Utilize este identificador para referenciar este registo:
https://hdl.handle.net/10316/101331
Título: | Node and Network Entropy—A Novel Mathematical Model for Pattern Analysis of Team Sports Behavior | Autor: | Martins, Fernando Gomes, Ricardo Lopes, Vasco Silva, Frutuoso Mendes, Rui |
Palavras-chave: | social network analysis; entropy; Markov chain; football | Data: | 2020 | Título da revista, periódico, livro ou evento: | Mathematics | Volume: | 8 | Número: | 9 | Resumo: | Pattern analysis is a well-established topic in team sports performance analysis, and is usually centered on the analysis of passing sequences. Taking a Bayesian approach to the study of these interactions, this work presents novel entropy mathematical models for Markov chain-based pattern analysis in team sports networks, with Relative Transition Entropy and Network Transition Entropy applied to both passing and reception patterns. To demonstrate their applicability, these mathematical models were used in a case study in football—the 2016/2017 Champions League Final, where both teams were analyzed. The results show that the winning team, Real Madrid, presented greater values for both individual and team transition entropies, which indicate that greater levels of unpredictability may bring teams closer to victory. In conclusion, these metrics may provide information to game analysts, allowing them to provide coaches with accurate and timely information about the key players of the game. | URI: | https://hdl.handle.net/10316/101331 | ISSN: | 2227-7390 | DOI: | 10.3390/math8091543 | Direitos: | openAccess |
Aparece nas coleções: | I&D CIDAF - Artigos em Revistas Internacionais |
Ficheiros deste registo:
Ficheiro | Descrição | Tamanho | Formato | |
---|---|---|---|---|
Node-and-network-entropyA-novel-mathematical-model-for-pattern-analysis-of-team-sports-behaviorMathematics.pdf | 259.54 kB | Adobe PDF | Ver/Abrir |
Citações SCOPUSTM
4
Visto em 17/nov/2022
Citações WEB OF SCIENCETM
4
Visto em 2/mai/2023
Visualizações de página
113
Visto em 30/out/2024
Downloads
55
Visto em 30/out/2024
Google ScholarTM
Verificar
Altmetric
Altmetric
Este registo está protegido por Licença Creative Commons