Utilize este identificador para referenciar este registo: https://hdl.handle.net/10316/106655
Título: Google Earth Engine Open-Source Code for Land Surface Temperature Estimation from the Landsat Series
Autor: Ermida, Sofia L.
Soares, Patrícia 
Mantas, Vasco 
Göttsche, Frank-M.
Trigo, Isabel F.
Palavras-chave: Land Surface Temperature; Landsat; Google Earth Engine; ASTER GED; high resolution
Data: 2020
Editora: MDPI
Projeto: PTDC/CTA-MET/28946/2017 
Título da revista, periódico, livro ou evento: Remote Sensing
Volume: 12
Número: 9
Resumo: Land Surface Temperature (LST) is increasingly important for various studies assessing land surface conditions, e.g., studies of urban climate, evapotranspiration, and vegetation stress. The Landsat series of satellites have the potential to provide LST estimates at a high spatial resolution, which is particularly appropriate for local or small-scale studies. Numerous studies have proposed LST retrieval algorithms for the Landsat series, and some datasets are available online. However, those datasets generally require the users to be able to handle large volumes of data. Google Earth Engine (GEE) is an online platform created to allow remote sensing users to easily perform big data analyses without increasing the demand for local computing resources. However, high spatial resolution LST datasets are currently not available in GEE. Here we provide a code repository that allows computing LSTs from Landsat 4, 5, 7, and 8 within GEE. The code may be used freely by users for computing Landsat LST as part of any analysis within GEE.
URI: https://hdl.handle.net/10316/106655
ISSN: 2072-4292
DOI: 10.3390/rs12091471
Direitos: openAccess
Aparece nas coleções:FCTUC Ciências da Terra - Artigos em Revistas Internacionais

Mostrar registo em formato completo

Citações WEB OF SCIENCETM

281
Visto em 2/out/2024

Visualizações de página

302
Visto em 29/out/2024

Downloads

161
Visto em 29/out/2024

Google ScholarTM

Verificar

Altmetric

Altmetric


Este registo está protegido por Licença Creative Commons Creative Commons