Please use this identifier to cite or link to this item:
https://hdl.handle.net/10316/105268
Title: | Lipid Nanoparticles Loaded with Iridoid Glycosides: Development and Optimization Using Experimental Factorial Design | Authors: | Dąbrowska, Marta Souto, Eliana B. Nowak, Izabela |
Keywords: | lipid nanoparticles; iridoid glycosides; aucubin; catalpol; factorial design | Issue Date: | 25-May-2021 | Publisher: | MDPI | metadata.degois.publication.title: | Molecules | metadata.degois.publication.volume: | 26 | metadata.degois.publication.issue: | 11 | Abstract: | Lipid nanoparticles based on multiple emulsion (W/O/W) systems are suitable for incorporating hydrophilic active substances, including iridoid glycosides. This study involved optimization of composition of lipid nanoparticles, incorporation of active compounds (aucubin and catalpol), evaluation of stability of the resulting nanocarriers, and characterization of their lipid matrix. Based on 32 factorial design, an optimized dispersion of lipid nanoparticles (solid lipid:surfactant-4.5:1.0 wt.%) was developed, predisposed for the incorporation of iridoid glycosides by emulsification-sonication method. The encapsulation efficiency of the active substances was determined at nearly 90% (aucubin) and 77% (catalpol). Regarding the stability study, room temperature was found to be the most suitable for maintaining the expected physicochemical parameter values (particle size < 100 nm; polydispersity index < 0.3; zeta potential > |± 30 mV|). Characterization of the lipid matrix confirmed the nanometer size range of the resulting carriers (below 100 nm), as well as the presence of the lipid in the stable β' form. | URI: | https://hdl.handle.net/10316/105268 | ISSN: | 1420-3049 | DOI: | 10.3390/molecules26113161 | Rights: | openAccess |
Appears in Collections: | FFUC- Artigos em Revistas Internacionais |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Lipid-nanoparticles-loaded-with-iridoid-glycosides-Development-and-optimization-using-experimental-factorial-designMolecules.pdf | 4.05 MB | Adobe PDF | View/Open |
SCOPUSTM
Citations
6
checked on Oct 14, 2024
WEB OF SCIENCETM
Citations
5
checked on Oct 2, 2024
Page view(s)
89
checked on Oct 29, 2024
Download(s)
30
checked on Oct 29, 2024
Google ScholarTM
Check
Altmetric
Altmetric
This item is licensed under a Creative Commons License