Utilize este identificador para referenciar este registo: https://hdl.handle.net/10316/100882
Título: A Reinforcement Learning Assisted Eye-Driven Computer Game Employing a Decision Tree-Based Approach and CNN Classification
Autor: Perdiz, João 
Garrote, Luís 
Pires, Gabriel Pereira 
Nunes, Urbano J. 
Palavras-chave: CNN; decision tree; electrooculography; reinforcement learning
Data: 2021
Título da revista, periódico, livro ou evento: IEEE Access
Volume: 9
Resumo: Human-Machine Interfaces employing biosignal-based inputs are hard to translate to real-life applications, in part because of the difficulty of developing generalized models to classify physiological events representing a user's actions. In the proposed framework, an Electrooculography (EOG)-based game is operated through a pipeline of decision methods. These include a user-independent classification model of eye movements using a Convolutional Neural Network (CNN), which is fed with images created from signal windows, and an Ensemble of Utility Decision Networks (EUDN), which moderates the impact of oftentimes conflicting ocular events while enabling a more natural level of control over the interface. The CNN and the EUDN replace the normally used feature-based ocular event detection methods for EOG. Finally, a Reinforcement Learning-based game actuation approach simultaneously updates multiple (State, Action) pairs for each rewarded outcome, intervenes to mitigate the consequences of wrongful game Commands, and can be used as part of a "shared-control"paradigm based on EOG. Results show a positive impact of Reinforcement Learning both in improving participants' game performance as well as in reducing some of their subjective workload indicators.
URI: https://hdl.handle.net/10316/100882
ISSN: 2169-3536
DOI: 10.1109/ACCESS.2021.3068055
Direitos: openAccess
Aparece nas coleções:I&D ISR - Artigos em Revistas Internacionais
FCTUC Eng.Electrotécnica - Artigos em Revistas Internacionais

Mostrar registo em formato completo

Citações SCOPUSTM   

2
Visto em 17/nov/2022

Citações WEB OF SCIENCETM

2
Visto em 2/mai/2023

Visualizações de página

116
Visto em 30/out/2024

Downloads

77
Visto em 30/out/2024

Google ScholarTM

Verificar

Altmetric

Altmetric


Este registo está protegido por Licença Creative Commons Creative Commons