Utilize este identificador para referenciar este registo: https://hdl.handle.net/10316/100144
Título: Multispectral vineyard segmentation: A deep learning comparison study
Autor: Barros, T.
Conde, P.
Gonçalves, G.
Premebida, Cristiano 
Monteiro, M.
Ferreira, C. S. S.
Nunes, U. J.
Palavras-chave: Multispectral; Vineyard segmentation; Deep learning; Precision agriculture
Data: 2022
Projeto: info:eu-repo/grantAgreement/FCT/3599-PPCDT/MIT-EXPL/TDI/0029/2019/PT/Intelligent Automation in Precise Agriculture AI+Green 
info:eu-repo/grantAgreement/EC/H2020/781086/EU/Crux Agribotics: The future of cucumbers harvesting - robot for automated agriculture labors 
info:eu-repo/grantAgreement/FCT/POR_CENTRO/2021.06492.BD/PT/Multi-modal perception for long-term localization in human-centered robotics 
info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB/00308/2020/PT/Institute for Systems Engineering and Computers at Coimbra - INESC Coimbra 
UIDB/00048/2020 
Título da revista, periódico, livro ou evento: Computers and Electronics in Agriculture
Volume: 195
Resumo: Digital agriculture has evolved significantly over the last few years due to the technological developments in automation and computational intelligence applied to the agricultural sector, including vineyards which are a relevant crop in the Mediterranean region. In this work, a study is presented of semantic segmentation for vine detection in real-world vineyards by exploring state-of-the-art deep segmentation networks and conventional unsupervised methods. Camera data have been collected on vineyards using an Unmanned Aerial System (UAS) equipped with a dual imaging sensor payload, namely a high-definition RGB camera and a five-band multispectral and thermal camera. Extensive experiments using deep-segmentation networks and unsupervised methods have been performed on multimodal datasets representing four distinct vineyards located in the central region of Portugal. The reported results indicate that SegNet, U-Net, and ModSegNet have equivalent overall performance in vine segmentation. The results also show that multimodality slightly improves the performance of vine segmentation, but the NIR spectrum alone generally is sufficient on most of the datasets. Furthermore, results suggest that high-definition RGB images produce equivalent or higher performance than any lower resolution multispectral band combination. Lastly, Deep Learning (DL) networks have higher overall performance than classical methods. The code and dataset are publicly available on https://github.com/Cybonic/DL_vineyard_segmentation_study.git.
URI: https://hdl.handle.net/10316/100144
ISSN: 01681699
DOI: 10.1016/j.compag.2022.106782
Direitos: openAccess
Aparece nas coleções:I&D IT - Artigos em Revistas Internacionais

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato
1-s2.0-S0168169922000990-main.pdf6.1 MBAdobe PDFVer/Abrir
Mostrar registo em formato completo

Citações SCOPUSTM   

2
Visto em 9/nov/2022

Citações WEB OF SCIENCETM

9
Visto em 2/jun/2024

Visualizações de página

188
Visto em 30/out/2024

Downloads

216
Visto em 30/out/2024

Google ScholarTM

Verificar

Altmetric

Altmetric


Este registo está protegido por Licença Creative Commons Creative Commons