Please use this identifier to cite or link to this item:
https://hdl.handle.net/10316/105479
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Solary, Maryam Shams | - |
dc.contributor.author | Kovacec, Alexander | - |
dc.contributor.author | Capizzano, Stefano Serra | - |
dc.date.accessioned | 2023-03-02T09:07:55Z | - |
dc.date.available | 2023-03-02T09:07:55Z | - |
dc.date.issued | 2021 | - |
dc.identifier.issn | 2300-7451 | pt |
dc.identifier.uri | https://hdl.handle.net/10316/105479 | - |
dc.description.abstract | Let L be the in nite lower triangular Toeplitz matrix with rst column (μ, a1, a2, ..., ap, a1, ..., ap, ...)T and let D be the in nite diagonal matrix whose entries are 1, 2, 3, . . . Let A := L + D be the sum of these two matrices. B¨unger and Rump have shown that if p = 2 and certain linear inequalities between the parameters μ, a1, a2, are satis ed, then the singular values of any nite left upper square submatrix of A can be bounded from below by an expression depending only on those parameters, but not on the matrix size. By extending parts of their reasoning, we show that a similar behaviour should be expected for arbitrary p and a much larger range of values for μ, a1, ..., ap. It depends on the asymptotics in μ of the l2-norm of certain sequences de ned by linear recurrences, in which these parameters enter.We also consider the relevance of the results in a numerical analysis setting and moreover a few selected numerical experiments are presented in order to show that our bounds are accurate in practical computations. | pt |
dc.language.iso | eng | pt |
dc.publisher | Walter de Gruyter | pt |
dc.relation | UID/MAT/00324/2019 | pt |
dc.relation | INdAM - GNCS | pt |
dc.rights | openAccess | pt |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | pt |
dc.subject | Toeplitz related matrix | pt |
dc.subject | triangular matrix | pt |
dc.subject | singular value | pt |
dc.subject | in nite-dimensional matrix | pt |
dc.subject | asymptotics of linear recurrences | pt |
dc.title | The smallest singular value of certain Toeplitz-related parametric triangular matrices | pt |
dc.type | article | - |
degois.publication.firstPage | 103 | pt |
degois.publication.lastPage | 111 | pt |
degois.publication.issue | 1 | pt |
degois.publication.title | Special Matrices | pt |
dc.peerreviewed | yes | pt |
dc.identifier.doi | 10.1515/spma-2020-0127 | pt |
degois.publication.volume | 9 | pt |
dc.date.embargo | 2021-01-01 | * |
uc.date.periodoEmbargo | 0 | pt |
item.languageiso639-1 | en | - |
item.fulltext | Com Texto completo | - |
item.grantfulltext | open | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | article | - |
item.cerifentitytype | Publications | - |
Appears in Collections: | FCTUC Matemática - Artigos em Revistas Internacionais |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
The-smallest-singular-value-of-certain-Toeplitzrelated-parametric-triangular-matricesSpecial-Matrices.pdf | 571.9 kB | Adobe PDF | View/Open |
Page view(s)
89
checked on Nov 6, 2024
Download(s)
24
checked on Nov 6, 2024
Google ScholarTM
Check
Altmetric
Altmetric
This item is licensed under a Creative Commons License