Utilize este identificador para referenciar este registo: https://hdl.handle.net/10316/106115
Título: BCIAUT-P300: A Multi-Session and Multi-Subject Benchmark Dataset on Autism for P300-Based Brain-Computer-Interfaces
Autor: Simões, Marco 
Borra, Davide
Santamaría-Vázquez, Eduardo
Bittencourt-Villalpando, Mayra
Krzemiński, Dominik
Miladinović, Aleksandar
Schmid, Thomas
Zhao, Haifeng
Amaral, Carlos 
Direito, Bruno 
Henriques, Jorge H. 
Carvalho, Paulo 
Castelo-Branco, Miguel 
Palavras-chave: P300; EEG; benchmark dataset; brain-computer interface; autism spectrum disorder; multi-session; multi-subject
Data: 2020
Editora: Frontiers Media S.A.
Projeto: UID/4950/2020 
PTDC/PSI-GER/30852/2017 
CENTRO-01-0145-FEDER-000016/BIGDATIMAGE 
SAICTPAC/0010/2015 
Título da revista, periódico, livro ou evento: Frontiers in Neuroscience
Volume: 14
Resumo: There is a lack of multi-session P300 datasets for Brain-Computer Interfaces (BCI). Publicly available datasets are usually limited by small number of participants with few BCI sessions. In this sense, the lack of large, comprehensive datasets with various individuals and multiple sessions has limited advances in the development of more effective data processing and analysis methods for BCI systems. This is particularly evident to explore the feasibility of deep learning methods that require large datasets. Here we present the BCIAUT-P300 dataset, containing 15 autism spectrum disorder individuals undergoing 7 sessions of P300-based BCI joint-attention training, for a total of 105 sessions. The dataset was used for the 2019 IFMBE Scientific Challenge organized during MEDICON 2019 where, in two phases, teams from all over the world tried to achieve the best possible object-detection accuracy based on the P300 signals. This paper presents the characteristics of the dataset and the approaches followed by the 9 finalist teams during the competition. The winner obtained an average accuracy of 92.3% with a convolutional neural network based on EEGNet. The dataset is now publicly released and stands as a benchmark for future P300-based BCI algorithms based on multiple session data.
URI: https://hdl.handle.net/10316/106115
ISSN: 1662-4548
DOI: 10.3389/fnins.2020.568104
Direitos: openAccess
Aparece nas coleções:I&D ICNAS - Artigos em Revistas Internacionais
I&D CISUC - Artigos em Revistas Internacionais
I&D CIBIT - Artigos em Revistas Internacionais

Mostrar registo em formato completo

Citações SCOPUSTM   

42
Visto em 28/out/2024

Citações WEB OF SCIENCETM

27
Visto em 2/out/2024

Visualizações de página

133
Visto em 30/out/2024

Downloads

45
Visto em 30/out/2024

Google ScholarTM

Verificar

Altmetric

Altmetric


Este registo está protegido por Licença Creative Commons Creative Commons