Utilize este identificador para referenciar este registo: https://hdl.handle.net/10316/111844
Título: Survey on Deep Fuzzy Systems in Regression Applications: A View on Interpretability
Autor: Júnior, Jorge S. S. 
Mendes, Jérôme 
Souza, Francisco
Premebida, Cristiano 
Palavras-chave: Deep fuzzy systems; Deep regression; Explainable artificial intelligence (XAI); Interpretability; Deep learning
Data: 2023
Editora: Springer Nature
Projeto: project iProMo (CENTRO-01-0247- FEDER-069730) 
FCT grant ref. 2021.04917.BD 
Título da revista, periódico, livro ou evento: International Journal of Fuzzy Systems
Volume: 25
Número: 7
Resumo: Deep learning (DL) has captured the attention of the community with an increasing number of recent papers in regression applications, including surveys and reviews. Despite the efficiency and good accuracy in systems with high-dimensional data, many DL methodologies have complex structures that are not readily transparent to human users. Accessing the interpretability of these models is an essential factor for addressing problems in sensitive areas such as cyber-security systems, medical, financial surveillance, and industrial processes. Fuzzy logic systems (FLS) are inherently interpretable models capable of using nonlinear representations for complex systems through linguistic terms with membership degrees mimicking human thought. This paper aims to investigate the state-ofthe- art of existing deep fuzzy systems (DFS) for regression, i.e., methods that combine DL and FLS with the aim of achieving good accuracy and good interpretability. Within the concept of explainable artificial intelligence (XAI), it is essential to contemplate interpretability in the development of intelligent models and not only seek to promote explanations after learning (post hoc methods), which is currently well established in the literature. Therefore, this work presents DFS for regression applications as the leading point of discussion of this topic that is not sufficiently explored in the literature and thus deserves a comprehensive survey.
URI: https://hdl.handle.net/10316/111844
ISSN: 1562-2479
2199-3211
DOI: 10.1007/s40815-023-01544-8
Direitos: openAccess
Aparece nas coleções:I&D ISR - Artigos em Revistas Internacionais
FCTUC Eng.Electrotécnica - Artigos em Revistas Internacionais

Mostrar registo em formato completo

Visualizações de página

70
Visto em 30/out/2024

Downloads

26
Visto em 30/out/2024

Google ScholarTM

Verificar

Altmetric

Altmetric


Este registo está protegido por Licença Creative Commons Creative Commons