Utilize este identificador para referenciar este registo: https://hdl.handle.net/10316/103475
Título: Beached and Floating Litter Surveys by Unmanned Aerial Vehicles: Operational Analogies and Differences
Autor: Andriolo, Umberto 
Garcia-Garin, Odei
Vighi, Morgana
Borrell, Asunción
Gonçalves, Gil 
Palavras-chave: Plastics; Environmental Monitoring; Beach Pollution; Ocean Pollution; Machine Learning; Drone; Coastal Monitoring
Data: 2022
Editora: MDPI
Projeto: UIDB 00308/2020 
PTDC/EAM-REM/30324/2017 
1MED15_3.2_M12_334; European Union- European Regional Development Fund- Interreg MED 
Título da revista, periódico, livro ou evento: Remote Sensing
Volume: 14
Número: 6
Resumo: The abundance of litter pollution in the marine environment has been increasing globally. Remote sensing techniques are valuable tools to advance knowledge on litter abundance, distribution and dynamics. Images collected by Unmanned Aerial Vehicles (UAV, aka drones) are highly efficient to map and monitor local beached (BL) and floating (FL) marine litter items. In this work, the operational insights to carry out both BL and FL surveys using UAVs are detailly described. In particular, flight planning and deployment, along with image products processing and analysis, are reported and compared. Furthermore, analogies and differences between UAV-based BL and FL mapping are discussed, with focus on the challenges related to BL and FL item detection and recognition. Given the efficiency of UAV to map BL and FL, this remote sensing technique can replace traditional methods for litter monitoring, further improving the knowledge of marine litter dynamics in the marine environment. This communication aims at helping researchers in planning and performing optimized drone-based BL and FL surveys.
URI: https://hdl.handle.net/10316/103475
ISSN: 2072-4292
DOI: 10.3390/rs14061336
Direitos: openAccess
Aparece nas coleções:I&D INESCC - Artigos em Revistas Internacionais
FCTUC Matemática - Artigos em Revistas Internacionais

Mostrar registo em formato completo

Citações SCOPUSTM   

32
Visto em 4/nov/2024

Citações WEB OF SCIENCETM

25
Visto em 2/nov/2024

Visualizações de página

108
Visto em 5/nov/2024

Downloads

131
Visto em 5/nov/2024

Google ScholarTM

Verificar

Altmetric

Altmetric


Este registo está protegido por Licença Creative Commons Creative Commons