Utilize este identificador para referenciar este registo: https://hdl.handle.net/10316/105479
Título: The smallest singular value of certain Toeplitz-related parametric triangular matrices
Autor: Solary, Maryam Shams
Kovacec, Alexander 
Capizzano, Stefano Serra
Palavras-chave: Toeplitz related matrix; triangular matrix; singular value; in nite-dimensional matrix; asymptotics of linear recurrences
Data: 2021
Editora: Walter de Gruyter
Projeto: UID/MAT/00324/2019 
INdAM - GNCS 
Título da revista, periódico, livro ou evento: Special Matrices
Volume: 9
Número: 1
Resumo: Let L be the in nite lower triangular Toeplitz matrix with rst column (μ, a1, a2, ..., ap, a1, ..., ap, ...)T and let D be the in nite diagonal matrix whose entries are 1, 2, 3, . . . Let A := L + D be the sum of these two matrices. B¨unger and Rump have shown that if p = 2 and certain linear inequalities between the parameters μ, a1, a2, are satis ed, then the singular values of any nite left upper square submatrix of A can be bounded from below by an expression depending only on those parameters, but not on the matrix size. By extending parts of their reasoning, we show that a similar behaviour should be expected for arbitrary p and a much larger range of values for μ, a1, ..., ap. It depends on the asymptotics in μ of the l2-norm of certain sequences de ned by linear recurrences, in which these parameters enter.We also consider the relevance of the results in a numerical analysis setting and moreover a few selected numerical experiments are presented in order to show that our bounds are accurate in practical computations.
URI: https://hdl.handle.net/10316/105479
ISSN: 2300-7451
DOI: 10.1515/spma-2020-0127
Direitos: openAccess
Aparece nas coleções:FCTUC Matemática - Artigos em Revistas Internacionais

Ficheiros deste registo:
Mostrar registo em formato completo

Visualizações de página

89
Visto em 6/nov/2024

Downloads

24
Visto em 6/nov/2024

Google ScholarTM

Verificar

Altmetric

Altmetric


Este registo está protegido por Licença Creative Commons Creative Commons