Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/106115
DC FieldValueLanguage
dc.contributor.authorSimões, Marco-
dc.contributor.authorBorra, Davide-
dc.contributor.authorSantamaría-Vázquez, Eduardo-
dc.contributor.authorBittencourt-Villalpando, Mayra-
dc.contributor.authorKrzemiński, Dominik-
dc.contributor.authorMiladinović, Aleksandar-
dc.contributor.authorSchmid, Thomas-
dc.contributor.authorZhao, Haifeng-
dc.contributor.authorAmaral, Carlos-
dc.contributor.authorDireito, Bruno-
dc.contributor.authorHenriques, Jorge H.-
dc.contributor.authorCarvalho, Paulo-
dc.contributor.authorCastelo-Branco, Miguel-
dc.date.accessioned2023-03-21T10:44:47Z-
dc.date.available2023-03-21T10:44:47Z-
dc.date.issued2020-
dc.identifier.issn1662-4548-
dc.identifier.urihttps://hdl.handle.net/10316/106115-
dc.description.abstractThere is a lack of multi-session P300 datasets for Brain-Computer Interfaces (BCI). Publicly available datasets are usually limited by small number of participants with few BCI sessions. In this sense, the lack of large, comprehensive datasets with various individuals and multiple sessions has limited advances in the development of more effective data processing and analysis methods for BCI systems. This is particularly evident to explore the feasibility of deep learning methods that require large datasets. Here we present the BCIAUT-P300 dataset, containing 15 autism spectrum disorder individuals undergoing 7 sessions of P300-based BCI joint-attention training, for a total of 105 sessions. The dataset was used for the 2019 IFMBE Scientific Challenge organized during MEDICON 2019 where, in two phases, teams from all over the world tried to achieve the best possible object-detection accuracy based on the P300 signals. This paper presents the characteristics of the dataset and the approaches followed by the 9 finalist teams during the competition. The winner obtained an average accuracy of 92.3% with a convolutional neural network based on EEGNet. The dataset is now publicly released and stands as a benchmark for future P300-based BCI algorithms based on multiple session data.pt
dc.description.sponsorshipScheme for Promotion of Academic and Research Collaboration (SPARC Grant), Project Code: P1073pt
dc.language.isoengpt
dc.publisherFrontiers Media S.A.pt
dc.relationUID/4950/2020pt
dc.relationPTDC/PSI-GER/30852/2017pt
dc.relationCENTRO-01-0145-FEDER-000016/BIGDATIMAGEpt
dc.relationSAICTPAC/0010/2015pt
dc.rightsopenAccesspt
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt
dc.subjectP300pt
dc.subjectEEGpt
dc.subjectbenchmark datasetpt
dc.subjectbrain-computer interfacept
dc.subjectautism spectrum disorderpt
dc.subjectmulti-sessionpt
dc.subjectmulti-subjectpt
dc.titleBCIAUT-P300: A Multi-Session and Multi-Subject Benchmark Dataset on Autism for P300-Based Brain-Computer-Interfacespt
dc.typearticlept
degois.publication.firstPage568104pt
degois.publication.titleFrontiers in Neurosciencept
dc.peerreviewedyespt
dc.identifier.doi10.3389/fnins.2020.568104-
degois.publication.volume14pt
dc.date.embargo2020-01-01*
dc.identifier.pmid33100959-
uc.date.periodoEmbargo0pt
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextCom Texto completo-
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
crisitem.author.researchunitCISUC - Centre for Informatics and Systems of the University of Coimbra-
crisitem.author.researchunitCEGOT – Centre of Studies on Geography and Spatial Planning-
crisitem.author.researchunitCIBIT - Coimbra Institute for Biomedical Imaging and Translational Research-
crisitem.author.parentresearchunitFaculty of Sciences and Technology-
crisitem.author.orcid0000-0001-7995-7304-
crisitem.author.orcid0000-0002-3259-8815-
crisitem.author.orcid0000-0003-4622-474X-
crisitem.author.orcid0000-0002-6920-869X-
crisitem.author.orcid0000-0003-4364-6373-
crisitem.project.grantnoBIGDATIMAGE - Da modelação computacional e investigação clínica ao desenvolvimento de plataformas de neuroimagem e big data para descoberta de biomarcadores-
crisitem.project.grantnoMEDPERSYS - Synaptic networks and Personalized Medicine Approaches to Understand Neurobehavioural Diseases Across the Lifespan-
Appears in Collections:I&D ICNAS - Artigos em Revistas Internacionais
I&D CISUC - Artigos em Revistas Internacionais
I&D CIBIT - Artigos em Revistas Internacionais
Show simple item record

SCOPUSTM   
Citations

42
checked on Oct 28, 2024

WEB OF SCIENCETM
Citations

27
checked on Oct 2, 2024

Page view(s)

133
checked on Oct 30, 2024

Download(s)

45
checked on Oct 30, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons