Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/112150
Title: The dynamical Schrödinger problem in abstract metric spaces
Authors: Monsaingeon, Léonard 
Tamanini, Luca
Vorotnikov, Dmitry 
Keywords: Gradient flows; Metric geometry; Optimal transport; Fisher information; Gamma-convergence
Issue Date: 2023
Publisher: Elsevier
Project: PTDC/MAT-STA/22812/2017 SchröMokaand personal grant 2020/00162/CEECIND 
FCT project PTDC/MAT-PUR/28686/2017 
UIDB/00324/2020 
metadata.degois.publication.title: Advances in Mathematics
metadata.degois.publication.volume: 426
Abstract: In this paper we introduce the dynamical Schrödinger prob-lem, defined for a wide class of entropy and Fisher informa-tion functionals, as a geometric problem on abstract metric spaces. Under very mild assumptions we prove a generic Γ-convergence result towards the geodesic problem as the noise parameter ε ↓0. We also study the dependence of the entropic cost on the parameter ε. Some examples and applications are discussed.
URI: https://hdl.handle.net/10316/112150
ISSN: 00018708
DOI: 10.1016/j.aim.2023.109100
Rights: openAccess
Appears in Collections:FCTUC Matemática - Artigos em Revistas Internacionais
I&D CMUC - Artigos em Revistas Internacionais

Files in This Item:
Show full item record

Page view(s)

65
checked on Oct 30, 2024

Download(s)

22
checked on Oct 30, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons