Please use this identifier to cite or link to this item:
https://hdl.handle.net/10316/11145
Title: | The inverse eigenvalue problem for Hermitian matrices whose graphs are cycles | Authors: | Fernandes, Rosário Fonseca, C. M. da |
Keywords: | Inverse eigenvalue problem; Periodic Jacobi matrix; Eigenvalues; Multiplicities; Graphs; Cycle | Issue Date: | 15-Dec-2008 | Publisher: | Taylor & Francis | Citation: | Linear and Multilinear Algebra. (2008) iFirst | Abstract: | In 1979, Ferguson characterized the periodic Jacobi matrices with given eigenvalues and showed how to use the Lanzcos Algorithm to construct each such matrix. This article provides general characterizations and constructions for the complex analogue of periodic Jacobi matrices. As a consequence of the main procedure, we prove that the multiplicity of an eigenvalue of a periodic Jacobi matrix is at most 2. | URI: | https://hdl.handle.net/10316/11145 | ISSN: | 0308-1087 | DOI: | 10.1080/03081080802187870 | Rights: | openAccess |
Appears in Collections: | FCTUC Matemática - Artigos em Revistas Internacionais |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
The inverse eigenvalue problem for Hermitian matrices.pdf | 122.02 kB | Adobe PDF | View/Open |
WEB OF SCIENCETM
Citations
5
20
checked on Oct 2, 2024
Page view(s) 50
590
checked on Oct 29, 2024
Download(s) 50
700
checked on Oct 29, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.