Utilize este identificador para referenciar este registo: https://hdl.handle.net/10316/100506
Título: Detection of Tree Decline (Pinus pinaster Aiton) in European Forests Using Sentinel-2 Data
Autor: Mantas, Vasco 
Fonseca, Luís 
Baltazar, Elsa 
Canhoto, Jorge 
Abrantes, Isabel 
Palavras-chave: machine-learning; pinewood nematode; pine wilt disease; remote sensing; Sentinel-2; tree decline
Data: 2022
Projeto: info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB/04004/2020 
Centro-01-0145-FEDER-000007 
PTDC/ASP-SIL/31999/2017 
Título da revista, periódico, livro ou evento: Remote Sensing
Volume: 14
Número: 9
Resumo: Moderate-resolution satellite imagery is essential to detect conifer tree decline on a regional scale and address the threat caused by pinewood nematode (PWN), (Bursaphelenchus xylophilus. This is a quarantine organism responsible for pine wilt disease (PWD), which has caused substantial ecological and economic losses in the maritime pine (Pinus pinaster) forests of Portugal. This study describes the first instance of a pre-operational algorithm applied to Sentinel-2 imagery to detect PWD-compatible decline in maritime pine. The Random Forest model relied on a pre-wilting and an in-season image, calibrated with data from a 24-month long field campaign enhanced withWorldview- 3 data and the analysis of biological samples (hyperspectral reflectance, pigment quantification in needles, and PWN identification). Independent validation results attested to the good performance of the model with an overall accuracy of 95%, particularly when decline affects more than 30% of the 100 m2 pixel of Sentinel-2. Spectral angle mapper applied to hyperspectral measurements suggested that PWN infection cannot be separated from other drivers of decline in the visible-near infrared domain. Our algorithm can be employed to detect regional decline trends and inform subsequent aerial and field surveys, to further investigate decline hotspots.
URI: https://hdl.handle.net/10316/100506
ISSN: 2072-4292
DOI: 10.3390/rs14092028
Direitos: openAccess
Aparece nas coleções:I&D CITEUC - Artigos em Revistas Internacionais
I&D CFE - Artigos em Revistas Internacionais

Ficheiros deste registo:
Mostrar registo em formato completo

Citações SCOPUSTM   

12
Visto em 8/jul/2024

Citações WEB OF SCIENCETM

12
Visto em 2/jul/2024

Visualizações de página

194
Visto em 30/out/2024

Downloads

163
Visto em 30/out/2024

Google ScholarTM

Verificar

Altmetric

Altmetric


Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.