Please use this identifier to cite or link to this item:
https://hdl.handle.net/10316/112150
Title: | The dynamical Schrödinger problem in abstract metric spaces | Authors: | Monsaingeon, Léonard Tamanini, Luca Vorotnikov, Dmitry |
Keywords: | Gradient flows; Metric geometry; Optimal transport; Fisher information; Gamma-convergence | Issue Date: | 2023 | Publisher: | Elsevier | Project: | PTDC/MAT-STA/22812/2017 SchröMokaand personal grant 2020/00162/CEECIND FCT project PTDC/MAT-PUR/28686/2017 UIDB/00324/2020 |
metadata.degois.publication.title: | Advances in Mathematics | metadata.degois.publication.volume: | 426 | Abstract: | In this paper we introduce the dynamical Schrödinger prob-lem, defined for a wide class of entropy and Fisher informa-tion functionals, as a geometric problem on abstract metric spaces. Under very mild assumptions we prove a generic Γ-convergence result towards the geodesic problem as the noise parameter ε ↓0. We also study the dependence of the entropic cost on the parameter ε. Some examples and applications are discussed. | URI: | https://hdl.handle.net/10316/112150 | ISSN: | 00018708 | DOI: | 10.1016/j.aim.2023.109100 | Rights: | openAccess |
Appears in Collections: | FCTUC Matemática - Artigos em Revistas Internacionais I&D CMUC - Artigos em Revistas Internacionais |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
The dynamical Schrödinger problem in abstract metric spaces.pdf | 873.3 kB | Adobe PDF | View/Open |
Page view(s)
65
checked on Oct 30, 2024
Download(s)
22
checked on Oct 30, 2024
Google ScholarTM
Check
Altmetric
Altmetric
This item is licensed under a Creative Commons License