Utilize este identificador para referenciar este registo: https://hdl.handle.net/10316/100484
Título: A Review of Genetic Algorithm Approaches for Wildfire Spread Prediction Calibration
Autor: Pereira, Jorge 
Mendes, Jérôme Amaro Pires 
Júnior, Jorge S. S. 
Viegas, Carlos 
Paulo, João Ruivo 
Palavras-chave: wildfire; wildfire spread prediction; calibration; genetic algorithm; evolutionary algorithms
Data: 2022
Projeto: Ministry of Science Technology and Higher Education - IMFire–Intelligent Management ofWildfires ref. PCIF/SSI/0151/2018 
Título da revista, periódico, livro ou evento: Mathematics
Volume: 10
Número: 3
Resumo: Wildfires are complex natural events that cause significant environmental and property damage, as well as human losses, every year throughout the world. In order to aid in their management and mitigate their impact, efforts have been directed towards developing decision support systems that can predict wildfire propagation. Most of the available tools for wildfire spread prediction are based on the Rothermel model that, apart from being relatively complex and computing demanding, depends on several input parameters concerning the local fuels, wind or topography, which are difficult to obtain with a minimum resolution and degree of accuracy. These factors are leading causes for the deviations between the predicted fire propagation and the real fire propagation. In this sense, this paper conducts a literature review on optimization methodologies for wildfire spread prediction based on the use of evolutionary algorithms for input parameter set calibration. In the present literature review, it was observed that the current literature on wildfire spread prediction calibration is mostly focused on methodologies based on genetic algorithms (GAs). Inline with this trend, this paper presents an application of genetic algorithms for the calibration of a set of the Rothermel model’s input parameters, namely: surface-area-to-volume ratio, fuel bed depth, fuel moisture, and midflame wind speed. The GA was validated on 37 real datasets obtained through experimental prescribed fires in controlled conditions.
URI: https://hdl.handle.net/10316/100484
ISSN: 2227-7390
DOI: 10.3390/math10030300
Direitos: openAccess
Aparece nas coleções:I&D ISR - Artigos em Revistas Internacionais
I&D ADAI - Artigos em Revistas Internacionais

Ficheiros deste registo:
Mostrar registo em formato completo

Citações SCOPUSTM   

29
Visto em 28/out/2024

Citações WEB OF SCIENCETM

20
Visto em 2/out/2024

Visualizações de página

159
Visto em 29/out/2024

Downloads

135
Visto em 29/out/2024

Google ScholarTM

Verificar

Altmetric

Altmetric


Este registo está protegido por Licença Creative Commons Creative Commons