Utilize este identificador para referenciar este registo: https://hdl.handle.net/10316/100824
Título: Ensemble Learning Approach to Retinal Thickness Assessment in Optical Coherence Tomography
Autor: Cazanas-Gordon, Alex 
Parra-Mora, Esther 
Cruz, Luis Alberto da Silva 
Palavras-chave: Deep learning; ensemble learning; semantic segmentation; image processing; retinal thickness; optical coherence tomography
Data: 2021
Projeto: UIDB/50008/2020 
Título da revista, periódico, livro ou evento: IEEE Access
Volume: 9
Resumo: Manual assessment of the retinal thickness in optical coherence tomography images is a timeconsuming task, prone to error and inter-observer variability. The wide variability of the retinal appearance makes the automation of retinal image processing a challenging problem to tackle. The dif culty is even more accentuated in practice when the retinal tissue exhibits large structural changes due to disruptive pathology. In this work, we propose an ensemble-learning-based method for the automated segmentation of retinal boundaries in optical coherence tomography images that is robust to retinal abnormalities. The segmentation accuracy of the proposed algorithm was evaluated on two publicly available datasets that included cases of severe retinal edema. Moreover, the performance of the proposed method was compared to two existing methods, widely referenced in the relevant literature. The proposed algorithm outperformed reference methods at segmenting the retinal boundaries in both normal and pathological images. Furthermore, a thorough reliability analysis showed a strong agreement between the retinal thickness measurements derived from the segmentation obtained with the proposed method and corresponding manual measurements computed with the manual annotations.
URI: https://hdl.handle.net/10316/100824
ISSN: 2169-3536
DOI: 10.1109/ACCESS.2021.3076427
Direitos: openAccess
Aparece nas coleções:FCTUC Eng.Electrotécnica - Artigos em Revistas Internacionais
I&D IT - Artigos em Revistas Internacionais

Ficheiros deste registo:
Mostrar registo em formato completo

Citações SCOPUSTM   

16
Visto em 8/jul/2024

Citações WEB OF SCIENCETM

10
Visto em 2/jul/2024

Visualizações de página

119
Visto em 30/out/2024

Downloads

89
Visto em 30/out/2024

Google ScholarTM

Verificar

Altmetric

Altmetric


Este registo está protegido por Licença Creative Commons Creative Commons