Please use this identifier to cite or link to this item:
https://hdl.handle.net/10316/106115
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Simões, Marco | - |
dc.contributor.author | Borra, Davide | - |
dc.contributor.author | Santamaría-Vázquez, Eduardo | - |
dc.contributor.author | Bittencourt-Villalpando, Mayra | - |
dc.contributor.author | Krzemiński, Dominik | - |
dc.contributor.author | Miladinović, Aleksandar | - |
dc.contributor.author | Schmid, Thomas | - |
dc.contributor.author | Zhao, Haifeng | - |
dc.contributor.author | Amaral, Carlos | - |
dc.contributor.author | Direito, Bruno | - |
dc.contributor.author | Henriques, Jorge H. | - |
dc.contributor.author | Carvalho, Paulo | - |
dc.contributor.author | Castelo-Branco, Miguel | - |
dc.date.accessioned | 2023-03-21T10:44:47Z | - |
dc.date.available | 2023-03-21T10:44:47Z | - |
dc.date.issued | 2020 | - |
dc.identifier.issn | 1662-4548 | - |
dc.identifier.uri | https://hdl.handle.net/10316/106115 | - |
dc.description.abstract | There is a lack of multi-session P300 datasets for Brain-Computer Interfaces (BCI). Publicly available datasets are usually limited by small number of participants with few BCI sessions. In this sense, the lack of large, comprehensive datasets with various individuals and multiple sessions has limited advances in the development of more effective data processing and analysis methods for BCI systems. This is particularly evident to explore the feasibility of deep learning methods that require large datasets. Here we present the BCIAUT-P300 dataset, containing 15 autism spectrum disorder individuals undergoing 7 sessions of P300-based BCI joint-attention training, for a total of 105 sessions. The dataset was used for the 2019 IFMBE Scientific Challenge organized during MEDICON 2019 where, in two phases, teams from all over the world tried to achieve the best possible object-detection accuracy based on the P300 signals. This paper presents the characteristics of the dataset and the approaches followed by the 9 finalist teams during the competition. The winner obtained an average accuracy of 92.3% with a convolutional neural network based on EEGNet. The dataset is now publicly released and stands as a benchmark for future P300-based BCI algorithms based on multiple session data. | pt |
dc.description.sponsorship | Scheme for Promotion of Academic and Research Collaboration (SPARC Grant), Project Code: P1073 | pt |
dc.language.iso | eng | pt |
dc.publisher | Frontiers Media S.A. | pt |
dc.relation | UID/4950/2020 | pt |
dc.relation | PTDC/PSI-GER/30852/2017 | pt |
dc.relation | CENTRO-01-0145-FEDER-000016/BIGDATIMAGE | pt |
dc.relation | SAICTPAC/0010/2015 | pt |
dc.rights | openAccess | pt |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | pt |
dc.subject | P300 | pt |
dc.subject | EEG | pt |
dc.subject | benchmark dataset | pt |
dc.subject | brain-computer interface | pt |
dc.subject | autism spectrum disorder | pt |
dc.subject | multi-session | pt |
dc.subject | multi-subject | pt |
dc.title | BCIAUT-P300: A Multi-Session and Multi-Subject Benchmark Dataset on Autism for P300-Based Brain-Computer-Interfaces | pt |
dc.type | article | pt |
degois.publication.firstPage | 568104 | pt |
degois.publication.title | Frontiers in Neuroscience | pt |
dc.peerreviewed | yes | pt |
dc.identifier.doi | 10.3389/fnins.2020.568104 | - |
degois.publication.volume | 14 | pt |
dc.date.embargo | 2020-01-01 | * |
dc.identifier.pmid | 33100959 | - |
uc.date.periodoEmbargo | 0 | pt |
item.grantfulltext | open | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | Com Texto completo | - |
item.openairetype | article | - |
item.cerifentitytype | Publications | - |
item.languageiso639-1 | en | - |
crisitem.author.researchunit | CISUC - Centre for Informatics and Systems of the University of Coimbra | - |
crisitem.author.researchunit | CEGOT – Centre of Studies on Geography and Spatial Planning | - |
crisitem.author.researchunit | CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research | - |
crisitem.author.parentresearchunit | Faculty of Sciences and Technology | - |
crisitem.author.orcid | 0000-0001-7995-7304 | - |
crisitem.author.orcid | 0000-0002-3259-8815 | - |
crisitem.author.orcid | 0000-0003-4622-474X | - |
crisitem.author.orcid | 0000-0002-6920-869X | - |
crisitem.author.orcid | 0000-0003-4364-6373 | - |
crisitem.project.grantno | BIGDATIMAGE - Da modelação computacional e investigação clínica ao desenvolvimento de plataformas de neuroimagem e big data para descoberta de biomarcadores | - |
crisitem.project.grantno | MEDPERSYS - Synaptic networks and Personalized Medicine Approaches to Understand Neurobehavioural Diseases Across the Lifespan | - |
Appears in Collections: | I&D ICNAS - Artigos em Revistas Internacionais I&D CISUC - Artigos em Revistas Internacionais I&D CIBIT - Artigos em Revistas Internacionais |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
BCIAUT-P300 A Multi-Session and Multi-Subject Benchmark Dataset on Autism for P300-Based Brain-Computer-Interfaces.pdf | 1.88 MB | Adobe PDF | View/Open |
SCOPUSTM
Citations
42
checked on Oct 28, 2024
WEB OF SCIENCETM
Citations
27
checked on Oct 2, 2024
Page view(s)
133
checked on Oct 30, 2024
Download(s)
45
checked on Oct 30, 2024
Google ScholarTM
Check
Altmetric
Altmetric
This item is licensed under a Creative Commons License