: signature-based and anomaly-based. While most commercial and open-
source IDSs rely on a signature-based approach, anomaly-based IDSs are less
commonly utilized and remain a subject of ongoing research. This subsection will
delve into the reasoning behind this by analysing how each of these approaches
examines data.

Signature Based IDS

In this approach, detection is achieved by matching activities with a predefined
set of events that represent well-known attacks. These events are formulated on
a model of how an intrusion typically works and the expected traces it should
leave in the system. In simple terms, we can define what is considered abnormal
behaviour and then check if the observed behaviour matches these definitions.
It is important to note that in this system the detection method has no concep-
tual knowledge of what normal behaviour of the environment equates to, and it
simply examines patterns that could indicate an intrusion. These systems excel at
detecting such attacks, resulting in a minimal rate of false positive identifications.
However, due to their reliance on a fixed dataset of known attacks, they may fail
in the face of new attack methods and require periodic updates to remain effec-
tive [Axelsson, 2000; Mell, 2003].

Within this realm, there are, however, subcategories. This is by no means an ex-
haustive listing of every method and only serves as a mean of elucidating the
various possible solutions that one may employ to satisfy this type of detec-
tion. As mentioned by [Liao et al., 2013] researchers often only study the de-
tection approaches from the two methods already mentioned and further sub-
categorization often lacks a more detailed view. Having this in mind some sub-
categories are state-based, which employs a finite state machine based on net-
work behaviours to recognize attacks, string matching, where it analyses sub-
strings in the data transmitted, and Rule-based specify a set of rules which de-
scribe an intrusion [Axelsson, 2000; Liao et al., 2013].

Anomaly Based IDS

Anomaly-based approaches operate by identifying activities within a host or net-
work that derive from normal operations. It is rooted in the notion that mali-
cious actors often exhibit behaviour distinct from that of regular users. However,
they are notorious for generating numerous false alarms, as typical user and net-
work behaviours can exhibit considerable variability. Despite this drawback, re-
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searchers argue that anomaly-based IDSs excel in detecting new attacks, in con-
trast to signature-based systems that rely on historical attack data. While some
commercial IDSs incorporate limited anomaly detection, few rely exclusively on
this technology, but ongoing research in this field persists [Mell, 2003].

Like the previous method, there can be sub-categories of this approach. This ap-
proach can be based on statistics where a profile of the network, which describes
normal behaviour, is built from several parameters. If, for example, the result of
these parameters exceeds an established threshold, an intrusion is inferred. An-
other common category is Heuristic-based, it involves defining a set of heuristics
or rules that describe what is considered normal or suspicious behaviour. When
the IDS detects behaviour that violates these predefined heuristics, it raises an
alert [Axelsson, 2000; Liao et al., 2013].

One of the objectives of this thesis is to propose a solution that uses ML. This so-
lution aligns itself with the realm of anomaly-based IDS, emphasizing its capacity
to discriminate between normal and abnormal network activities. This approach,
as previously mentioned, distinctly differs from the signature-based paradigm, as
it doesn’t rely on predefined attack patterns but instead operates by identifying
deviations from established norms within the network environment.

2.2.3 IDS Non-Detection Traits

The scope of an IDS extends well beyond its mere detection methodology. It
demands consideration of many principles and factors to guarantee its efficacy
in safeguarding network and system security. Some of these factors relate to the
response time, the type of response, and how and what data are processed.

Timeliness

This characteristic of IDS refers to the ability to respond to events concerning the
time in which they occur. There are two main categories, real-time and non-real-
time. An IDS that offers a real-time response is an IDS that responds to events
immediately or near immediately. The timeliness aspect in a real-time IDS is
employed to detect and respond to an attack as it happens, to minimize any pos-
sible damages, and to reduce their impact. On the other hand, non-real-time IDS
are usually employed for forensic-like purposes, to recognize breaches that hap-
pened in the past. This category operates with historical data or logs [Axelsson,
2000].

Response

Another aspect to consider is the response mechanism itself. This response can
be passive or active. In a passive response, no direct action is taken against the
threat, instead, relying on human intervention to provide a decision on how to
handle the intrusion. This type of response includes the generation of alerts
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and/or notifications and logs. In an active response, direct actions are taken
against the intrusion, for example by blocking or diverting the traffic. This re-
sponse is applied either to the system under attack or to the attacking system
[Axelsson, 2000]. While it is the case that this form of response is the most effec-
tive in combating a threat in real-time, before damage can occur, there are risks
associated. When the detection mechanism erroneously classifies legitimate traf-
fic as malicious, it results in a false positive detection, and, consequently, the
intended actions destined to be applied to intrusions would be applied to normal
activities [Axelsson, 2000].

Data

Finally, there are concerns about how data is processed and what type of data
is collected. The processing of data can be done in two approaches: continuous
and periodic. Continuous data processing involves analysing the data continu-
ally; this means that as data arrives it is analysed and classified. Periodic data
processing, on the other hand, involves analyzing data at predefined intervals.
As noted by [Axelsson, 2000] this is associated with the timeliness of response,
however, these two are not linked one-to-one since a system can continuously
process the data but perhaps with delay or process batches of data in real-time.
Concerning the data used to identify attacks, information can be collected from
the network traffic or activities logged from a system [Axelsson, 2000].

2.2.4 IDS Machine Learning Models

Machine Learning (ML) is a component of Artificial Intelligence (AI) in which
systems acquire the knowledge and ability to improve their performance with-
out the need for explicit, rule-based programming. ML can be classified into four
categories 4: supervised learning, unsupervised learning, semi-supervised learn-
ing, and reinforcement learning.

Supervised Learning

Supervised Learning is a paradigm in which an algorithm is trained on a labelled
dataset consisting of input-output pairs. The relation between input and output
can be established through classification or prediction. The input is first divided
into two datasets, train and test. The model must then learn patterns from the
training dataset and apply them to the test dataset. Figure 2.7 is meant to repre-
sent the overall workflow of this type of learning [Mahesh, 2020; Saranya et al.,
2020].

4This categorization was conceived from the categorizations employed in the papers [Mahesh,
2020] and [Saranya et al., 2020].

5This Figure has been recreated based on supervised learning workflow illustration put forth
by [Mahesh, 2020]
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Figure 2.7: Supervised Learning workflow 5

Numerous algorithms embrace this form of learning, and while there are a multi-
tude of options, certain algorithms stand out as the most frequently discussed and
widely used in the literature. These prominent algorithms encompass Decision
Trees, Naïve Bayes, Support Vector Machines, Neural Networks, and Random
Forests.

• Decision Trees (DT) function by traversing a sequence of decisions to ar-
rive at an outcome. This algorithm can be visualized as a structured graph,
where the nodes signify decision points, and edges denote the conditions
or criteria that lead to subsequent choices. This is a popular solution given
its simplicity and ease of implementation [Haq et al., 2015; Mahesh, 2020].

• Naïve Bayes is a probabilistic classification algorithm based on Bayes’ theo-
rem. It operates under the assumption of conditional independence among
features, put simply, it assumes that the presence of a feature is unrelated to
the presence of others. It is more commonly employed for text classification
[Haq et al., 2015; Mahesh, 2020].

• Support Vector Machine (SVM) operate by identifying a hyperplane in a
high-dimensional feature space that maximally separates different classes.
In summary, it draws boundaries between classes, making these boundaries
distance the maximum to minimize errors in classification [Haq et al., 2015;
Saranya et al., 2020].

• Artificial Neural Network (ANN) is an approach that was inspired by how
human brains function. They consist of various interconnected layers of
artificial neurons that process data. Each neuron takes input, performs a
computation, and produces an output [Haq et al., 2015].

• Random Forest (RF) work similarly to DT, however, they employ a model
which predicts an outcome by constructing many decision trees and pool-
ing them together to determine a result. These types of algorithms, where
multiple learners are combined to create improved classifiers, can be cate-
gorized into ensemble classifiers [Saranya et al., 2020].
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Unsupervised Learning

Compared to the previous form of learning, this approach does not accompany
training or labelled data. Instead, it seeks to discover inherent patterns, struc-
tures, or relationships within the data. Its main use is within the scope of cluster-
ing. Figure 2.8 depicts the workflow of such an approach.

Figure 2.8: Unsupervised Learning workflow

An algorithm that follows this approach is K-means. This algorithm follows a
procedure which begins by defining k centroids and then iteratively refines them
until convergence. It assigns data points to the nearest centroid, recalculates the
centroids, and repeats this process until the centroids no longer change signifi-
cantly [Mahesh, 2020].

Semi-supervised Learning

This learning method sits between the two previous methods, combining ele-
ments of both supervised and unsupervised learning. They make use of both
unlabelled and labelled data. This approach is most effective in situations where
acquiring labelled data is costly or time-consuming [Mahesh, 2020].

Reinforcement Learning

Unlike supervised learning, where algorithms learn from labelled data, or un-
supervised learning, which discovers patterns in unlabelled data, reinforcement
learning centres around the idea of learning by interaction and feedback. An
agent takes action within an environment to achieve a goal. Through these in-
teractions, the agent receives feedback that comes in the form of a reward or
a penalty. Over time, after multiple interactions, the agent learns a method on
which its decisions result in the highest rewards.
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Performance evaluation

In addition to the task of selecting the most suitable learning method for the de-
ployment of an IDS, several other important considerations require attention.
Among these considerations, the evaluation of the performance of the chosen
approach stands out as a pivotal step. The effectiveness and performance of ma-
chine learning algorithms can be rigorously assessed through the use of various
metrics that provide valuable insights into their capabilities. Metrics such as ac-
curacy, precision, recall, F-Score and many others. The following enumerations
correspond to these metrics and terminology 6.

Terminology:

• True Positive (TP): number of instances correctly classified as positive.

• True Negative (TN): number of instances correctly classified as negative.

• False Positive (FP): number of instances incorrectly classified as positive.

• False Negative (FN): number of instances incorrectly classified as negative.

Formulas:

• Accuracy = TN+TP
TP+TN+FP+FN ; proportion of correctly predicted instances.

• Precision (P) = TP
TP+FP ; metric that quantifies the proportion of instances

identified as positive by the model that are, in fact, true positives.

• Recall (R) = TP
TP+FN ; metric that quantifies the proportion of actual positive

instances that the model correctly identifies.

• F-Score = 2∗(R∗P)
R+P ; metric that balances the trade-off between precision and

recall, close to 1 meaning that it is well balanced, close to 0 meaning the
model excels and is one of the aspects and is therefore unbalanced.

• Detection Rate = TP
TP+FN ; for IDS most researchers employ the detection rate

metric. This metric is calculated in the same manner as recall. The mention
of this metric is only for the cohesion of the different terminologies.

• False Positive Rate = FP
FP+TP ; metric that indicates the proportion of in-

stances identified as positive by the model that are not true positives.

• Area Under Precision-Recall Curve (AUPR) =
∫ 1

0 (
TP

TP+FP )d(
TP
P ) ; metric to

establish, at various thresholds, the tradeoff between the recall and the pre-
cision.

6This information was obtained from the paper [Saranya et al., 2020] which employs a chapter
on the strategies used to evaluate an ML algorithm in the context of IDSs.
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2.3 Port Scanning

When embarking on the implementation of an IDS, a critical aspect to bear in
mind is the analysis of the threats the solution intends to mitigate. Recognizing
that diverse threats necessitate distinct IDS approaches, it is imperative to tailor
the deployment to specific threat profiles, thereby enhancing the system’s detec-
tion capabilities. As mentioned in the subsection 2.2, one of the motivations be-
hind the deployment of such a tool is to recognize and mitigate probing activities
such as port scanning. Identifying port scanning as the attack vector we aim to
combat, allows us to develop a solution which is tailored to this issue and there-
fore much more effective. Hence, this particular subsection serves the purpose of
delving into the intricacies of such threats. This level of detailed understanding
ensures that our solution is thoroughly informed.

The initial step an attacker often undertakes when preparing to launch an attack is
reconnaissance. Reconnaissance is the process of gathering information and intel-
ligence about a target to understand its vulnerabilities and potential weaknesses.
In the context of networking, this can come in the form of scanning devices to de-
termine the open ports and services available in each host. This is known as port
scanning. Because port scanning can come as a precursor to an attack, detecting
such activities can be pivotal in alerting or preventing potential attacks.

2.3.1 Port Scanning Methods

There are many ways a port scan can be carried out, however, they all have the
same objective. The classification of a port scan has two perspectives, the attacker
perspective and the target(s) perspective. The attacker’s perspective corresponds
to how the source of the attack is represented. The target(s) perspective corre-
sponds to how the attacker scans the hosts.

When an attacker performs the port scan, the source of the attack can be repre-
sented in two categories, single source and distributed scan [Bhuyan et al., 2011].
In a single-source scan, the attacker performs the probing from a single host. This
single host may scan in a one-to-one configuration or a one-to-many configura-
tion. In a distributed scan, the attack is scattered through multiple hosts, put
simply, they are multiple single-sourced scans; however, they are coordinated,
meaning that these individual scanning activities are synchronized and orches-
trated to work together as a collective force. These hosts may scan in a many-
to-one configuration or in a many-to-many configuration. Figure 2.9 is meant to
represent these methods.

The target ports can also be scanned using different approaches. The attacker
may employ a vertical, horizontal, or block scan technique. In a vertical scan,
the attack focuses on scanning several ports of a single host. This approach is
considered somewhat unsophisticated, if carried out in a single source manner,
because of its simplicity, making it relatively easy to detect. A horizontal scan
operates by scanning the same port on a range of hosts. This is usually employed
when the attacker is aware of a vulnerability associated with that specific service
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running on that port number. A block scan is a combination of the previous two
approaches, which results in a wide range of port identification [Bhuyan et al.,
2011; Lee et al., 2003].

Figure 2.9: Port scan methods

2.3.2 Port Scanning Types

Having established how a port scan can be conducted, it is also important to
understand the various types of scans. These scanning types offer distinct ap-
proaches to probing a target’s open ports and services. Each of these scan types
has unique advantages and limitations. By analyzing and understanding the
mechanism by which the techniques gather information, one can develop a de-
tection approach that is tailored to identify and mitigate these specific scanning
methods effectively.

There exist several types of port scans, the most extensively researched ones be-
ing Transmission Control Protocol (TCP) scans like SYN, ACK, FIN, NULL, and
User Datagram Protocol (UDP) scans. It is important to note that delving into
these types in great detail may not always be necessary, as they tend to exhibit
similar behaviours and share common features. However, it becomes evident
that more targeted and specialized scans can possess distinct characteristics. If
one aims to detect these more specialized scans, further examination may be
necessary. The categorization that follows results from the examination of more
than a dozen port scans present in the documentation of Nmap [Nmap Reference
Guide]. Other tools can be used to perform scans, however, Nmap stands out in
the literature. Therefore, their reference guide will be used to assess the intrica-
cies of many scan types. To enhance the organization of each scan type, they have
been classified into distinct categories: Standard, Stealthy, and Specialized 7.

7To avoid continuous citation of Nmap [Nmap Reference Guide], consider that the following
details originate from that reference.
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Standard Scans

This type of scan was classified as such because it is commonly used and does
not fall within the other categories. In this domain reside the TCP Connect and
UDP scans.

• A TCP Connect scan operates by conducting full complete connections to
open ports, unlike other approaches which rely on half-open connections.
Taking this into consideration, this scan will in consequence take more time
and be more prone to be logged.

• A UDP scan targets UDP services. In this approach, the payload is empty,
unless further specification is provided or the destined port is common, but
if not, empty payloads may give away the scan. To determine if these are
open, closed, or filtered it analyses the received packet. If it receives back a
UDP packet, then the port is open, if it receives an ICMP port unreachable
error, it will classify it closed or filtered, depending on the error type.

Stealthy Scans

The scans that fall in this category are the ones that are intended to be used dis-
creetly or subtly so that their presence is hidden from the rest of the traffic. In this
domain reside the TCP SYN, NULL, FIN, ACK, Windows, and Xmas scans.

• A TCP SYN scan, also known as a half-open scan, operates by sending a
SYN packet, as if one desired to establish a connection and then waiting
for the response. A "SYN/ACK" response typically signifies that the port is
open, whereas the presence of a "RST" response usually indicates that the
port is not actively listening or open. If no response is received after several
retransmissions or ICMP errors are retrieved, then, is marked as filtered.

• TCP NULL, FIN, and Xmas scans exhibit identical behaviour, with their
distinction being solely based on the specific flags they manipulate. NULL
does not set any bits, FIN sets the TCP FIN bit and Xmas sets FIN, PSH, and
URG flags. They are used to exploit the TCP RFC to determine the status
of ports. In systems adhering to this RFC specification, if a packet lacks
the SYN, RST, or ACK bits, it will trigger an RST response when the port
is closed, and no response when the port is open. With the FIN, PSH, and
URG flags, information about the ports can then be obtained.

• TCP ACK scan operates distinctly to the previous ones, as it does have the
objective of determining if ports are open or closed, but to determine if a
firewall or filtering device is present. In this scan, a TCP packet is sent with
the ACK flag, if the target responds with an RST it indicates that the target
is reachable, however, it is inconclusive on its status; if there is no response
or the response is an ICMP error, it could indicate that the port is filtered,
and the firewall or filtering device is dropping the packets.
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• TCP Window scan operates in the same domain as ACK, however, it at-
tempts to make the distinction between opened and closed ports. The TCP
Window from the RST packet returned will indicate this information. If
the window size is positive, the port is opened, if the size is zero, then it
is closed. There are, however, some nuances and this result is not always
reliable.

Specialized Scans

Finally, some scans are more advanced and targeted. The scans that fall into
this category are the TCP Maimon, SCTP COOKIE ECHO, Idle and FTP bounce.
Certain scans within this group are also discreet, but due to their more targeted
methodology, they were classified within this class.

• The TCP Maimon has the same objectives as NULL, FIN, and Xmas scans.
The only difference is that its probe relies on a FIN/ACK flag.

• SCTP COOKIE ECHO scan makes use of the behaviour of SCTP implemen-
tations, which quietly discard packets containing COOKIE ECHO chunks
when the target port is open while issuing an ABORT signal when the port
is closed.

• Idle scan relies on fundamental principles: a TCP port’s status can be de-
termined by sending a SYN packet, eliciting a SYN/ACK response for an
open port and an RST for a closed one. Unsolicited SYN/ACK triggers an
RST, and monitoring the IP packet’s ID helps determine the number of sent
packets. By combining these elements, an attacker can stealthily scan a net-
work while appearing to be an innocent zombie machine performing the
scan.

• FTP bounce exploits vulnerable FTP servers to indirectly probe other hosts
by redirecting the scan through the FTP server, potentially revealing open
ports.

2.3.3 Port Scan Detection

Having presented the traits associated with port scanning, we can now formulate
a strategic approach to detect these scanning activities by considering how they
are executed. In this section, we refrain from delving into the specifics of imple-
mentation; instead, our focus lies on evaluating these discerned characteristics to
identify potential methods for achieving effective detection. From the preceding
sections, two distinct domains emerge to explain the methodology behind the
execution of port scans and the scans themselves.

In the realm of an attacker’s scanning methodology, a detection strategy might
entail a comprehensive analysis of network flows, aimed at identifying patterns.
For instance, a straightforward example involves observing a host connecting to
a multitude of ports on another host within a specific time interval.
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When focusing on the scans themselves, a more targeted approach becomes im-
perative, involving an analysis of packet characteristics to discern the specific
attributes associated with the scanning activity. An example would be to analyse
the flags present in the packet and the size of certain fields.

If we consider Snort or Suricata, which are open-source IDSs, both function in a
signature-based approach making their detection based on rules. These rules can
extended to packet examination or connections characteristics evaluation. If we
take, for example, the port scan inspector by Snort, which identifies port scans,
Portsweeps, Decoy port scans (scans with spoofed IPs) and Distributed Scans, the
detection is mostly concerned with connections to closed services. So the exam-
ination is more focused on network flow analysis [README.sfportscan; Snort 3
Inspector Reference].

While it is possible to utilize either of these approaches individually, the most
robust detection strategy can be achieved by combining both. Incorporating both
data flow analysis and packet attribute examination enhances the effectiveness of
the detection process.

2.4 Chapter Wrap-Up

This chapter provides a comprehensive overview of several key topics while
delving into preliminary research, thus allowing the establishment of some initial
decisions. By exploring these subjects, we aim to lay the foundational knowledge
needed for the rest of the document. The topics discussed are concerning eBPF,
IDSs and port scanning.

In Section 2.1, a comprehensive exploration of the eBPF technology was carried
out, highlighting its suitability as a solution for IDS. This examination delved into
the fundamental components of eBPF, including the Verifier, JIT Compiler, Maps,
and User Space platforms. Furthermore, the section details the integration of XDP
within this context, shedding light on the diverse deployment modes available
and their respective limitations. Having established the XDP offloaded mode as
the most desirable option, the section culminated in an in-depth analysis of the
dedicated hardware and software infrastructure that harnesses this solution.

Section 2.2 details the characteristics that one must consider when developing
an IDS solution. This examination delved into the monitoring methods, host or
network-based, detection method, anomaly or signature-based, and other non-
detection traits an IDS uses in its functionality. Finally, we have a study of the
various ML methods one can employ when developing an ML IDS solution.

Having established the attack vector as port scanning, Section 2.3 provides re-
search on the topic. Firstly, it examines the various modes an attacker may con-
figure the attack machines, single or distributed, and the scanning method on the
target, vertical, horizontal, or block. It then delves into the examination of the
operations executed by various types of scans. Finally, an examination of various
detection approaches may be used.
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Literature Review

This chapter is dedicated to the research and documentation of findings related
to the topics at hand. Within the context defined previously, examining the lit-
erature concerning eBPF-IDS solutions and port scanning is essential. The re-
search of the state-of-the-art of eBPF-IDS approaches can help guide decisions,
understand constraints and means of avoiding them, and finally allow for the
placement of the work developed concerning other works. Given the defined
offensive approach, it is also necessary to understand how this issue is fought.
Making the intersection between these two subjects can allow us to delineate the
best decisions to make.

Section 3.1 is dedicated to the research of eBPF-IDS solutions. The Section that
follows, 3.2 focuses on the research in port scanning and ML. From these two sec-
tions, Section 3.3 attempts to intersect the previous two domains. Finally, Section
3.4 provides a summary of the chapter.

3.1 eBPF-IDS State of the art

Given that this is the core of the work being developed, more elaborate research
is imperative. This not only ensures a comprehensive grasp of the issue but also
facilitates an evaluation of the literature, particularly in the realm of eBPF and IDS
intersection. Whether the existing literature is limited or abundant, this approach
enables a discerning selection of relevant works.

3.1.1 Research Strategy and Works Identified

To search relevant papers regarding the topic, a logical keyword combination
must be used. The search terms are in conjunction with boolean operators. These
searches were done in two databases, Scopus and Google Scholar. The first search
was conducted as "extended Berkeley packet filter" AND "intrusion detection sys-
tem" which wielded 0 results in Scopus and 89 in Google Scholar, respectively.
However, we must consider that most researchers fall back to the acronym of
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some terms, in this case eBPF and IDS. So combinations of previous terms and
acronyms were used like: "eBPF" AND "intrusion detection system", "extended
Berkeley packet filter" AND "IDS" and finally “eBPF” AND “IDS”. These results
produced in Scopus and Google Scholar the respective results: 4 and 195, 0 and
213, 4 and 520.

From the Scopus results, a manual examination of each paper can be easily done
to determine whether they fit the objectives of this review. From it, two papers
related to the topic at hand were retrieved: [Wang and Chang, 2022] and [Pacífico
et al., 2022].

Using Google Scholar, a wide array of documents on eBPF and IDS topics was
explored. However, it became apparent that the term "IDS" was frequently used
to reference "Identifiers" rather than "Intrusion Detection Systems." In light of
this, the complete "Intrusion Detection System" keyword was employed to re-
fine the search results and identify pertinent literature. Given the several papers
available, it quickly became clear that many addressed the topics but did not
delve into the implementation of Intrusion Detection Systems using eBPF. So the
keyword “implementation” was added along with the full “extended Berkeley
packet filter”. The year was also used as an exclusion criterion, removing papers
before 2019 which yielded 73 results. To select the relevant papers, a thorough
analysis of their titles was carried out to determine whether they aligned with
the desired scope. In cases of uncertainty, abstracts were consulted for further
clarification. In the end, eight papers were retrieved: [Pradhan and Mannepalli,
2021], [ANAND et al., 2023], [Ognibene, 2021], [Bachl et al., 2021], [Carvalho et al.,
2023], [de Carvalho Bertoli et al., 2020], [Sadiq et al., 2023] and [Wieren, 2019].

In summary, from both databases, a total of 10 papers were withdrawn. The
table 3.1 depicts the summary of the search conducted and the results obtained.
Important to note that the last search was only conducted in the Google Scholar
domain due to the reason previously mentioned.

Keywords Scopus
Results

Google
Scholar
Results

"extended Berkeley packet filter" AND "intrusion
detection system" 0 89

"eBPF" AND "intrusion detection system" 4 159

"extended Berkeley packet filter" AND "IDS" 0 213

“eBPF” AND “IDS” 4 520

"extended Berkeley packet filter" AND "intrusion
detection system” AND “implementation” - 73

Table 3.1: Search Strategy for eBPF-IDS papers
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3.1.2 Synthesis of Identified Works

Having selected the previous papers an overview of each one is due. With that,
we can assess the common practices, challenges, and limitations we may face
and how researchers address them as well as details surrounding their solutions,
namely algorithms and implementation strategy.

Authors [Wang and Chang, 2022] proposed an IDS implementation using eBPF
composed of two interconnected parts. The first part operates within the Linux
kernel and uses eBPF to rapidly identify and drop a substantial portion of packets
that do not align with any predefined rules, the algorithm used to perform this
analysis is the Aho–Corasick (AC) algorithm. The second part functions in user
space and assesses the remaining packets from the first part to identify matching
rules utilizing a modified version of Snort’s rule set. This subset was created due
to eBPF constraints. During the development process, other issues arose. Due
to the Verifier constraints, all execution paths must have fewer than one million
instructions, and an eBPF program should have fewer than 4096 instructions. To
address this, they used tail calls and bpf-to-bpf function calls to reduce code du-
plication. The eBPF Verifier also requires memory access validation, which was
performed manually throughout the code. In older Linux versions, backward
jumps were disallowed, which meant no loops in eBPF programs. This issue was
resolved in Linux 5.3 with bounded loops, allowing fixed iterations. To success-
fully implement their solution, they adopted the bounded loop method.

Authors [Pacífico et al., 2022] present a comprehensive system for the imple-
mentation of an IDS that takes advantage of SmartNICs and eBPF technology.
The system architecture consists of serverless components and hardware devices,
where users can interact with the system to create, execute, and manage packet
processing filters. A specific focus on SmartNICs, such as the Netronome CX
2x10 GbE, is given. This is done to back up the chosen hardware used, as this
possesses high processing power and the ability to offload eBPF programs as
mentioned in subsection 2.1.5. The system’s implementation revolves around an
interface, ebpfaas-cli, designed to create, update, remove, and execute eBPF/XDP
filters. Users use this interface to specify filter filenames, triggering the creation
of containers based on custom templates. Within these containers, an index pro-
gram communicates filter execution times to a handler program, responsible for
compiling and generating eBPF instructions in the C language. The transmission
component forwards these instructions via TCP/IP sockets to the filter queue,
which organizes the instructions using a first-in, first-out scheduling approach.
The SmartNIC executes the first loaded filter from the queue with status updates
provided to the user. One of the limitations faced by the authors was that the
eBPF Verifier only allows for a limited amount of loops. The Clang compiler’s
"loop unroll" directive must be used to work around this limitation. This is be-
cause the eBPF code verifier has restrictions on the complexity of loops it can
handle. However, using this directive, depending on the size of the regular ex-
pression (RegEx) used in the filter, the number of instructions can exceed the
limit supported by Netronome, which is 131,072 instructions as indicated by the
authors. This issue does not occur when filters check packet headers or apply
RegEx to specific, defined parts of the packet.
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Both authors [Pradhan and Mannepalli, 2021] and [Bachl et al., 2021] documented
an approach very similar to each other but very distinct from the previous au-
thors. In their approach, they employed Machine Learning (ML) algorithms to
make the distinction between normal network traffic and malicious traffic. The
ML was elected on the basis of the limitations of eBPF. Both authors decided to
employ Decision Trees (DT) for its simplicity and effectiveness. In both methods,
they employ a solution on which a network flow is tracked.

Authors [ANAND et al., 2023] proposed a solution similar to [Pradhan and Man-
nepalli, 2021] and [Bachl et al., 2021]. Their intrusion detection approach is made
through the use of ML to make a distinction between normal and abnormal net-
work traffic. In their solution not only DT is used, but they also present Random
Forest (RF), Support Vector Machine (SVM) and Twin SVM. Electing RF as the
one with the best performance.

The paper [Ognibene, 2021] proposed a DDos detection system using an algo-
rithm named LUCID, which employs Deep Learning techniques. eBPF would
be used to obtain the information necessary for the execution of the algorithm.
Additionally, Polycube and DeChainy, eBPF frameworks used for network mon-
itoring, were employed. Similarly to [Wang and Chang, 2022], the detection is
not performed in the kernel, but instead in userspace. Besides the issues already
documented by the previous authors about the eBPF Verifier, some limitations re-
lated to the XDP mode are presented. When it comes to driver mode, it requires
a specific memory model and operations like XDP_REDIRECT, are not possible be-
tween different drivers.

The work by [Carvalho et al., 2023] proposed an architecture to perform classifi-
cation directly on network devices. The approach involves optimizing machine
learning models taking into account eBPF constraints. In their solution, the K-
Nearest Neighbors (KNN) make the distinction between data.

The work [de Carvalho Bertoli et al., 2020] presents a solution using eBPF and
XDP to block TCP flag-based probing attacks employing a signature-based ap-
proach. By examining the probing characteristics of the Nmap tool, the attributes
deemed relevant were used to build a filter to drop these connections.

Authors [Sadiq et al., 2023] also developed a solution target for DDoS detection.
Their solution also focused on the use of filters. In their approach, the rules for
DDoS mitigation are meant to be automatically generated and incorporated into a
filter. They assume that a network operator is in charge of being able to alter filter
rules. A limitation presented by the authors is that as eBPF maps grow in size the
loading time also increases. However, in their exploration, the maximum size
needed for their solution was measured and in consequence, the loading speed
in their proposal was deemed acceptable.

Finally, [Wieren, 2019], also presents a solution dedicated to DDoS detection,
however, their approach is developed for a Kubernetes environment. Although
not classified as such, we have extrapolated their detection approach into a filter-
like mechanism as their approach uses an unnamed algorithm that examines the
characteristics of connections to determine if it is malicious or not. One identified
limitation is that there are no established standards in the eBPF environment,
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making it difficult for organizations to adopt.

The table referenced as 3.2 provides a succinct enumeration, offering a compre-
hensive overview of each identified work in the analysis.

Author Year Cited Algorithm Implementation
Strategy

[Wang and Chang,
2022] 2022 12 AC Kernel and

Userspace

[Pacífico et al., 2022] 2022 0 Filter Hardware Offloaded

[Pradhan and Man-
nepalli, 2021] 2021 1 DT Kernel

[ANAND et al., 2023] 2023 0
DT, RF,
SVM,
Twin SVM

Kernel

[Ognibene, 2021] 2021 0 LUCID Kernel and
Userspace

[Bachl et al., 2021] 2021 14 DT Kernel

[Carvalho et al., 2023] 2023 0 KNN Kernel

[de Carvalho Bertoli
et al., 2020] 2020 2 Filter Kernel

[Sadiq et al., 2023] 2023 0 Filter Kernel

[Wieren, 2019] 2019 9 Filter Kernel

Table 3.2: eBPF-IDS Identified Works Summary
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3.1.3 Analysis and Observations

The authors of the identified articles did not follow the same strategy to measure
their solution. Having different metrics makes comparing solutions difficult. For
that reason, we will examine the work firstly in a more high-level approach.
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Figure 3.1: Implemention Strategies of the authors

There is a clear reason for the trend depicted in Figure 3.1. The solutions that
combined Userspace did so due to the algorithms that they desired to implement,
having only proposed eBPF as an initial auxiliary and not the core of the solution.
Offloaded solutions required specific hardware. This limitation, in consequence,
leads to a decline in its adoption. This leaves fully kernel solutions as the most
utilized. The offloaded solution, in terms of implementation strategy, is the one
that best aligns with our goals, however when it comes to the algorithms, the ker-
nel solutions are the ones that best relate to the desired objectives. Considering
that only one solution utilizes an offloaded strategy and its metrics are not di-
rectly comparable to other works, we find that kernel-based solutions align more
closely with our goals. Furthermore, in theory, these kernel solutions could be
extrapolated to an offloaded approach, making them a more promising avenue
for our investigation. Consequently, we will conduct a more in-depth exploration
of these kernel-based solutions.

DT KNN Filter RF SVM Twin SVM
0

1

2

3

4
3

1

3

1 1 1

Algorithms

N
um

be
r

of
pa

pe
rs

Figure 3.2: Implemented Algorithms by the authors

By examining Figure 3.2, depicting the distribution of algorithms within the Ker-
nel domain, one can draw more conclusions. While DT and Filters may appear
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to be the most desired, it is crucial to recognize that this comparison isn’t entirely
fair. It is essential to note that the Filters domain encompasses numerous algo-
rithms, many of which are unnamed. To establish a fairer comparison, it would
be more appropriate to categorize all machine learning algorithms under a uni-
fied umbrella, allowing for a more aligned assessment. Having this in mind, it
then becomes clear that ML algorithms greatly exceed the ones of filters.

Fortunately, this broad use of ML in this domain aligns with our objectives. In ad-
dition, by making this further categorization patterns emerge and metrics com-
parison between solutions become possible. Table 3.3 depicts the metrics mea-
sured by each author that could be compared across solutions. These metrics
encompass the packets processed per second in the kernel as well as the same
solution in userspace, along with the performance increases in percentage.

Author Dataset ML Userspace
pps

eBPF pps Increase
in %

[Pradhan and
Mannepalli,
2021]

CICIDS2017 DT 125 320 152 174 19

[Bachl et al.,
2021] CICIDS2017 DT 125 420 152 274 20

[ANAND et al.,
2023]

CICIDS2017 DT 46 239 109 691 137
DoS/DDoS
of CI-
CIDS2017

DT 42 463 106 421 151

CICIDS2017 RF 45 978 108 534 136
DoS/DDoS
of CI-
CIDS2017

RF 41 632 105 245 152

CICIDS2017 SVM 45 590 92 978 103
DoS/DDoS
of CI-
CIDS2017

SVM 49 376 92 581 88

CICIDS2017 Twin
SVM 38 430 109 865 185

DoS/DDoS
of CI-
CIDS2017

Twin
SVM 49 376 117 536 139

[Carvalho et al.,
2023] NSL KDD KNN 1 976 2 110 7

Table 3.3: Identified Works Algorithm Details

For a clear visualization of the trends, graphs were created. Figures 3.3 and 3.4
depict the trends in performance increase between algorithms and the packet pro-
cessed in the userspace in contrast to in kernel. In case of doubt, the values rep-
resented in each chart correspond to the same order that in Table 3.3.
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Figure 3.3: Performance Increase of Implemented Algorithms by the Authors
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Figure 3.4: Packets per Second of eBPF and Userspace solutions

We cannot draw immediate conclusions from these graphs, for example, even
though Twin SVM seems to exceed in performance improvement, we have to
consider that in terms of actual packet processing, it is averaging the same results
in the kernel as the other solutions by the same author but comparably the lowes
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in userspace. We also have to consider that different datasets are being used.

• Pradhan et al. and Bachl et al. approaches are similar and therefore their
results also align. Both employed DT which shows the most packet process-
ing capabilities, but a low-performance increase compared to other authors.

• Anand et al. solutions show that across Datasets DT and RF both present
stable and good results concerning the authors’ other solutions. When it
came to SVM it presented the lowest results. Twin SVM as explained pos-
sess in the kernel, a speed close to DT and RF, but the lowes in userspace
and that is the reason for the performance values, the other Twin SVM so-
lution is a little bit better than DT and RF but we have to consider that is
uses a subsection of the entire dataset and in terms of performance increase
is lower than DT and RF in that same dataset.

• Carvalho et al. KNN scored the lowest in all metrics.

From this, considering all factors, DT seems to be the most favourable solution
followed by RF. The Dataset most predominantly used is the CICIDS2017.

3.1.4 Additional eBPF-IDS Literature

The previous analysis was more targeted at specific solutions that used eBPF to
develop an IDS and detailed their findings. In this way, we could possess in-
formation to lead our proof of concept. However, an additional document was
identified as of interest. It was placed in this separate section as it does not align
with any of the other works.

As mentioned in Chapter 2 Sub-section 2.3.3 Suricata is an open-source, signature-
based IDS. In Suricata’s 4.1, released in November of 2018, support for eBPF and
XDP was added [Eric Leblond, 2019]. From the development carried out, eBPF
can be used for three solutions:

• eBPF filters. A filter can be created to drop or only accept packets with a
determined characteristic;

• eBPF load balancing. To distribute a packet among all sockets for example;

• XDP programs that can, for example, drop packets before they reach the
network stack.

Adopting this type of solution could be an interesting area of study. However,
this strategy seems to be more aligned with the use of eBPF for an initial pre-
processing and not the main mechanisms of detection as we envision. Addi-
tionally, Suricata focuses on the utilization of filters, implying a signature-based
approach. Given that our goals fall in the domain of anomaly-based detection
through the use of ML, this is another motive to not follow this method.
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3.1.5 Research Alignment with the Literature

Having presented and evaluated all the works that are associated with our spe-
cific research, this section will now attempt to place our work in comparison to
the others. With this, we can see how it relates and what it offers different from
the other solutions. This comparison is depicted in Table 3.4.

It is possible to clearly see the new domains our solution tackles, offering an of-
floaded solution, rarely adopted, and not intersected with ML in this domain;
the attack vector focused on identifying different types of port scans, with the
ML model hard-coded, different from the other authors. Some of the elements
depicted in this table, related to our solution, have not yet been discussed. How-
ever, the context of this section, demanded that such a comparison take place.

Author Implementation
Strategy Algorithm(s) Attack

Vector 1
ML Stor-
age 2

João Monteiro
Hardware Of-
floaded RF Port Scan

eBPF Maps

Kernel Hardcoded
[Wang and
Chang, 2022]

Kernel and
Userspace AC - -

[Pacífico et al.,
2022]

Hardware Of-
floade Filter - -

[Pradhan and
Mannepalli,
2021]

Kernel DT - eBPF Maps

[ANAND
et al., 2023] Kernel DT, RF, SVM,

Twin SVM
- eBPF Maps

[Ognibene,
2021]

Kernel and
Userspace LUCID DDoS -

[Bachl et al.,
2021] Kernel DT - eBPF Maps

[Carvalho
et al., 2023] Kernel KNN - eBPF Maps

[de Car-
valho Bertoli
et al., 2020]

Kernel Filter Flag-
Based
Probing

-

[Sadiq et al.,
2023] Kernel Filter DDoS -

[Wieren, 2019] Kernel Filter DDoS -
1 May not be clearly defined ( using the attack vectors present in a Dataset, using community

Rulesets ) 2 If applicable

Table 3.4: eBPF-IDS Identified Works Summary
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3.2 Port Scan Detection with ML Work Review

The focus of this section will be to gather information to evaluate whether there
are resources to allow the development of the practical scenario concerning the
identified attack vector. Within this domain, the main focus is on the datasets
that can be used to train the practical model alongside the most widely used ML
algorithms employed for this purpose.

3.2.1 Research Strategy and Works Identified

The same set of databases, Scopus and Google Scholar, were utilized in this phase
of the study. Initially, a search query in Scopus combining "port scan detection"
AND "machine learning" yielded two results; however, neither aligned with the
research objectives. Subsequently, an adjustment was made to the keywords,
changing "port scan" to "portscan," which produced two new results. From these,
one relevant paper was identified [Jasim et al., 2023]. Another search query, "de-
tect port scan" AND "machine learning" on Scopus resulted in two papers, one of
them aligned with our research goals, [Aksu and Aydin, 2018].

Moving on to Google Scholar the keywords "portscan detection" and "machine
learning" resulted in 67 results, noting that works before 2019 were omitted to
narrow down the scope. Firstly, two articles were identified, [Mir and Sandhu,
2019] and [Algaolahi et al., 2021]. However, one additional paper was considered
extremely useful [Pittman, 2023], this paper encompasses a systematic review of
port scans utilizing machine learning and was published recently. This paper can
be used in a snowball-like effect, in the sense that enables us to uncover further
relevant studies and insights in this domain. This specific paper analyses 15 pa-
pers on the issue. A cross-examination was done to evaluate if identified papers
were not included, however, the work by [Algaolahi et al., 2021] was already
contained within this review. For that reason we discarded it. With this, we can
deem that we possess enough information to satisfy our defined goal. Selecting
2 papers from Scopus, and 2 from Google Scholar where one corresponds to an
analysis of 15 papers. Table 3.5 depicts a summary of the search.

Keywords Scopus
Results

Google
Scholar
Results

Scopus
Selected
Paper

Google
Scholar
Selected
Paper

"port scan detection"
AND "machine learning" 2 - 0 -

"detect port scan" AND
"machine learning" 2 - 1 -

"portscan detection"
AND "machine learning" 2 67 1 2 a

a Note that one of these papers is a systematic review, analysing 15 papers

Table 3.5: Search Strategy for eBPF-IDS papers
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3.2.2 Analysis of Identified Works

The authors of [Jasim et al., 2023] proposed a solution to detect port scan attacks.
In their solution, a decision table and OneR classification [OneR Algorithm] were
utilized to make the distinction between normal and malicious data. The dataset
employed was the CICIDS2017.

The paper [Aksu and Aydin, 2018] demonstrates a solution that also uses the
CICIDS2017 dataset. In this approach, two algorithms are used, SVM and Deep
Learning. In their research, SVM performed better than Deep Learning.

In the work [Mir and Sandhu, 2019] the CICIDS2017 dataset is used once again.
The solution, however, employs new algorithms which encompass SVM, RF and
ANN. From the conducted study, RF and ANN performed better than SVM.

Finally, the systematic review [Pittman, 2023] evaluated 15 papers on the topic
at hand. Throughout the papers, various algorithms were utilized: RF, SVM,
Regression, Naive Bayes and ANN. Also, a lot of datasets were employed: CI-
CIDS2017, NSLKDD, MAWILab, PSA-2017, NMAP-A, NMAP-S, GEN, TCP, NMAP-
Y, NMAP-F, and Bonafide. From their analysis, ANN presented itself as being
the best across all papers, followed by RF. From the paper 34 algorithms were
employed and 11 datasets were used, 47% chose the CICIDS2017 dataset.

Table 3.6 is meant to give a brief overview of each document. The chart 3.5 is
meant to depict the distribution of the algorithms used.

Author Year Cited Algorithm Dataset Favoured Al-
gorithm

[Jasim et al.,
2023] 2023 0 Decision Ta-

ble and OneR CICIDS2017 -a

[Aksu and Ay-
din, 2018] 2018 98 SVM, Deep

Learning CICIDS2017 SVM

[Mir and
Sandhu, 2019] 2019 0 SVM, RF,

ANN CICIDS2017 RF, ANN

[Pittman, 2023] 2023 3

RF, SVM,
Regression,
Naive Bayes,
ANN

CICIDS2017,
NSLKDD,
MAWILab,
PSA-2017,
NMAP-A,
NMAP-S,
GEN, TCP,
NMAP-Y,
NMAP-F,
and Bonafide

ANN and RF

aThis author did not apply different algorithms and compared between them, and therefore not
identifying one has the best candidate

Table 3.6: Port Scanning and ML Identified Works Summary
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Figure 3.5: Algorithms used by the Authors

In conclusion, there seems to be a clear trend. Note that in chart 3.5 we took
into consideration the other 15 papers contained in the work [Pittman, 2023]. We
can see a clear trend in the algorithms most adopted. We also have to consider
the algorithms elected as the best, which is mentioned in Table 3.6. From this
information, we can clearly state that the most popular dataset is the CICIDS2017
accompanied by the ANN and RF algorithms.

3.2.3 Additional Port scan Literature

The work previously conducted was highly targeted on the domain of the inter-
section between port scanning, IDSs and ML. These approaches were more con-
cerned with the characteristics of packets associated with network flows. How-
ever, as we have mentioned in Section 2.3.3, it would be of interest to take into
account the analysis of the flows themselves.

Some research was done in this domain, and some papers were deemed of inter-
est. These are not focused on the realm of ML but rather on the development of
solutions that can discern patterns that identify threats that, for example, possess
a slow probing approach or a distributed offensive strategy. Table 3.7 gives a brief
overview of the selected papers.
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Author Year Cited Topic

[Gates] 2009 49 Coordinated/Distributed Scan
detection

[Dabbagh et al., 2011] 2011 18 Slow detection of port scans

[Tatsch, 2017] 2017 4 Vertical Scan detection

Table 3.7: Additional Port scan Identified Works Summary

Identified work Synthesis

The work [Gates] involved the development of a solution that, from identified
vertical scans, can then make the association to determine if they are organized.
In the domain of our work, our strategy encompasses the use of machine learn-
ing. However, these authors’ strategy focuses on adversary modelling, inspired
by insights into agents’ incentives and efficiency criteria. For each adversary, a
footprint is generated considering the number of targeted ports, the count of tar-
geted IP addresses, the algorithm used for the selection of IP addresses, and the
use of camouflage, if any, to obscure the actual target. This footprint will be used
to detect coordinated scans.

In the paper [Dabbagh et al., 2011] the objective is to address port scans that at-
tempt to circumvent detection by employing a slow network reconnaissance. In
their solution, they take into account the scan characteristics, as those mentioned
in Section 2.3.2. From this, they classify IPs as legitimate, suspicious, or as a scan-
ner. If an IP is classified as suspicious multiple times in a given interval it is then
determined that a slow port scan is taking place.

Finally, the work [Tatsch, 2017] was again focused on the analysis of the charac-
teristics of packets in flows. Based on the number of connections in a determined
time frame to a single or multiple targets, scans could be inferred.

This analysis serves the purpose of demonstrating that, even though ML is a great
solution to the problem, there are clear nuances that emerge from these other
papers that tell us that to develop a more complete solution, our final proposal
would benefit from taking into account other measures of detection outside of
ML.

3.3 Unifying eBPF-IDS and Port Scan Detection

From our comprehensive review of the literature, discernible patterns emerge. In
the realm of eBPF-IDS solutions, the primary algorithms in prevalence are DT,
followed by RF. Concurrently, the dataset of choice for these solutions is predom-
inantly aligned with CICIDS2017. When it comes to port scanning, the prevalent
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algorithms include ANN, with RF as a noteworthy contender. Here too, the fa-
vored dataset is consistently CICIDS2017. It becomes evident, by intersecting
these two domains, that the RF algorithm, coupled with the CICIDS2017 dataset,
emerges as the most suitable for the issue at hand.

3.3.1 Identified Issues

At first glance, the conclusion formulated presents itself as being suitable for the
practical proof of concept we wish to develop. However, this is not the case, we
must consider the limitations that arise from the already-established decisions.

When considering the CICIDS2017 dataset an imidate issue is identified, this
dataset represents a bidirectional flow of traffic in each row. However, we have
already established that our solution will be host-based, and considering that
XDP, as mentioned in Section 2.1.5, can only read incoming traffic, means that
the traffic flows will be unidirectional. Some of the features of this dataset are
differentiated between forward and backwards traffic, and this could be used for
our goal, however, it does not seem appropriate to use a dataset designed bi-
directionally to be used unidirectionally. But this is not the main drawback, this
dataset, even though it possesses data concerning port scanning, it does not make
the distinction between each type of port scan, which is something that we wish
to make possible in the final proposed practical solution.

3.3.2 Criteria-Driven Dataset Search

Having in mind the mentioned constraints, a dive into the literature for a dataset
that satisfies our requirements was conducted. The dataset we seek to find must
align with the following:

• Traffic flow be Unidirectional;

• Port scan as an Attack vector;

• Distinguish each port scan attack;

• Have it access open;

Our research did not follow a specific keyword search strategy. Instead, our em-
phasis was on scrutinizing papers that conducted reviews or surveys of datasets
for IDSs. Although several documents listed datasets, they often lacked the spec-
ification listing of specific requirements we had defined, which made this inves-
tigation difficult. However, one paper stood out from the rest: [Ring et al., 2019].
Examining the identified datasets, one was precisely aligned with our require-
ments. This dataset is the CIDDS-002 dataset. A further study of this dataset will
be conducted in the development phase.
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3.4 Chapter Wrap-Up

The research conducted, concerning eBPF-IDS solutions, revealed that the issue
at hand is a recent area of study and exploration. From the gathered informa-
tion, it was possible to conclude that researchers follow one of three implementa-
tion strategies, fully in kernel, kernel combined with userspace and offloaded to
hardware. From these, the one that presents itself as the most used is the fully
in kernel. The reason for this stems from the fact that solutions that utilized
the Userspace, were aimed to use eBPF for an initial computation of the pack-
ets. The algorithms used by these authors were also designed to work within
the Userspace domain. Offloaded solutions require specific hardware, and this
imposes limitations on their adoption, this being evident in the number of re-
searchers that adopted this solution. Within fully in-kernel solutions, ML al-
gorithms are commonly used, aligning with our objectives. Concerning these
algorithms, DT followed by RF presents itself as the most favourable and the CI-
CIDS2017 as the most adopted Dataset.

In the section that followed, port scan detection approaches that considered the
use of ML in their solutions were the topic of research. In this research, a system-
atic review of the topic was found, which was the main source of information on
the topic. From it and the other identified papers, it was concluded that ANN
followed by RF are the most suitable algorithms, having the CICIDS2017 as the
dataset most used.

In the culmination of both research endeavours, an attempt was made to inter-
sect the domains. It became evident that the RF algorithm and the CICIDS2017
dataset were common elements in both areas. However, further investigation of
the dataset allowed us to determine that it was not aligned with our already es-
tablished decisions. Further research was conducted to try and find a dataset that
aligned with our requirements. From this research, the CIDDS-002 dataset was
chosen.
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Development and Implementation

This chapter encompasses the practical development and implementation of the
eBPF-IDS solution tailored for port scan detection through ML. It was important
to first analyse and consider the most important aspects of the proof of concept
before moving on to the more detailed aspects of it. Having this in mind, the
initial development encompassed the parsing of packets, the study of the dataset
and subsequent ML analysis and finally the implementation of the ML algorithm
in eBPF. In the initial stage, we did not attempt to distinguish between each type
of scan but instead focused on implementing an ML algorithm that can discern
between normal traffic and port scans. After having this well established we
updated the solution for it to be able to make that distinction.

Let us first consider all decisions that have been taken until this point, and sum-
marize it, as this will help in the details that will follow. In the domain of eBPF,
we will use XDP as the framework to monitor network traffic. Given the various
modes we have elected offloading as the most promising, however, given that
this solution requires specific hardware, in the initial development we employed
employ the generic/skb mode, refer to Section 2.1.5. In the realm of IDS, we have
elected the monitoring strategy as host-based. Because we are trying to monitor
an attack and stop it as early as possible, host-based is the one that makes the
most sense. Because our strategy must employ an ML algorithm like the ones
entailed in Section 2.2.4, anomaly-based detection is the most appropriate. Given
these characteristics, our IDS will work in real-time using network data, the re-
sponse can be passive or active. Regarding the attack vector, the port scan was
the one that was selected. The CIDDS-002 dataset and the RF algorithm are the
ones elected as the most suitable for our goal.

Note that BCC was the elected eBPF framework to develop our eBPF program, re-
fer to Section 2.1.3 for clarification. All user space code was developed in Python.

The overall strategy established encompasses parsing packets that are then clas-
sified into a flow table. Once a flow is created or updated, it is passed through
the classification algorithm which will classify it as normal or as a port scan. If
the flow is deemed malicious it is inserted into the port scan table, which aggre-
gates various flows classified as malicious. Once a threshold is hit a port scan is
inferred and an alert is generated into user space. Refer to figure 4.1.
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Figure 4.1: Overall solution strategy

Section 4.1 evaluates and processes the chosen dataset and ML algorithm. Sec-
tion 4.2, explains how packets are handled. The following Section, 4.3, explains
how ML was integrated into eBPF. Section 4.4 explains the port scan detection
logic. Section 4.5 dives into how alerts are generated. Section 4.6 details all work
associated with the offloaded component. Finally, Section 4.7 summarizes the
chapter.
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4.1 Dataset and ML Analysis

As we have identified in Chapter 3 Section 3.3.2 the dataset CIDDS-002 is the
one that best aligns with our goals. From the study carried out Random Forest
(RF) is the algorithm that we have selected. As we have identified in Chapter 2
Section 2.2.4 the workflow of supervised ML algorithms is iterative. Firstly, we
will examine the elected dataset and make the necessary processing for it to fit
our goal. From there, train the model with the dataset and determine the best
parameters for it.

4.1.1 CIDDS-002 Analysis and Processing

The CIDDS-002 is a labelled dataset that contains flow data from normal traffic
and port scans. These flow data are unidirectional and contain various attributes.
According to the dataset documentation and technical report [Ring et al., 2017,
to appear], there are 14 features, however, by analysing the dataset it is clear
that there are 16. As per our analysis, this dataset contains the following port
scans: SYN, ACK, FIN, UDP and Ping scans. Table 4.1 depicts the attributes of
the dataset according to the documentation and the review undertaken.

Nr Name Description
1 Src IP Source IP Address
2 Src Port Source Port
3 Dest IP Destination IP Address
4 Dest Port Destination Port
5 Proto Transport Protocol (e.g., ICMP, TCP, or UDP)
6 Date first seen Start time flow first seen
7 Duration Duration of the flow
8 Bytes Number of transmitted bytes
9 Packets Number of transmitted packets
10 Flags OR concatenation of all TCP Flags

11 Class Class label (normal, attacker, victim, suspicious,
or unknown)

12 AttackType Type of Attack (portScan, dos, bruteForce, —)

13 AttackID Unique attack id. All flows which belong to the
same attack carry the same attack id.

14 AttackDescription
Provides additional information about the set at-
tack parameters (e.g., the number of attempted
password guesses for SSH-Brute-Force attacks)

- Flows It may refer to how many times that flow reap-
peared

- ToS Given its name, one can infer that it refers to
"Type of Service".

Table 4.1: CIDDS-002 Attributes
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For our goals, there are clear attributes that we can discard immediately, as they
do not align. These attributes are the "Date first seen", "Src IP" and "Dest IP", as
these are related to the test bed used and cannot be transposed to other environ-
ments. Another intuitive modification is on the attribute "Class". In this domain,
there can be five labels: normal, attacker, victim, suspicious, or unknown. From
our analysis only three are present: normal, attacker and victim. As explained
in previous chapters, our solution is host-based, and due to the limitations of
XDP, it can only analyse incoming traffic, making the victim label pointless. For
this reason, all entries with this label were removed. From there we analysed the
distribution of this label, which is depicted in Figure 4.2.
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Figure 4.2: CIDDS-002 Class Distribution Week 1 and Week 2

From this, we can see an unbalanced distribution. The "normal" label is about
98% of the data. This may lead the model to become biased toward the majority
class. This is because, during the tree-building process, each tree in the forest is
likely to be exposed to more instances from the majority class. To overcome this,
the "normal" traffic needs to be under-sampled to match the "attacker" traffic.
The data is split between two datasets, one for each week. Given the massive
under-sampling that will take place, concatenating both datasets will be done to
increase the size of the data. Under-sampling will only take place as the final
step, however for the remaining examination we will consider the concatenation
of both datasets, week1 and week2.

Our focus shifted to analyzing the attributes of the attackers, revealing discrep-
ancies. Initially, we examined the attack flows based on the protocol. However,
when delving into the breakdown of port scan types given by the "AttackDe-
scription" attribute, we encountered a noteworthy issue. This challenge became
more apparent as we sorted each port scan type according to its corresponding
protocol: SYN, ACK, FIN for TCP; UDP for UDP; and Ping for Internet Control
Message Protocol (ICMP). The distributions of these protocols are illustrated in
Figure 4.3.
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Figure 4.3: CIDDS-002 Attacker Protocol Distribution

The attack descriptions do not match the protocol. In the presence of this obser-
vation, we decided to examine these misidentified flows to see what the distri-
bution of protocols where the "AttackDescription" did not match, how many of
each, and to what attack they were associated. Figure 4.4 represents the distri-
bution of attacks in which the description has been associated with the wrong
protocol.
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Figure 4.4: CIDDS-002 Misidentified Attacks Distribution

It is not clear why these classifications exist. When examining ICMP, there are
more misidentified than correctly identified. ICMP packets do occur when per-
forming those attacks, however, they are sent by the victim as a response and
not by the attacker. As noted in Nmap Documentation related to Host Discovery,
[Nmap Reference Guide - Host Discovery], Ping scans can be accompanied by
other protocol scans, this could be the reason behind those classifications. We can
also argue whether ping scans fall within the domain of port scanning, as they
are not intended to examine ports but instead hosts. Given this reason and the
ambiguity of the results observed, for our development, we decided to remove
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all ICMP flows. Additionally, the other TCP and UDP classifications that do not
align were also discarded. This leaves us with only TCP and UDP flows in which
the attack descriptions match the protocol.

It is important to note that during this protocol examination, a fourth protocol
was identified, Internet Group Management Protocol (IGMP). However, this pro-
tocol is only used in normal flows. Given this distribution, we also decided to
discard it as it would not provide any additional benefit.

Examination of the dataset continued and the unidentified attributes "Flows" and
"ToS" were addressed. The "Flow" label always had the value 1, and "ToS" pos-
sessed the values 0, 192 and 16, where 0 is 99% of the values. Given the lack of
distribution of these values and that we do not possess concrete descriptions of
what they represent, we also discard these attributes.

From the remaining attributes, "Dest Port" and "Src Port" were evaluated to see if
they fit our goal. Because we don’t want our algorithm to be biased against only
the ports scanned on the dataset, we ultimately decided not to include them.

This leaves "Proto", "Bytes", "Flags", "Duration" and "Packets" as the features used
to train our model. Attributes from 11 to 14 were added later as labels for each
flow. Because in this initial analysis, we only want to make the distinction be-
tween normal and attacker traffic, we elected the attribute "Class" as our target.

For our elected features, some additional processing was required. The "Proto"
string values were converted to their assigned corresponding Internet protocol
numbers 6 and 17 for TCP and UDP respectively. "Bytes" possessed some values
with "M" at the end probably referring to Megabytes, so all values were converted
to bytes. "Flags" were depicted as a string, placing "." if the flag was off, and the
respective flag letter if it was on. Note that they follow this order: U, A, P, R,
S and F. Given that each position in the string corresponds to a unique flag, we
decided to represent them in a binary format, placing 1 for "." and 2 for a letter.
"Duration" values were all converted from seconds to nanoseconds.

This is all that is needed for the binary classification of flows between normal and
a port scan. However, to discern between scans, some alterations are needed. We
must consider the distribution of each scan type. Scans with lower instances were
oversampled to match the others. The normal class, instead of under-sampled to
the same size of the aggregation of all port scans, is under-sampled to match the
size of a single scan type.
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Figure 4.5: CIDDS-002 Scan Types Distribution

50



Development and Implementation

4.1.2 Random Forest Model Development

As decided, the chosen algorithm is RF. To train the model we employed Python
and the scikit-learn library [Pedregosa et al., 2011]. For the initial development,
"Class" was the target label, making the distinction between normal traffic and
port scans. It was then changed to "AttackDescription", to allow the subcatego-
rization of each type of scan. The features are "Proto", "Bytes", "Flags", "Duration",
and "Packets". The distribution of training and testing was chosen to be an 80:20
ratio.

As further detailed in the thesis, eBPF has limitations that impact the way IDS
can be built. One in particular is related to the number of instructions. For this
reason, we have to carefully evaluate the model for the maximum number of trees
in the forest and the maximum depth that each tree can have. With this in mind,
the model’s performance was first examined concerning the maximum number
of trees. We capped the max_leaf_nodes to 1000 just to have a limit baseline for
each tree to guarantee some level of coherence throughout each iteration as there
is no maximum depth yet defined. Figure 4.6 shows the results of the various
performance metrics when varying the number of trees.

Figure 4.6: Performance Variation with number of trees for Binary Model

With these results, we determined that 11 would be an appropriate number for
the number of trees to not risk overfitting. From this, we examined the variation
of these performance metrics when the depth was changed. Figure 4.7 depicts
the results of the various performance metrics when the number of trees is 11.
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Figure 4.7: Performance Variation with the number of depth for Binary Model

From these results, the maximum depth of 3 was deemed reasonable, as seen in
the results we risk overfitting the model. With these variables, training the model
gives the confusion matrix in Figure 4.8; additionally, the feature importance is
depicted in Figure 4.9.

Figure 4.8: Confusion Matrix for Binary Model
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Figure 4.9: Feature Importance for Binary Model

This distribution is somewhat expected. The features "Bytes" possess the most
distribution allowing to discern flows the best. "Flags" comes right after, how-
ever, in normal and attack flows they possess similar properties. "Packets" and
"Duration" do contribute but again, this is even similar between both classes. Fi-
nally, "Proto" only varies between TCP and UDP, resulting in the least important.

As we moved on, to attempt to distinguish between each type of scan, similar
tests were conducted. Measuring performance by changing the number of trees
of the model and once a value is selected, observe variations with changes in
depth. For metrics requiring average, the macro keyword was used.

When it came to the number of trees, the value of 11 was once again deemed
appropriate. Like previously, higher values seem to lead to an overfitting of the
model. The chosen depth was initially selected to be 6. However, it was later
observed, in the deployment of the model, that as the depth increased, its capacity
to distinguish between normal traffic and Ack scans, became harder. The depth
was then decreased until this property was no longer present. Additionally, by
examining the number of paths in the model for each label, some were much less
represented including the Ack label. To address this, weights were attributed to
each class. We ended up at the same value as in the binary model, 3. The metrics
are depicted in Figures 4.10 and 4.11.

From these values, the confusion matrix and feature importance were again cal-
culated. These are depicted in Figures 4.12 and 4.13 respectively. Compared to
the previous model, the "Flags" attribute rises to the most important for obvious
reasons. This attribute is the metric that allows us to distinguish between scans.

53



Chapter 4

Figure 4.10: Number of trees for Multi-class Model

Figure 4.11: Number of depth for Multi-class Model
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Figure 4.12: Confusion Matrix for Multi-class Model

Figure 4.13: Feature Importance Multi-class Model
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4.2 Packet parsing and processing

An XDP program is triggered at the moment a network packet enters the ma-
chine. The incoming metadata comes as a pointer to an xdp_md structure [Linux’s
uapi/linux/bpf.h, b]. This structure is referenced in the Listing 4.1.

1 struct xdp_md {
2 __u32 data;
3 __u32 data_end;
4 __u32 data_meta;
5 /* Below access go through struct xdp_rxq_info */
6 __u32 ingress_ifindex; /* rxq->dev->ifindex */
7 __u32 rx_queue_index; /* rxq->queue_index */
8 __u32 egress_ifindex; /* txq->dev->ifindex */
9 };

Listing 4.1: xdp_md Structure

The two first fields indicate the memory location referring to the start and end, re-
spectively. Although they state the __u32 type, these are pointers. With these, we
can parse the contents of the packet. Figure 4.14 depicts the layout of an IP packet,
which has the elements of interest highlighted for our development. These ele-
ments correspond to the features selected for the ML model or are needed for
subsequent parsing.

Figure 4.14: IP packet general layout 1

As we parse through the packet, we must verify each memory access to accom-
modate the Verifier constraints. To do this, as each element is cast to its desig-
nated structure, an offset with the size of the current structure size is incremented.
If the pointer to the start of data in addition to this offset exceeds the end of the
data, it means that we are operating outside the memory boundaries.

Given the nature of our solution, our model requires the examination of certain
features in a network flow to determine if it is normal activity or a port scan. For
this, we must keep track of the flows of the network. As each packet arrives, a
new flow is created or an existing one is updated. Our solution encompasses the
use of a Least Recently Used (LRU) hash map. We chose the LRU variant as it
would allow for the management of the flows, deleting the ones that have been
inactive the longest, and making sure the number of flows cannot grow out of
bounds. Each hash key comprises the source and destination IP and source and

1This layout was made taking into reference the IP packet layout presented in the book [Rice,
2023]
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destination port, accompanied by the layer 4 protocol (e.g. TCP, UDP, etc.). Even
though not used for training the IPs are essential to pinpoint the attack domain.
The value associated with the key will possess the features, model classification
prediction, and additional information either used to calculate the features or for
metrics analysis. For better clarity, the structures of these elements are depicted
in Listing 4.2:

1 typedef struct flow_key {
2 __u32 src_ip;
3 __u32 dst_ip;
4 __u16 src_port;
5 __u16 dst_port;
6 __u16 protocol;
7 }flow_key;
8

9 typedef struct flow_value {
10 __u64 packet_counter;
11 __u64 duration;
12 __u64 transmited_bytes;
13 __u64 flags[6];
14 // end of features
15 __u64 timestamp; // last timestamp (used to calculate flow duration)
16 __u64 scan; // RF model prediction - 0 normal, [1-4] scan
17 __u64 scan_counter; // times it has been classified as a scan
18 __u64 suspicious; // 0 normal, 1 scan-normal, 2 trigger
19 }flow_value;

Listing 4.2: Flow Key and Flow Value Structures

4.3 Implementing ML Models in eBPF for IDS

In the delineation of the thesis objectives, the incorporation of an ML algorithm
into the IDS solution was established. Nevertheless, in the quest for the most
suitable solution, it is imperative to assess the algorithm’s efficiency and consider
the constraints imposed by using eBPF technology within the IDS. As mentioned,
the eBPF deployment flow passes through an element known as the Verifier. This
Verifier imposes limitations on the code that is being deployed. In the context
of the algorithm to be chosen, the metrics which we must take into account are
the program limit size and unbounded loops. The size of an eBPF program was
limited to a maximum of 4096 instructions by the Verifier, however, that limit has
grown to 1 million. In case this limit is reached, there are ways to avoid this issue,
by using tail calls to other eBPF programs [Rice, 2023]. According to [Miano et al.,
2018], which analyzed the limits and possible circumventions of eBPF limitations,
this approach of tailing does not add much overhead, however, we should still
attempt to keep the complexity of the algorithm low to improve the usage of
resources. Another limitation is that unbounded loops are not allowed, in the
presence of an algorithm that iterates until something is reached, it needs to be
changed to a bounded loop solution.
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From the findings presented in [Miano et al., 2018], one stood out as a possible
avenue for investigation. The authors evaluated the performance of eBPF and
concluded that a solution using hard-coded parameters can have a big positive
impact on performance instead of direct memory accesses. With this in mind,
our ML implementation will follow two approaches. One possesses the model
parameters loaded in maps and the other with them hardcoded. We will then
evaluate each one.

Given that our model was developed in Python and eBPF requires it to be in C,
we have utilised the Python library emlearn [Nordby et al., 2019] to generate the
Python model to C to be compiled. The emlearn library is specifically crafted to
extend machine learning capabilities to microcontrollers and embedded systems.
It ensures compatibility by allowing Python models to seamlessly transition to C
code, which can be compiled with a C99 compiler. Notably, it eliminates the need
for extra libraries and dynamic allocations. The entire code is encapsulated in a
single header file, enhancing simplicity and making it well-suited for integration
with eBPF. However, the generated code requires alterations to be accepted by
the Verifier, this will be addressed in the upcoming sections. With this solution,
we can attempt to have the model hard-coded in the program.

4.3.1 Random Forest Model in eBPF via Maps

When trying to implement ML in eBPF the most straightforward solution is to
retrieve the model values from the scikit-learn model, and load them into an eBPF
map. From the kernel side, write the RF classification/prediction algorithm that
accesses these values to make decisions.

We can build a program that, from the generated RF model, retrieves the nodes
and roots and parses them to a structure that can be loaded into the map. How-
ever, emlearn, already does this. Given that we are using it for the compiled ver-
sion, we decided to use this feature in this stage for convenience. Note that be-
cause our user space program is in Python, a slight modification to the C struc-
tures created needs to be done to be loaded via our program.

We require two maps for loading elements from two distinct domains: the tree’s
roots and forest nodes. Both maps are implemented as array maps. The array
map to store forest nodes uses an integer as the key, representing an index, and
the corresponding value is the structure of the nodes. This structure encompasses
details such as the associated feature, its values, and the indices of the nodes to
its right and left. The structure is outlined in Listing 4.3 for reference.

1 typedef struct tree_node {
2 int feature;
3 int value;
4 int left;
5 int right;
6 } tree_node;

Listing 4.3: Tree Node Structure
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It is important to note that the item "value" in this structure generated from em-
learn comes in float. Given that our features are all Int64, the decimal values are
0 or 5. Because eBPF can´t do pointer arithmetic we shifted these values by one
to the left, effectively multiplying each by 10.

The array map for storing tree roots utilizes an integer as the array key, repre-
senting the tree number, and the corresponding value is also an integer denoting
the index where it is stored in the array map of forest nodes. Refer to Figure 4.15
for a visual representation of this relationship between maps, providing further
clarification.

Figure 4.15: Tree roots and Forest Nodes Storage

Having established how we retrieve and load the RF model values, we can move
on to developing the prediction algorithm. Given the model is RF the algorithm
was developed accordingly. Starting at each root, the node’s value is compared
to a certain feature, the outcome will decide if the next node to visit it at the left
or right of the current node. Once the last node is reached, this will indicate the
prediction of the current tree. The last node in a tree possesses its feature value
equal to -1, given that -1 is outside the boundaries of the features array.

It is important to note, however, some modifications that were required for the
acceptance by the Verifier. Because the node values were shifted, we are required
to multiply each feature by 10. To accommodate the bounded-loop criteria, we
chose not to iterate through each tree until reaching the last node. Instead, we
perform a loop limited by the maximum depth that each tree can attain. This en-
sures that we can reach the last element. If the element is found before the max-
imum depth is reached, we exit the loop. To retrieve each tree root, the Verifier
prohibited using the same value for both iterating through the loop and retriev-
ing the root via the map. So an auxiliary variable j was created. When accessing
the Maps, an additional condition was necessary to verify if something was re-
trieved. When accessing arrays, such as votes or features, a validation check was
implemented to ensure that our access remained within the limits.

Ultimately, all predictions are considered, and the one that has garnered the high-
est number of votes is selected as the final choice. The algorithm 1 depicts the
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pseudocode of our solution for further clarification. The workflow of this partic-
ular solution is represented in Figure 4.16 to facilitate its comprehension.

Figure 4.16: RF Model via Maps workflow
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Algorithm 1 RF Model Prediction via Maps

1: function PREDICT_MAP(duration, protocol, packet_counter, transmit-
ted_bytes, current_flags)

2:
3: f eatures ← [duration × 10, protocol × 10, packet_counter ×

10, transmitted_bytes× 10, current_ f lags× 10]
4: votes← [0, 0, 0, 0, 0]
5: j← 0
6:
7: for i← 0 to N_TREES do
8: current_root← tree_roots.lookup(j)
9: j← j + 1

10: if current_root then
11: current_node← ∗current_root
12: for d← 0 to MAX_TREE_DEPTH do
13: node← tree_nodes.lookup(current_node)
14: if node then
15: if node. f eature < len( f eatures) and node. f eature ≥ 0 then
16: if f eatures[node. f eature] < node.value then
17: current_node← node.le f t
18: else
19: current_node← node.right
20: end if
21: else
22: if node.value < len(votes) and node.value ≥ 0 then
23: votes[node.value] += 1
24: break
25: end if
26: end if
27: end if
28: end for
29: end if
30: end for
31:
32: most_voted_class← −1
33: most_voted_votes← 0
34: for i← 0 to len(votes) do
35: if votes[i] > most_voted_votes then
36: most_voted_class← i
37: most_voted_votes← votes[i]
38: end if
39: end for
40:
41: return most_voted_class
42: end function
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4.3.2 Compilation of Random Forest Models in eBPF

Based on the outlined strategy, we proceeded with its development. As we men-
tioned we will employ emlearn to generate the model into C code. We could have
followed the same strategy as the one with Maps, having the tree nodes and roots
hardcoded in the program with arrays. However, the Verifier did not allow the
previous algorithm, with the appropriate changes, to be used with arrays instead
of maps. In the face of this, given that emlearn also generates each full unrolled
tree with if and else statements we decided to employ them for our prediction.
Below is an example of a tree generated by emlearn.

1 static inline int32_t rf_predict_tree_5(const float *features, int32_t
features_length) {

2 if (features[4] < 116166.0) {
3 if (features[3] < 56.0) {
4 if (features[3] < 51.5)
5 return 1;
6 else
7 return 2;
8 }else {
9 if (features[1] < 11.5)

10 return 3;
11 else
12 return 0;
13 }
14 } else {
15 if (features[3] < 54.5) {
16 if (features[4] < 121111.5)
17 return 4;
18 else
19 return 0;
20 } else
21 return 0;
22 }
23 }

Listing 4.4: Tree from Random Forest generated from emlearn

For this function to be accepted, it would need to shift every value to the left,
effectively multiplying by 10. This is the same approach used with Maps. Addi-
tionally, the parameter "features" would require to be changed to int, and "fea-
tures_length" could be removed. Furthermore, the type of function would also
need to be changed to int. At the end of these trees, a function, calling each tree
and establishing the most returned prediction, was also generated. To address
Verifier issues related to pointer arithmetic, we opted for a streamlined solution.
We consolidated the if-else conditions from each tree into a single function, as
depicted in the pseudocode of algorithm 2.

Figure 4.17 is meant to depict the workflow of this strategy. Making it easier to
compare to the one previously illustrated via Maps.
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Algorithm 2 RF Model Prediction Compiled

1: function PREDICT_C(duration, protocol, packet_counter, transmitted_bytes,
current_flags)

2: f eatures ← [duration × 10, protocol × 10, packet_counter ×
10, transmitted_bytes× 10, current_ f lags× 10]

3: votes← [0, 0, 0, 0, 0]
4: if f eatures[4] < 1161660 then
5: if f eatures[3] < 560 then
6: if f eatures[3] < 515 then
7: votes[1]+ = 1
8: else
9: votes[2]+ = 1

10: end if
11: else
12: if f eatures[1] < 115 then
13: votes[3]+ = 1
14: else
15: votes[0]+ = 1
16: end if
17: end if
18: else
19: if f eatures[3] < 545 then
20: if f eatures[4] < 1211115 then
21: votes[4]+ = 1
22: else
23: votes[0]+ = 1
24: end if
25: else
26: votes[0]+ = 1
27: end if
28: end if

▷ The rest of the trees follow the same format as the one between lines 4
and 28. They were omitted for clarity

29: most_voted_class← −1
30: most_voted_votes← 0
31: for i← 0 to len(votes) do
32: if votes[i] > most_voted_votes then
33: most_voted_class← i
34: most_voted_votes← votes[i]
35: end if
36: end for
37: return most_voted_class
38: end function
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Figure 4.17: RF Model Compiled workflow
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4.4 Port Scan Detection Mechanism and Response

Even though we can make the distinction between flows, from our analysis it
does not seem appropriate to employ a single flow, classified as a scan, to infer
that a port scan is being conducted, for various reasons. When discussing port
scanning, it is usually inferred that a multitude of ports are being scanned. Addi-
tionally, using anomaly-based detection makes the solution prone to False posi-
tives. For this reason, it seems more suited to, while keeping this classification of
flows, only infer that a port scan is taking place after a certain number of flows,
classified as a scan, coming from a determined source, are registered. This would
also align with what is stated in the Snort documentation [README.sfportscan].
This reference indicates that a single port scan is not evidence of an attack and a
user operating legitimately within the network can employ behaviour similar to
an attacker.

To address this issue a new eBPF LRU hash map was created to make this detec-
tion, along with two thresholds that define the detection sensitivity. The key of
each element is the source IP and the value corresponds to the structure depicted
in Listing 4.5. The value contents help in determining the type of scan that is
being conducted.

1 typedef struct ps_value {
2 __u32 dst_ip; // (last connected IP) used to calculate ps_method
3 __u16 dst_port; // (last connected port) used to calculate ps_method
4 __u64 timestamp; // used to compare to PS_DELAY
5 int ps_counter; // number of flows classified as scan
6 int ps_method; // 0 vertical, 1 horizontal, 2 block
7 int ps_type; // type of scan, syn, ack, etc
8 } ps_value;

Listing 4.5: Port Scan value Structure

To infer a port scan a threshold, that represents the maximum number of scan
classifications, must be met. The threshold is compared to the variable ps_counter.
This threshold can be easily changed to make the solution more or less sensible
to probing. The value of this threshold is set to 25 by default. This value was
determined by consulting the Snort documentation [README.sfportscan].

A second time-related threshold has been incorporated to address the potential
false positives in anomaly-based detection. To mitigate this, elements are reset
if the time difference between the most recent incoming flow and the previously
stored one in the variable timestamp, is excessively large. In such cases, the ele-
ment is reset, and the monitoring restarts with the latest flow. The default thresh-
old for this time difference is set at 30 minutes, however, it can be changed to fit
the environment. This choice is based on the consideration that if an attacker is
conducting a scan on well-known ports with a 30-minute delay between each at-
tempt, it will take approximately 21 days to complete the scan. A value too large
to be feasible. This value was also based on the slow detection strategy used by
[Dabbagh et al., 2011], refer to section 3.2.3.
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In addition to the time threshold aimed at minimizing false positives, a secondary
mechanism, self-proposed, has been introduced to further mitigate them. Each
flow is associated with a calculated value that indicates the likelihood of a false
positive occurrence. This value is determined by dividing the number of times
the flow is classified as malicious by the total number of times the flow is updated.
When this value drops significantly, it is interpreted as a false positive event.
Subsequently, this triggers a decrement in the ps_counter value within the port
scan detection map. If the ps_counter reaches 0, the corresponding element is
then removed from the map.

Regarding the detection process, including the type of scan (SYN, FIN, etc.), scan-
ning methods (vertical, horizontal, and block), and determination of whether the
measured values indicate port scan activity, all these are carried out in the kernel.
However, when it comes to the displaying of values to a user, a compromise was
necessary. It is important to inform the user of the time, target IP and ports of
the scanning activities. However, these values cannot be stored in the kernel as it
would exceed the BPF stack size. Iterating through the flow table is not an option
as by the time a port scan is inferred, flows used to increase the ps_counter may no
longer be present due to LRU evictions. This information needs to then be stored
in user space. How data is sent from the Kernel is explained in Section 4.5.1.

The implemented approach prioritizes minimal utilization of memory and CPU
resources. Each flow classified as a scan is stored in user space. If a port scan
is inferred all these values are printed and deleted from memory, as subsequent
flows related to that source will already imply that they relate to an attack. Ad-
ditionally, elements from the port scan map that are deleted based on the time
threshold or by determining that they are false positives are also deleted from
user space. Keep in mind that none of this is necessary if we do not intend to
have visibility over the network activities and only want the solution to work in
background mode. Figure 4.18 depicts the structure of the stored memory.

Figure 4.18: User Scape Memory Usage

When updating the port scan map, this being with a new flow or by determining a
false positive, a return code is given. These return codes are used for determining
actions with the user space memory but also to indicate that a port scan has been
detected. If the return code corresponds to this measurement and an active re-
sponse mode has been selected, this and future malicious flows from this source
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IP are dropped using the XDP return code XDP_DROP. We still log their future
probing attempts, however, they cannot retrieve information from the system. If
passive mode is chosen nothing is done and the information is only logged.

To further understand the solution, the Listing 4.6 depicts the section of the pro-
gram where this takes place. Note that some elements have not yet been ad-
dressed. This includes the concept of tailing, the transmission of events to user
space and the introduction to XDP offloading. Additionally, the full context of
the functions ps_table_add and ps_table_removed, is not depicted but explained
previously.

1 int ebpf_main_tail(struct xdp_md *ctx){
2 // get the flow information
3 int key = 0;
4 tail_ctx *value = tail_table.lookup(&key);
5 if(value){
6 flow_key fk = value->fk;
7 flow_value fv = value->fv;
8 __u64 rf_pred = value->rf_pred;
9 // if the flow is scan, assess thresholds

10 if(fv.scan != 0){
11 ps_value psv = {};
12 int event_type = ps_table_add(fk,fv,&psv);
13 event_output(ctx,fk,psv,event_type);
14 // drop malicious traffic
15 if(event_type == 1 && DETECTION_MODE){
16 return XDP_DROP;
17 }
18 }
19 // flow has been deemed a false positive
20 else if(fv.suspicious == 2){ // flow is no longer suspicious
21 ps_table_remove(fk);
22 event_output(ctx,fk,(ps_value){},-1);
23 }
24 // offload events
25 if(OFFLOAD_MODE && (fv.packet_counter==2 ||

(fv.packet_counter%10==0 && rf_pred == 1))){
26 // if the flow is active send event, if after a while

offloading is still sending market packets, resend event,
maybe was lost during ring buffer overflow

27 event_output(ctx,fk,(ps_value){},-3);
28 }
29 }
30

31 return XDP_PASS;
32 }

Listing 4.6: Port Scan Detection Logic Function
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4.5 Generating Alerts and Logs

Log entries need to be generated and presented to the user to allow the visualiza-
tion of the performed activities in the network. When an attack is detected, the
data stored is printed and future events sent by the kernel are also printed in user
space. Two approaches were created to present the data to the user, one verbose
and one summarized. The most intuitive is also the most verbose. It presents ev-
ery flow that led to the port scan detection. However, this amount of information
can be overwhelming to someone trying to interpret what is occurring. To ad-
dress this a second approach was developed that aggregates each of these flows
and presents this information more concisely. Refer to Listings 4.7 and 4.8.

1 2024-03-06 15:29:20.910753 - ALERT: Vertical Syn Port Scan detected
from 192.168.1.212:43347 to 192.168.1.216:80

2 2024-03-06 15:29:20.911063 - ALERT: Vertical Syn Port Scan detected
from 192.168.1.212:43347 to 192.168.1.216:83

3 ...
4 2024-03-06 15:29:39.425216 - ALERT: Vertical Ack Port Scan detected

from 192.168.1.212:40703 to 192.168.1.216:98
5 2024-03-06 15:29:39.425338 - ALERT: Vertical Ack Port Scan detected

from 192.168.1.212:40703 to 192.168.1.216:90

Listing 4.7: Verbose Port Scan Alert

1 2024-03-06 15:36:19.42 - ALERT . Port Scan detected from 192.168.1.212
2 |___ Scan Method: Vertical
3 | |___Target IP: 192.168.1.216
4 | | |___ Scan Type: [’Syn’, ’Ack’]
5 | | |___ Scan Attempts: 32
6 | | |___ Target Ports: [80-110]
7 | | |___ Duration Time: 0:00:04.017609

Listing 4.8: Simple Port Scan Alert

4.5.1 Information from Kernel to User Space

To get information from the kernel there are various means. The most common
way is to use the function bpf_trace_printk, which is a basic kernel method to
use the printf to the trace pipe. However, this has various limitations which
include a maximum of three arguments, a single %s and the fact that it shares the
trace pipe globally resulting in the concurrent output of programs. As mentioned
by the BCC documentation [BCC Reference Guide] a better and more elegant
approach is to use the BPF_PERF_OUTPUT.

The BPF_PERF_OUTPUT structure is a BPF table that allows the sending of custom
event data to user space via a data structure called perf ring buffer. A ring buffer
is a piece of memory organized in a ring. This ring possesses two pointers, one
for writing and one for reading. In the case that the read pointer catches the write
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pointer, it simply indicates that there is no more data to be read. However, if the
opposite happens and the write pointer overtakes the read pointer, the data to be
read is lost. Listing 4.9 shows the type of event data transmitted.

1 typedef struct event {
2 int type; // 0 store, 1 alert, -1 delete, -2 restart, -3 offload
3 int ps_method; // 0 vertical, 1 horizontal, 2 block
4 int ps_type; // 1 Udp, 2 Fin, 3 Syn, 4 Ack
5 __u32 src_ip;
6 __u32 dst_ip;
7 __u16 dst_port;
8 __u16 src_port;
9 __u16 protocol; // used for offload key

10 __u16 padding; // padding required to satisfy verifier
11 } event;

Listing 4.9: Event Structure

In the context of our solution, if the speed at which the kernel generates events
outperforms the user space capability of reading said events, then the informa-
tion gets lost. Not only do we lose information, but in the presence of a situation
where the events keep getting generated, like in the presence of a DDoS, not al-
lowing for the read pointer to catch up, leads to the inability to stop the execution
of the eBPF IDS. The most common solution to fight this issue is to extend the size
of the ring buffer’s memory or the aggregate events. The first solution does not
fix the core of the issue, as it would only delay the situation. Aggregating events
were tried, but as explained in the previous section, it was not possible to store
this amount of data in the kernel as it would exceed the BPF stack size, which is
hard coded and cannot be changed. Additionally, even if this was possible, after
the initial alert there is no need to store flows and they would be immediately
sent to the ring buffer, leading to the same issue once more.

To address this issue, a simple array map of a single element was created to
communicate between user space and kernel, to inform when such a situation is
present. With this, every time an event needs to be generated, this map is accessed
to determine if information can be sent. When it is determined that information is
lost, the value in this map is changed and events are halted temporarily to allow
the read pointer to catch up. Information is outputted about how many events
have been lost. Within the kernel detection continues as if nothing is happening,
it just does not generate events until allowed again by user space, it however in-
crements a counter on how many events it did not send, storing this information
in the array map. The following Listing, 4.10, depicts how this type of occurrence
is presented, having as an example the values lost in a flood attack which trigger
the return of events.

1 EBPF-IDS: ERROR - PERF OUTPUT AS REACHED MAXIMUM CAPACITY, 3330
POSSIBILITY LOST SAMPLES, STOPPED EVENTS SUBMISSION

2 EBPF-IDS: LOST 115359 EVENTS
3 EBPF-IDS: RESTARTING PERF OUTPUT SUBMISSION

Listing 4.10: Ring Buffer Alert
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4.6 Compatibility for Offloaded Mode

In this section, the development and challenges faced in the integration of com-
patibility for offloaded mode, are presented. As it has been noted numerous
times, applying this type of solution requires specific hardware. The NIC ac-
quired is a Netronome SmartNIC Agilio CX 2x10GbE [Netronome].

The use of such a NIC imposes limitations over the ones already imposed by
eBPF. Some of these limitations were considered during development. However,
it is impossible to account for all possible variables without the component itself.
Given that this acquisition only took place late in development, the NIC was in-
corporated as a last element. Had the development started with this item present,
a different path could have been taken, like a limited solution working only in the
NIC. Nonetheless, we believe that the proposed solution is still the best approach.

4.6.1 Implementation Roadblocks

It is important to address the multiple issues that arose when trying to incorpo-
rate this item. With this, one can understand the decisions made.

SmartNIC limitations

Firstly, when trying to account for possible limitations, documentation was con-
sulted. However, there was unclear information, that could only be verified with
the hardware in possession. One of this information is related to the operations
allowed by the firmware on eBPF Maps. The helper function bpf_update_elem,
is crucial for the functionality of our solution, as it allows us to keep the context
of the previously examined information. According to sources like [BPF & XDP
Reference Guide] and a blog post by Netronome [Ever Deeper with BPF – An Up-
date on Hardware Offload Support], this helper function was available. However,
in Netronome documentation [eBPF Offload Getting Started Guide , Netronome
CX SmartNIC], this function is not available in the public firmware, and only
support for atomic write operations was available. The __sync_fetch_and_add
only allows us to add values to existing elements in a Map, which doesn’t fit our
solution. When we tested the bpf_update_elem helper function it was indeed
not supported by the firmware. We believe that this inconsistency stems from
the fact that map updates are supported but only from user space. However,
not all sources are clear about this distinction. Additionally, the helper functions
listed as supported, always contained the mentioned function, again, leading to
confusion. Later in development we also discovered that the bpf_delete_elem,
which doesn’t possess any ambiguities detailed in documentation was also not
supported but listed as so.

Contact with Netronome was established to try and obtain the private version of
the firmware. Netronome provided not only the private firmware but also doc-
umentation related to this feature which made clear why was kept private. This
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documentation detailed all available use cases of the function as well as limita-
tions. Due to the way the SmartNIC functions, to address concurrent changes to
map value, the use of locks is necessary. This limitation can lead to serious per-
formance degradation. The way bpf_update_elem works is most likely identical
to bpf_delete_elem, and so it being also not public is justified.

An attempt was made to use this private version of the firmware for our solu-
tion, to understand the possible impact. A simple implementation that kept track
of the network flows, updating their features was developed. The performance
degradation from this solution offloaded compared to its deployment in the ker-
nel was drastic. We concluded that following this path was not feasible. Addi-
tionally having a solution that only works with firmware on request also seems
inappropriate. More on this issue is detailed in Appendix A

From this issue, we pivoted our solution to a partial offload, settling a compro-
mise between what we envisioned and what was possible. More on this mat-
ter is discussed in the sections that follow. To pass information from the Smart-
NIC to the Kernel, access to the data_meta parameters was ideal, refer to Section
4.2. Presented in one of the Netronome’s webinars [BPF Hardware Offload Deep
Dive Webinar] this would be possible, however, the function required to do this,
bpf_xdp_adjust_meta is not supported by the NFP firmware.

BCC Errors

Finally, the BCC framework also posed some challenges. Even though stating
compatibility with the offloaded mode, when trying to load the program, which
is the first step in deployment, results in an error:

1 File
"/usr/lib/python3/dist-packages/bcc-0.30.0+6a5602ce-py3.10.egg/bcc/

2 __init__.py", line 474, in __init__
3 ctypes.ArgumentError: argument 6: TypeError: wrong type

Listing 4.11: BCC incorrect error

According to the BCC repository merge [Support for hardware offload] the cor-
rect error when trying to load an offload program, which may appear because the
operation is not supported, should be:

1 File "/usr/local/lib/python2.7/dist-packages/bcc/__init__.py", line
347, in __init__

2 raise Exception("Failed to compile BPF module %s" % (src_file or
"<text>"))

3 Exception: Failed to compile BPF module <text>

Listing 4.12: BCC correct error

By consulting the BCC source code and analysing the error that occurred. The
issue was fixable by casting the interface name to a const char pointer, instead
of passing this information as a string, as shown in [BCC XDP Examples].
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4.6.2 eBPF Tail Calls

Before moving on to the implemented solution and its details, it is important to
note an element required to move on with development. Until now the entirety
of our code could be deployed in a single eBPF program. However, as we reached
this stage the program became too complex to be analysed by the Verifier. This
required our solution to be split, and use tail calls to link them.

An eBPF tail call, in simple terms, allows an eBPF program to call another func-
tion, which is seen as a separate program by the Verifier. This, in turn, makes
each targeted function pass independently by the Verifier which resets its allowed
complexity [eBPF Documentation]. Our program was split after the flow as been
processed and classified by the ML algorithm and before it was analysed against
the port scan detection logic.

To support this strategy two new eBPF maps were required. Firstly, the map type
BPF_MAP_TYPE_PROG_ARRAY, which is indispensable, as it is used to contain the
references to the programs. Then an additional array map was added to store
the previously processed information and pass it on to the subsequent program
to read and continue processing. From our measurements, the process of tailing
and passing on the information has minimal impact on performance.

4.6.3 Partial Offload

Taking into consideration the limitations documented in section 4.6.1, to imple-
ment offloading into our solution, a compromise was established, only offloading
what was possible.

The core of our solution works by using the hardware to classify the first packet
of a flow. From there, all other packets are classified in the kernel, having this part
of the program deployed in driver mode. In normal communications, this doesn’t
seem to provide enough benefit, as only the first packet gets the hardware pro-
cessing benefits. However, in the context of port scanning this implementation
fits perfectly. Port scan attempts are characterized by a single packet per flow, in
most scenarios, therefore all these attempts would be processed in the hardware
and not in the host.

In the hardware, the process starts by parsing the packet. Because we can’t keep
track of flows, again, due to limited map operations, only the first packet of a
flow is analysed. However, to save processing, it is ideal for our solution to not
process the packet twice, in the hardware and then in the kernel. To solve this
issue, a hash map was inserted in the hardware that contains active flows. A flow
is active if it possesses more than two packets registered. The kernel is the one
that determines if a flow is active, sending an event to the perf output. This event
is then received in user space, writing the flow key into the offloaded map, as this
is the only way to insert elements. This gives a small time window, where packets
are classified in the hardware and kernel, while the user space attempts to insert
the new flow. However, from our measurements this operation is extremely fast,
taking on average 41.6 ms to complete, with a standard deviation of 0.35 ms.
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Because we are using the perf output system to send events to user space, we
must not forget the limitations previously documented. To address possible loss
of events due to ring buffer overflow, the active flow event, is re-transmitted in
the case that it receives a classified packet from the hardware in a flow already
marked as active.

After parsing, and determining if the packet belongs to an active flow, in the case
that it doesn’t, it is classified. To insert ML in the hardware, the compiled RF
model was implemented like before, however, the model stored via maps was
not accepted by the Verifier.

Because only the map type array and hash are available, to address possible
overflow issues when storing active flows, we must incorporate a system that
evicts elements from the map when it reaches maximum size. As mentioned the
bpf_delete_elem is not supported by the public firmware of the NFP. This ac-
tion is however possible from user space. However, from all BCC functions for
deleting elements only one was compatible with offloaded maps. This function
deletes all entries in a map. This is not ideal but it is the only means by which we
can address the issue.

The process of deleting all entries is time-consuming, causing downtime in the
access to that map, figure 4.19 represents these values. While the access to maps
is down, the hardware passes a value, indicating that it did not perform any
classification, and that process must be done by the kernel. There are no eBPF
helper functions in the firmware to get the size of the hash map. For the hardware
to know it reached maximum capacity and pass all classifications to the kernel,
an array map of a single element was added indicating the active size of the hash
map. This array map is updated by the user space program. This map is also
used to let the offload program know when a ring buffer overflow occurred, and
therefore it can not rely on its active flow table.
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Figure 4.19: Time for resetting offload map entries

From this distribution, a map size that balances the number of active flows it can
store and the time it requires to reset its contents must be selected. This depends a
lot on the environment where this solution is deployed. After some deliberation,
the size of 100 was deemed reasonable. However, for a real scenario, this choice
would depend heavily on the environment and the specific objectives.
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To send information from the hardware to the kernel, the most intuitive way
would be to append information to the data_meta parameter. However, as men-
tioned, this was not possible. The NFP, however, possess an alternative, the
helper function bpf_xdp_adjust_head. A solution was attempted, incorporating
this strategy. We would add a header to the packet containing our classification,
and then in the kernel remove this header. Even though functional, this pro-
cess caused degradation in the IDS processing speeds. To solve this issue a new
method to pass information to the kernel was required. Without other direct ob-
vious alternatives to pass information to the kernel, the use of the RX RSS queues
was selected to infer information. The RX RSS queue is used to distribute packets
across CPUs. The RX RSS queue can be selected with the NFP by changing the
variable rx_queue_index, refer to section 4.2. Our environment possesses four
of these queues, and for our solution to work we require three. In the kernel by
examining which queue the packet has assigned decisions are taken. The enu-
meration that follows details this relation.

• RX RSS Queue 0: if a packet has this assigned queue, it means that this
packet is benign or that failed during parsing. If the incoming packet be-
longs to an active flow is also sent via this queue.

• RX RSS Queue 1: if a packet has this assigned queue, it means that this
packet is malicious and is associated with a port scan attempt.

• RX RSS Queue 2: if a packet has this assigned queue, it means that the
active flows table is being reset or the ring buffer overflowed and therefore
classifications in the hardware cannot take place, as it can’t determine if
the incoming packet belongs to an existing flow. For this reason, packet
classification must be done in the kernel.

This method proved very efficient, as it only requires to change a single variable.
Additionally, it is in essence, load-balancing the attack. However, this solution
only allows us to know if a port scan was attempted and not the type of scan. To
solve this issue we decide to follow a hierarchical model strategy. Put simply, a
hierarchical model works by using a model that first distinguishes the main cat-
egories, in our case between normal traffic and port scans, then a second model
that identifies the sub-categories of the chosen main category. In the context of
our solution, we don’t require a second model. As previously documented in sec-
tion 2.3, port scans are extremely similar, being easy to identify by their protocol
and used flags. In our solution, the multi-class model is used in the hardware,
however, we only can tell the kernel that a port scan was detected. Therefore in
the kernel, we implemented a simple decision tree that then identifies what type
of scan occurred.

The Figure that follows, 4.20, depicts a high-level representation of how our fi-
nal solution uses XDP offloading capabilities of the SmartNIC. Note that in this
representation, some elements are highlighted differently, namely the eBPF maps
storing the ML model and the thread that queues events. This is because these
elements are optional. One can choose between the model’s deployment and also
choose between the alerts generated.
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Figure 4.20: Partial offload overview
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4.7 Chapter Wrap-Up

In this Chapter, the development of the proof of concept was undertaken. We
analysed the CIDDS-002, establishing what elements were worthy to be used
when training the model. In the end, five features were selected, correspond-
ing to the duration of the flow, protocol, number of packets received, transmitted
bytes and flags. From there we analysed the best parameters the model could
use, electing 11 trees with a maximum depth of 3 as adequate.

The incorporation of RF within the kernel followed two approaches. The first
implementation loaded the model values into eBPF Maps, which could then be
retrieved in the kernel to make the flow classification. The second method used
emlearn to contain the model within a single header file, which could be then
called by the eBPF main program.

A single flow classified as malicious is not indicative of a port scan. Logic capable
of associating multiple malicious flows and classifying them as a port scan was
then developed. Following this, the development of means by which alerts could
reach user space, and notify the user, was incorporated into the solution.

The final stage of development focused on the offloading domain. Given the
various roadblocks faced, the final solution incorporated a partial offload. The
first packet of a flow is classified in the hardware, and the rest of the packets are
classified in the kernel. In the context of port scanning where most scan attempts
represent a single packet per flow, this solution fits perfectly.
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Validation and Evaluation

With the developed work established in the previous chapter, we now consider
evaluating the solution in this section. Our study will encompass the evaluation
of the two proposed ML approaches and the validation, to assess whether the
solution performs the envisioned detection effectively. After this, an assessment
of the solution’s performance will be made.

Section 5.1 presents the methodology. Section 5.2 examines a comparative anal-
ysis between the two developed methods: the ML model loaded via eBPF Maps
and the compiled approach. Following that, Section 5.3 validates the solution to
determine its effectiveness in achieving its intended purpose. Section 5.4 com-
pares the performance of the solution. Section 5.5 examines the solution response
to overflows. Finally, Section 5.6 entails an overview of the chapter.

5.1 Evaluation Methodology

Before moving on to the presentation of results, a clarification on how we will
attempt to evaluate the solution is necessary. The following enumeration is asso-
ciated with each Section that follows:

• ML implementation comparison: to examine this element, we must mea-
sure the time it takes to classify a flow and the size of the ML model the
program can hold. By storing a timestamp right before and after the clas-
sification, we can get the classification time. We store these times in an
eBPF Map. This is then accessed in user space. In the end, the average and
standard deviation are calculated. To determine the size of the model, the
number of nodes is the used metric. The number of trees and tree depth is
increased incrementally until the model can no longer be deployed.

• Detection capabilities: to determine if detection is appropriate, port scans
are conducted against the IDS. If they are identified correctly, this is inter-
preted as a successful detection. Additionally, a comparison between the
two ML Models is also important.
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• Performance: To understand the solution’s performance, the packets anal-
ysed per second were an important metric to consider. When only measur-
ing a continuous flow, this value can be obtained, in user space, by retriev-
ing the flow’s packets and duration and dividing them. However, in the
presence of multiple flows, more is needed. This is because flows may be
removed due to LRU evictions. An eBPF Map is used to store the number
of all incoming packets, alongside timestamps of the first and final captured
packets. Note that this can cause a small degradation in performance, as in
every packet additional calculations are done.

• Overflows: to evaluate how the solution behaves in an abnormal environ-
ment, the IDS was put in a scenario where the objective was to overflow the
eBPF Maps to see if detection is still effective.

5.2 ML via Maps and ML Compiled Performance

During the practical development phase, we explored two approaches for imple-
menting ML in eBPF. The first approach, which intuitively addresses the prob-
lem, involves retrieving the roots and nodes of the model. These values are then
loaded into maps. Subsequently, in the kernel, we recreate the classification/pre-
diction algorithm and retrieve the stored values from the maps to determine the
classification. The second approach involves a library that can unroll the trees
into if-else statements. This generated code is contained within a header file that
can be called from the eBPF main code. Refer to Section 4.3

Before resuming the examination of how each one performs, it is important to ad-
dress nuances that have already been encountered. As explained above, the eBPF
Verifer imposes limitations on the program size and complexity, refer to section
2.1.1. When models bigger than the ones established were evaluated, it was pos-
sible to observe that some models were too large to be hard-coded. However,
when using Maps these same models could be used. This issue arises because the
hard-coded implementation exceeds the Verifier complexity when attempting to
analyze all paths of the if and else statements. Means of circumventing this limit
are possible through tailing but have not been implemented as the current solu-
tion does not require it. Therefore in its current state, via the Maps solution, we
can load a much bigger model if needed. The model size will vary depending on
the complexity of the remaining logic in the program. However, in our specific
case, the maximum number of nodes in the forest for the hard-coded solution is
between 72 and 77 in the kernel, and 112 and 118 offloaded, whereas on Maps it is
between 1387 and 1466. Note that in driver mode our model is already reaching
the maximum size allowed. Additionally, the reason why offloaded possesses a
slightly bigger size is that it doesn’t possess all the same logic that is present in
the kernel.

We monitored the time that each prediction function needed to come up with the
prediction value for that flow. We measured the time of various predictions of
various flows (Scans and HTTP connections among others) and then calculated
the average and standard deviation. Figure 5.1 shows the results.
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Figure 5.1: Performance Comparisons between ML implementations

There is a significant variance in measurements because the number of decisions
to determine a classification is not constant. Some flows get determined much
faster. In this test, we attempted to have normal flows and attacks represent
nearly the same amount. In Figure 5.2, the times measured can be seen as well as
their variance. It is easy to identify where flows begin and end.

Figure 5.2: Packet Classifications Times
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Has we can see, the prediction made using the hard-coded model is much faster
the the one using Maps. However, we cannot conclude that this is the best solu-
tion due to the factors explained before, concerning the model size. When choos-
ing the one that is the most suitable for the job at hand one must consider the
speed and the size of the model. If the size is small enough to be hard-coded,
then this is the optimal solution, otherwise, it must employ one using Maps.

Unfortunately, we could not get a measurement of the time it takes for the of-
floaded mode to classify a packet. The helper function needed to obtain the time
is not available by the NFP firmware. Note that, if it existed it would only allow
us to compare to the other hard-coded measurements as the solution via maps
was not implemented in the offloaded domain.

5.3 eBPF-IDS Detection Analysis

Another element we wish to evaluate is whether the solution can detect port
scans. The dataset used to train the model possessed the following port scans:
SYN, ACK, FIN, and UDP. During development, our initial model was binary
and then progressed to multi-class. In this transition, we observed various be-
haviours which we believe are important to document. To perform these tests,
the Nmap tool was used [Nmap Reference Guide]. Then the scans in question
were used against the machine running the eBPF-IDS solution. The scans were
used against a multitude of ports, both opened and closed. Table 5.1 depicts the
observed results in the binary model and the final solution.

Scan Type Detected (binary) Detected (multiclass)

SYN Yes / No Yes

FIN Yes Yes

ACK Yes Yes

UDP Yes Yes

Table 5.1: Main Port Scans Detected by the solution

From the analysis conducted, both FIN and UDP were always identified and the
flow was classified as a port scan. However, some nuances were observed with
SYN, on the binary model, and with ACK.

The SYN scan was detected when the scan performed was against a closed port.
However, when facing an open port, the SYN scan sends a second packet, the
RST packet. This characteristic led to the following behaviour: when receiving
the SYN packet the eBPF-IDS solution would classify the received flow as a port
scan, however, when the flow was updated with the RST packet this flow would
be declassified back to normal traffic. A possible reason for this behaviour has
to do with the distribution of the dataset concerning SYN scans to open ports.
Figure 5.3 is meant to illustrate these distributions.
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Figure 5.3: SYN Scan Distribution concerning Number of Packets

It is clear that SYN scan to open ports, which will utilize more than one packet,
is much lower. Also, we are grouping all scan types into a single-port scan clas-
sification. Taking this into account, we observe that all other scan types only
utilize one packet, making this discrepancy even greater. Note that these results
consider the pre-processing done in Chapter 4. However, when updating to the
multi-class model this behaviour was no longer present. The model was able to
classify SYN scans to open ports correctly.

Another observed issue relates to the ACK scan. When performing an ACK scan,
this could be detected by both solutions. However, it was observed that some
normal flows could sometimes be classified as a Port Scan in the first packet and
then, immediately after the flow updated with a new packet, it would be declas-
sified, reverting to normal traffic. When observing the first packet of this flow,
it becomes clear why. When placing both this first packet of a flow where this
would happen and an ACK scan side by side, they would have the same char-
acteristics. With this, further examination was conducted which revealed that
when training a model, this would fall to one of two sides. Flows with the previ-
ous characteristics would be classified either as an ACK Scan or in rare situations
classified as normal traffic. We believe that the first situation is acceptable because
even though a flow can be wrongfully classified it will immediately change once
updated keeping actual ACK Scans identified, unlike the other situation where
they are never identified.

Given that our solution uses ML, it is also important to analyse if it can detect
scans outside the ones it was trained on, refer to Section 2.3. When testing this
process we also observed changes when updating the model. Table 5.2 depicts
the observed results.

From these results, it becomes apparent that some of the detection capabilities
were lost when updating the model when it comes to other scans, different from
the ones the model was trained on. When identified, these scans had classifi-
cations that represented the scan they were most similar to. For example, the
Window scan was classified as ACK, this is because it sends a packet equal to one
of an ACK, however, what changes is the interpretation of the response, refer to
Section 2.3.2. It is important to note that when using the offloaded mode, these
other scans could not fall within the decision tree logic and therefore classified
only as a port scan, being unable to determine further details.
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Scan Type Detected (binary) Detected (multiclass)

Xmas Yes No

NULL Yes Yes

Maimon Yes No

Window Yes Yes

TCP Connect No Yes

Table 5.2: Other Port Scans Detected by the Solution

We also analysed details that surround evasion techniques like changing the size
of the probes being sent. It was observed that the binary model failed when this
was done. However, the multi-class model managed to still correctly identify
these scans.

With these measurements, one can conclude that using the binary or multi-class
model can have advantages and disadvantages. If one desires to implement a
solution to detect a broad spectrum of a category, the binary model, which ag-
gregates all subcategories into a single one, seems to be the most appropriate.
However, if one’s intention is to detect specific targets within a category, follow-
ing a multi-class approach is the best option.

5.4 eBPF-IDS Performance Analysis

The performance of our solution is also an important metric to consider. With
this, one can have a greater perspective on its suitability for a real-world sce-
nario. It would also allow us to place our solution concerning other authors’
implementations.

5.4.1 Data Processed per Second

To analyse the packets per second our solution can process, the iPerf3 [iPerf3]
tool was used. However, to have some point of reference, some other metrics
are necessary. Firstly a measurement with no IDS. Secondly, like other authors
presented [ANAND et al., 2023; Bachl et al., 2021; Carvalho et al., 2023; Pradhan
and Mannepalli, 2021], measurement of a user space solution. For this, we devel-
oped a similar implementation of what was done in the kernel but in user space.
This solution was developed in Python using Scapy [Scapy]. This solution does
not produce the best performance, however, it allows us to have some perspec-
tive. Additionally, we also measured Snort’s performance. Even though Snort
belongs to a different category of IDSs and it is not fair to compare signature-
based solutions to anomaly-based ones, we believe it is still important to have it
as a reference.
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Since the offloaded solution only analyses the initial packet, its performance will
closely resemble that of the driver mode solution. This offloaded approach is
specifically tailored for detecting port scans. To thoroughly assess its perfor-
mance, it’s best to deploy it in such a scenario. The iPerf3 tool does not allow
to generate of traffic where every packet belongs to a new network flow. To sim-
ulate this environment, we simply tell the offloaded program to always classify
a packet and tell the kernel program to never classify it. This effectively puts the
solution in a scenario where all packets are classified in the hardware. Note that,
because the hardware does not have context of the previous packets, its classifica-
tion would not be correct, this test would only allow us to understand the speed
benefit of classifications.

Table 5.3 depicts the measured values of the solution in its different XDP modes
and ML model implementations. Bellow it, is a sub table, to have the other mea-
surements as a reference.

XDP Mode ML mode Avg Pkt-
s/sec

Std Dev
Pkts/sec

Avg Gbit-
s/sec

Std Dev
Gbits/sec

Generic Maps 266 405 2 750 3.05 0.02

Generic Compiled 290 483 2 751 3.33 0.02

Driver Maps 490 827 3 945 5.58 0.04

Driver Compiled 596 942 7 660 6.77 0.09

Offload Maps 503 680 4 927 5.74 0.05

Offload Compiled 605 861 2 230 6.87 0.02

Offloada - 618 723 964 7.00 0.01

Solution Avg Pkt-
s/sec

Std Dev
Pkts/sec

Avg Gbit-
s/sec

Std Dev
Gbits/sec

User Space IDS 1 094 12 9.20 0.01

Snort 51 840 2 765 9.06 0.11

Default (no IDS) - - 9.41 0.01
a Simulated Environment

Table 5.3: eBPF-IDS Performance Evaluation

From these measurements, the difference between the ML deployment becomes
apparent. We already knew the compiled version of the model was faster. How-
ever, now, we can see its benefit in the performance of the overall solution. When
it comes to the XDP modes, the difference in speed is also noticeable. Primarily
when moving from generic to driver mode. As expected the driver and offloaded
mode, in a normal scenario, presented similar performance. This is obvious, as
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only the first packet took advantage of the offloading. However, in the simulated
scenario, the offload solution was 3.5% faster than in the driver, which may look
small but is over a 20,000 packet per second difference. Compared to their user
space counterparts, the eBPF solutions greatly exceed their performance. Note
that the Gbits per second are superior because the user-space solutions do not sit
in line of traffic.

Figure 5.4 places our solution against the other authors that implemented an eBPF
IDS. Making these comparisons does allow us to have a perspective on how suc-
cessful our solution is. However, consider that there are multiple variables at
play. Firstly, different algorithms are employed. Secondly, these authors devel-
oped solutions for multi-class detection, requiring, therefore, more features to be
analysed, and a bigger model to produce correct results. Finally, the hardware
aspect is also relevant, for example, the availability of XDP modes will hinder
performance.
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Figure 5.4: Packets per Second of eBPF IDS solutions1

1It is important to reinforce that this comparison in terms of performance analysis is not fair,
due to variables such as hardware, ML model size and solution’s target. Other ML solutions did
not use a SmartNIC and used different models. All this makes a difference. It is only to provide a
view of how it performs to existing solutions.
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5.4.2 Load Balancing the Port Scan Attack

The previous test, simply showed the performance when processing a continu-
ous flow of traffic. However, given the nature of our solution, there is a test that
can show the true performance benefit of our offloaded approach. Taking a closer
look at our proposed detection system, one can infer that it is load-balancing the
attack. This means, that the malicious flows and normal ones are routed through
different paths and processed by different CPUs, effectively improving perfor-
mance.

To test this situation, both iPerf3 and hping3 are used. Because in a hping3 flood,
each packet resembles the one of a port scan, it effectively simulates a scenario
where multiple port scan attempts are generated at a high rate.

It is important to note that to obtain these metrics, the code had to be changed, as
explained in Section 5.1. This addition is only to measure the values. However,
this modification leads to a small performance decrease. Because of that, the
most appropriate evaluation metric is the performance increase from one solution
deployment to the other.

Another point to take into account is that with the hping3 flood, the perf output
map will eventually overflow. The iPerf3 traffic will keep being sent by RX RSS
queue 0. However, the rest of the packets will shift from queue 1 to queue 2
because the hardware cannot know for certain if the packet does belong to an
active flow as it could have been lost in the overflow. Nonetheless, all new traffic
is still being load-balanced. Some performance is lost as classifications are now
done in the kernel.

Table 5.4 depicts the measured values. Consider that the iPerf3 Gbits per second
is decreased as the hping3 flood is running simultaneously.

XDP Mode ML mode Avg Pkt-
s/sec

Std Dev
Pkts/sec

Avg Gbit-
s/sec

Std Dev
Gbits/sec

Generic Maps 240 852 1 923 1.06 0.01

Generic Compiled 254 108 2 412 1.23 0.04

Driver Maps 430 425 14 806 3.43 0.08

Driver Compiled 472 686 17 130 4.03 0.01

Offload Maps 538 437 2 883 5.01 0.03

Offload Compiled 616 196 3 002 5.86 0.25

Table 5.4: eBPF-IDS Attack Load Balance Performance Evaluation

In this test, the difference between XDP driver mode and XDP offload is now
noticeable. Placing our solution in its designed environment is the only way to
measure its true effectiveness. The offload solution performance increase, from
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driver mode, with ML in maps and compiled, is 20.06% and 23.29% respectively.
This is above 100,000 packets per second increase.

Within this domain, it would also be interesting to examine the data in the receive
buffers. The higher the values, the greater is degradation in performance, as the
data is put on the buffer but not called to the application fast enough.

Figure 5.5 depicts the receive queue values when only using the iPerf3 tool. Fig-
ure 5.6 shows this same trend, however, when using iPerf3 and hping3. Table 5.5
presents the average and standard deviation of these values.

Figure 5.5: Receive Buffer with iPerf3

Figure 5.6: Receive Buffer with iPerf3 and hping3

With only the iPerf3, both solutions operate similarly. However, when in the pres-
ence of the attack, even though possessing a bigger load of traffic, the offloaded
solution still possesses, in the receive queues, less data than driver mode. This
indicates that the partial offload approach moves data from the queues to the
application much faster.
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Tool XDP Mode Average Data
in Recv-Q

Standard Deviation
of Data in Recv-Q

iPerf3 Offload 19 978 35 153

iPerf3 Driver 18 015 32 644

iPerf3 + hping3 Offload 164 782 270 215

iPerf3 + hping3 Driver 259 859 535 613

Table 5.5: eBPF-IDS Receive Queue Data

5.4.3 CPU Usage Analysis

Another metric worth analysing is the CPU usage between the solution in driver
mode and offloaded mode. This was measured using the top command. Given
our partial offload, the rest of the solution runs in the driver. It would be in-
teresting to see if, in the simulated scenario, there is decreased CPU usage. To
measure this, both solutions were placed under the same load by iPerf3, 6 Gbits
per second.

Figure 5.7 depicts the CPU usage trend in user space and kernel of the solutions
using the compiled model. Table 5.6 shows the average of these measurements.

Figure 5.7: eBPF-IDS CPU usage over time comparison
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Space XDP mode Average CPU usage
(%)

Standard Devi-
ation

User Driver 1.28 1.062
System Driver 13.221 2.45
User Offload 1.088 1.15
System Offload 12.553 3.023

Table 5.6: eBPF-IDS CPU usage

We can see that the trends overlap, and the average difference is very similar,
saving less than 1% in CPU usage from the driver to the offloaded solution. The
part of the program that is offloaded is small, therefore it seems that our solution
does not have much benefit when it comes to CPU usage.

5.5 eBPF-IDS Resilience Tests and Known Problems

The previously conducted tests were made in scenarios where the solution was
designed to work properly. However, in a real-world environment, the solution
may face adversity. During development, careful attention was given to possi-
ble overflow events. It would be interesting to examine how performance and
detection keep up in these situations.

Using hping3, a flood scenario was tested. Each packet sent equals the one of a
port scan attempt therefore triggering perf output events. As expected, an over-
flow occurs which triggers the process of waiting for the ring buffer to stabilise.
During this process, our solution works as expected. No events are generated
but the IDS keeps detection active. When using an active response mode, scan
attempts are still dropped. This is backed up, by analysing the output of a con-
ducted scan, where it is stated that all ports are filtered. Figure 5.8 depicts this
scenario. We can clearly see that the ring buffer is overflowed by the errors given,
however, looking at the attacker terminal scans are blocked. In the first scan af-
ter enough probes, the ports’ status becomes filtered. This is more evident as the
second scan gives only filtered results even to ports previously identified as open.

It is important to note, however, an issue. Due to this high traffic, the flow table
reaches maximum size and flows start being evicted. This can come at the cost
of losing the context of important stored flows. In this situation, a normal flow
may keep getting reinserted and therefore trigger a port scan alert. Additionally,
this reinserted flow could also cause the offloaded table to exceed the size limit
therefore resetting it. Finally, during the overflow of the ring buffer, the offload
program cannot trust the active flow table, because there might be active flows
that are not being received. So all traffic that is not in the active flow table is
sent on RX RSS queue two. This may hinder performance as previously the load
of the attack and normal traffic was split among queues. These issues are only
important in the offload domain. In driver or generic mode this type of problem,
related to the offload map, is not present.
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Figure 5.8: scan Detection with Ring Buffer Overflowed

The offloaded map must also be considered. As mentioned the time it takes to re-
set the full map is expensive. For that reason during that time, the kernel makes
all classifications. While the map is being reset, the iPerf3 performance test is un-
affected. Detection also works properly. However, if a flood is present because
only one queue is being used, this may cause severe degradation due to the many
flows entering the queue. There might be ways to tackle this problem, but if we
start trying to include solutions for every potential abnormal situation, our de-
velopment process will become overly complex and extend beyond the scope of
a proof of concept. In a real-world scenario, however, we would need to consider
these issues.

As the time to reset the offload map is long, we also decided to examine if the
constant insertion of flows would affect performance. To test this, an HTTP page
was opened and a script that curled that page in a loop was run. This script
would trigger the insertion of a new flow on the offloaded map in every curl.
iPerf3 performance test was unaffected.

Interestingly, each curl would result in a flow with a 16% probability of being a
scan, this can be seen in Figure 5.9. This is because the first packet was similar
to one of a port scan, however, the five remaining packets would declassify the
flow to normal traffic. This percentage is not enough to determine that a false
positive occurred. The constant behaviour of curling a web page does resemble a
port scan attempt, as it keeps checking a port for activity. Our solution does alert
for a port scan attempt after enough curls are performed. Additionally, in Figure
5.9, a curl is done to a different destination, which gets classified as an SYN scan,
as it resembles one. No more packets are exchanged resulting in it remaining
identified.
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Figure 5.9: Curl with IDS active

5.6 Chapter Wrap-Up

This Chapter focused on examining the developed solution. It addressed the
two approaches proposed to implement RF, its detection capabilities and perfor-
mance.

From the two methods, it was concluded that the hard-coded solution operates
faster than the one via Maps. However, the hard-coded solution comes at the cost
of only being capable of loading smaller models.

The current solution can identify port scans. Its detection goes beyond the port
scans it was trained on. As we moved from a binary to a multi-class model
changes were observed in the detection. Selecting the best option depends on
the final goals envisioned.

The performance of the solution was measured, showing the benefit of using the
compiled model implementation and the difference in packets per second be-
tween XDP modes. Where driver and offload scored the best.

Finally, some tests that placed the developed proof of concept in abnormal sce-
narios was also done. This would allow to know the existing limitations more
clearly.
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Conclusion

This Chapter serves as a reflective stage to evaluate the progress made through-
out the project and to provide a conclusion that encapsulates the key findings.
Additionally, Section 6.1, details what future work and exploration could be done.

From our analysis, it was possible to conclude that eBPF can be a great auxiliary
to an IDS. This is due to where the eBPF can be placed, allowing not only for im-
proved performance but increased visibility, both important characteristics that
can improve an IDS.

From our research, it becomes apparent that this type of solution is a new area of
study that requires more research. This investigation showed that there are vari-
ous limitations, however, the authors either addressed, circumvented or deemed
them acceptable. All solutions compared to their user space counterpart con-
cluded that the eBPF solution was greater.

The practical development revealed that the integration of ML in eBPF is not only
possible but is indeed a good approach. We were able to implement a solution
capable of differentiating between network flows, classifying them as normal or
as a port scan. When it came to the offload domain various limitations were
encountered. These led to the development of a partial offload solution. We
believe, however, that we still fulfilled that objective, as our final proposal, still
operates in the hardware and employs eBPF and ML in that domain, detecting
port scans. However, for the solution to be functional, more was required, placing
part of the program in the kernel, and using some user space memory for alert
generation.

The final IDS demonstrated its efficacy in successfully detecting the attacks it
was trained for. Furthermore, its performance exhibited not only effectiveness
but also promising potential real-world applications.
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6.1 Future Work

We believe that the final solution meets all the objectives established and expec-
tations, given that it is meant to be only a proof of concept. However, there is
always room for improvement. One path that could be taken to improve the cur-
rent solution is on the detection front. Improving the current dataset with more
scan types, or searching for new datasets could be options to improve the amount
of scan types the solution can detect.

For a real-world scenario, detecting more than only port scans would be ideal.
Our solution is very focused on the domain of port scanning. Pivoting to a multi-
class attack vector detection at this stage would be very difficult. The features
required to detect scans are different from the ones required to detect other at-
tacks. This transition would require all the research done, on the most effective
dataset and ML model, to be conducted once again. However, from the gained
insights, some strategies for this type of implementation can be thought out. The
compiled version of the ML model is much faster but it only allows for smaller
models. A good strategy would be to follow a hierarchical model, like the one
implemented with the XDP offload solution, in the case that the model needed
to properly detect multiple attack vectors, is too large. Training only the model
to distinguish between the main attack classes, gives the possibility to make it
smaller. Then build sub-models that can make the distinction within that spe-
cific class. This would also allow, to have these sub-models stored in eBPF maps,
if needed, effectively splitting the model and taking advantage of the compiled
model capabilities as much as possible.

When it comes to XDP offloading, our solution merged successfully. Allowing for
ML in the hardware to make sense. However, other attack vectors may require
features for detection not supported by the current hardware. Therefore, ML may
not be a good strategy to follow, as the current state of the art is designed for more
simple filter-like solutions.
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Appendix A

eBPF Map Updates via Private Agilio
SmartNIC Firmware

This Appendix will focus on the use of the private firmware provided by Netronome.
It is intended to provide a more in-depth insight into the reason behind not fol-
lowing its use for the final solution.

The following Sections, A.1 and A.2, will entail the limitations of the firmware
provided by the private documentation as well as the tests conducted with this
tool, respectively.

A.1 eBPF Offload Map Updates Limitation

Documentation was also provided, along with the private firmware. In it, it is
justified the reason behind, the helper function required to make Map updates
via the hardware, be private. The processing of network packets in the SmartNIC
is handled differently than in the Kernel. Packets are processed in parallel.

This environment can lead to race conditions as map updates may start before
the previous information is stored. To handle this, synchronisation is needed.
This comes in the form of locks. Access to map values can only be done one at a
time resulting in map actions having to wait, which will in consequence lead to
degradation in performance.

A.2 eBPF-IDS Offload Challenges and Drawbacks

To try and understand the possible impact of this feature on our proof of concept,
a test was conducted. This test would immediately allow us to determine if the
use of the feature was worth following. This test aims to compare a solution’s
performance deployed in the hardware and in the kernel.

The deployed solution could not be the already proposed proof of concept in
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its entirety, as some things would need to be changed. However, to make the
assessment needed, we only need to examine the map update section of our so-
lution. The deployed eBPF program does the simple task of keeping track of
flows’ characteristics. No classifications regarding intrusions are done. Note that
Map writes, which are used in our solution had to be changed to Map updates,
this also damages performance in XDP Driver and Generic. iPerf3 was used to
generate traffic.

XDP Mode Avg Pkts/sec Std Dev
Pkts/sec Avg Gbits/sec Std Dev

Gbits/sec

Generic 324950 2375 3.76 0.03

Driver 577949 3732 6.70 0.05

Offload 2231 17 1.26 0

Table A.1: Performance Evaluation of the Private Firmware

From these results, it becomes clear the drastic difference between the map up-
dated in the kernel compared to the hardware. Following this strategy would
completely change the initial paradigm of improved performance through the
use of eBPF. Additionally, there are other drawbacks to consider:

• Map type: there is no LRU variant for the offload domain. The Map used
in this test is only the Hash type. Developing means of handling overflows
would be necessary, through flow evictions.

• BPF time helper function: the bpf_time_get_ns is an eBPF helper function
used to calculate the duration of a flow. This function is, however, not sup-
ported by the firmware. As documented in Section 4.1.2, duration is in fact
not one of the most important features. Not using it for detection could be
possible. However, one of our port scan thresholds is related to time. The
absence of this function would make it impossible to calculate such a met-
ric. In conclusion, not using time could hinder threat detection and decrease
false positive detection.

• Atomic writes: one may argue that the function __sync_fetch_and_add
could be used to increment the values of the characteristics of a flow. How-
ever, a new flow would still need to be added via the Map update func-
tion. Additionally, the implementation only allows incrementing of inte-
gers, given that many values are not of such type some method of storing
and incrementing these values properly is needed. However, even if devel-
oped, the implemented atomic operations do not allow reads in eBPF pro-
grams, meaning that we can only write to these values and not read them
to make a classification.

In conclusion, developing the solution using this strategy did not seem appro-
priate given all these results. Additionally, if further research is conducted on
the developed proof of concept, the accessibility to the firmware could be a road-
block.
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Agilio eBPF Firmware SmartNIC
installation

To allow this document to be self-contained, except for the source code, docu-
menting the process of installing the SmartNIC Firmware was considered rele-
vant. The installation followed the documentation provided by the vendor [eBPF
Offload Getting Started Guide , Netronome CX SmartNIC].

Note that the documentation provides a guide for different environments. The
following is only for our own setup, Ubuntu. For this, kernel 4.17 or above is the
recommended

B.1 Installation

The firmware can be downloaded from the Netronome’s Support page. Addi-
tionally, via the following command, it can also be obtained:

1 wget https://help.netronome.com/helpdesk/attachments/36019898763

When using the command, the file may not possess the correct name and exten-
sion. Please change it to agilio-bpf-firmware-2.0.6.124-1.deb to follow the
next steps better. Note that, the firmware version number may be updated in
the future, for that reason make the appropriate changes to not misidentify the
version that is being used. The next steps are:

• Install the Firmware

1 dpkg -i agilio-bpf-firmware-2.0.6.124-1.deb

• Update NFP driver symbolic links

1 cd /lib/firmware/netronome
2 ln -s agilio-bpf/* .
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• Remove and Reload the driver

1 modprobe -r nfp
2 modprobe nfp

By this stage, the Firmware should be loaded. The documentation also provides
some commands to check if everything is working correctly. With the command
dmesg, verify the logs for the presence of BPF. With the command ip link ensure
the status of the interface is UP. Finally ethtool -i $ETHNAME should output the
firmware version. The output of these commands can be seen on page 9 of [eBPF
Offload Getting Started Guide , Netronome CX SmartNIC].

Additionally, iproute2 utilities and Clang are required. In the case that these are
not present, they should be installed.

B.2 Verification

The documentation demonstrates some programs that can be loaded to verify
the NIC’s functionality. However, given that our proof of concept uses BCC, the
examples provided by this library can be used [BCC XDP Examples].

Note the small alteration needed for these programs to be loaded correctly, refer
to Section 4.6.1. The device parameter should be passed as a char pointer and
not as a string. Take as an example the file xdp_drop_count.py, changing line 44.
Our proposed correction has been accepted [BCC pull request 5051], however,
this error may be present in other sources.

27 offload_device = None
28 if len(sys.argv) == 2:
29 device = sys.argv[1]
30 elif len(sys.argv) == 3:
31 device = sys.argv[2]
32

33 maptype = "percpu_array"
34 if len(sys.argv) == 3:
35 if "-S" in sys.argv:
36 # XDP_FLAGS_SKB_MODE
37 flags |= BPF.XDP_FLAGS_SKB_MODE
38 if "-D" in sys.argv:
39 # XDP_FLAGS_DRV_MODE
40 flags |= BPF.XDP_FLAGS_DRV_MODE
41 if "-H" in sys.argv:
42 # XDP_FLAGS_HW_MODE
43 maptype = "array"
44 offload_device = ctypes.c_char_p(device.encode(’utf-8’))
45 flags |= BPF.XDP_FLAGS_HW_MODE

Listing B.1: BCC XDP example change
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